JP2011175387A - Ground surface observation method - Google Patents

Ground surface observation method Download PDF

Info

Publication number
JP2011175387A
JP2011175387A JP2010037977A JP2010037977A JP2011175387A JP 2011175387 A JP2011175387 A JP 2011175387A JP 2010037977 A JP2010037977 A JP 2010037977A JP 2010037977 A JP2010037977 A JP 2010037977A JP 2011175387 A JP2011175387 A JP 2011175387A
Authority
JP
Japan
Prior art keywords
ground surface
wavelength
ground
pulse
observation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010037977A
Other languages
Japanese (ja)
Other versions
JP5580076B2 (en
Inventor
Hideki Shimamura
秀樹 島村
Tianen Chen
天恩 陳
Kikuo Tachibana
菊生 橘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pasco Corp
Original Assignee
Pasco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pasco Corp filed Critical Pasco Corp
Priority to JP2010037977A priority Critical patent/JP5580076B2/en
Publication of JP2011175387A publication Critical patent/JP2011175387A/en
Application granted granted Critical
Publication of JP5580076B2 publication Critical patent/JP5580076B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Processing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Image Analysis (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ground surface observation method for determining a land cover only by measurement by a laser, and obtain a land surface shape as the need arises. <P>SOLUTION: A decision units are classified into a proper number of units, on the basis of a wavelength-reflection intensity distribution in each decision unit, by use of a proper number of reflection pulses having different wave components reflected from the ground by a multiwavelength laser sweep from a flying body 1 to the ground as the decision unit. A narrow-area attribute associated with a physical property is added to each decision unit, to observe a land cover. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、地表面観察方法に関し、特に、上空からのレーザ計測により地表面を観察する地表面観察方法に関するものである。   The present invention relates to a ground surface observation method, and more particularly to a ground surface observation method for observing the ground surface by laser measurement from above.

地表面の状態を観察する方法としては、特許文献1に記載のものが知られている。この従来例において、地表面状態の特定のための計測データとしては、対象地域を上空から撮影した撮影画像から生成されるカラーオルソフォト画像と、上空から地上に掃引したレーザの反射パルスを収集した点群データとが使用される。   As a method for observing the state of the ground surface, the method described in Patent Document 1 is known. In this conventional example, as the measurement data for specifying the ground surface state, a color orthophoto image generated from a photographed image obtained by photographing the target area from the sky and a laser reflection pulse swept from the sky to the ground were collected. Point cloud data is used.

地表面状態はカラーオルソフォト画像をRGBバンドの色強度により日向部と日陰部により区分され、日向部においては、カラーオルソフォト画像の色相により、日陰部では、レーザの反射強度をもとに判定される。   The surface condition of the surface is determined by dividing the color orthophoto image by the color intensity of the RGB band into the sun and shade areas. Is done.

特開2006-252529号公報JP 2006-252529 A

しかし、上述した従来例において、レーザセンシング部分は単一波長のレーザ光の反射強度により地表面の属性を判定するために、分類精度が劣り、あくまでカラー画像の補助手段として使用可能であるに過ぎないという欠点がある。   However, in the conventional example described above, since the laser sensing portion determines the attribute of the ground surface based on the reflection intensity of the laser light having a single wavelength, the classification accuracy is inferior and can only be used as an auxiliary means for a color image. There is a disadvantage of not.

本発明は以上の欠点を解消すべくなされたものであって、レーザによる計測のみで土地被覆を判断し、さらに、必要に応じて、土地表面形状を求めることのできる地表面観察方法の提供を目的とする。   The present invention has been made to eliminate the above drawbacks, and provides a ground surface observation method capable of determining land cover only by measurement with a laser and obtaining the land surface shape as required. Objective.

本発明によれば上記目的は、
飛行体1から地上への多波長のレーザ掃引によって地上から反射した異なる波長成分を有する適数の反射パルス(P)を判定単位として、各判定単位における波長-反射強度分布を基準に判定単位群を適数に分類し、
各判定単位に物性に関連付けられた狭域属性2を付与して土地被覆状態を観察する地表面観察方法を提供することにより達成される。
According to the present invention, the object is
Judgment unit group based on the wavelength-reflection intensity distribution in each judgment unit with an appropriate number of reflected pulses (P) having different wavelength components reflected from the ground by multi-wavelength laser sweep from the flying object 1 to the ground as a judgment unit Is classified into an appropriate number,
This is achieved by providing a ground surface observation method for observing the land cover state by assigning the narrow area attribute 2 associated with the physical property to each determination unit.

地表面の被覆状態、すなわち、地表面への植生の存在、あるいは建物等の人地物の存在等の推定は、航空機等の飛行体1から地上へ照射したレーザの反射パルス(P)を解析することにより行われる。飛行体1から地上へのレーザ照射は、複数の波長のレーザで地上を掃引することにより行われ、多波長のレーザ掃引は、飛行体1から複数の単一波長光を同時に、あるいは適数回に分けて照射したり(以下、「単一波長光掃引」)、あるいは単一のレーザパルス中に複数の波長を含んだ所謂マルチレーザ光、あるいはハイパーレーザ光等の波長多重レーザを地上に照射する(以下、「波長多重光掃引」)ことにより実現することができる。 Covering state of the ground surface, i.e., the presence of vegetation to ground surface, or the estimation of the presence or the like of the artificial feature such as buildings, reflected pulse of laser irradiated from flying body 1 such as an aircraft to the ground (P) is This is done by analyzing. Laser irradiation from the flying object 1 to the ground is performed by sweeping the ground with lasers having a plurality of wavelengths, and a multi-wavelength laser sweep is performed by simultaneously emitting a plurality of single wavelength lights from the flying object 1 or an appropriate number of times. Or irradiating the ground with wavelength-multiplexed lasers such as so-called multi-laser light or hyper laser light that contains multiple wavelengths in a single laser pulse. (Hereinafter referred to as “wavelength multiplexed light sweep”).

地上からの適数の反射パルス(P)は、反射点が近接し、かつ、波長が複数となることを条件として判定単位とされ、各判定単位毎に狭域属性2が付与される。判定単位は、波長多重光掃引の場合には、単一のパルスで多波長、近接反射の条件を充足するために単一パルスが判定単位とされ、単一波長光掃引の場合には、近接位置において反射し、波長の異なる複数のレーザパルスが判定単位となる。   An appropriate number of reflected pulses (P) from the ground are set as a determination unit on condition that reflection points are close to each other and a plurality of wavelengths are provided, and a narrow attribute 2 is given to each determination unit. In the case of wavelength-multiplexed light sweep, the judgment unit is a single pulse in order to satisfy the conditions of multiple wavelengths and proximity reflection with a single pulse, and in the case of single-wavelength light sweep, the proximity is used. A plurality of laser pulses reflected at the positions and having different wavelengths are used as a determination unit.

使用波長の組み合わせは、例えば、「葉」、「幹」、「土」、「岩」、「水」、「コンクリート等人工地物構造体」等の地表面の色、あるいは材質等、土地被覆状態の判別に有用な属性に対する反射強度の違いが大きなものを選択するのが望ましく、判定単位群は、波長-反射強度の関係を基準にして、例えば、多次元レベルスライス法、最尤法等の教師付き分類、あるいは、クラスタリング等の教師なし分類法を使用して統計的に分類された後、各判定単位に狭域属性2が付与される。   The combination of wavelengths used is, for example, the color of the ground surface such as “leaf”, “stem”, “soil”, “rock”, “water”, “artificial structure such as concrete”, or the material, etc. It is desirable to select one that has a large difference in reflection intensity with respect to attributes that are useful for state determination. The determination unit group is based on the relationship between wavelength and reflection intensity, for example, multi-dimensional level slice method, maximum likelihood method, etc. After being classified statistically using an unsupervised classification method such as clustering or unsupervised classification methods such as clustering, the narrow area attribute 2 is given to each determination unit.

この結果、狭域属性2は、反射点の材質等に対応することとなり、反射パルス(P)の本来有している高さ情報を含む位置情報と共に使用すると、植生等の属性情報が付加された三次元立体形状を取得することができるために、より正確に土地被覆状態を推定することが可能になる。   As a result, the narrow area attribute 2 corresponds to the material or the like of the reflection point, and attribute information such as vegetation is added when used together with position information including the height information inherent in the reflection pulse (P). Therefore, it is possible to estimate the land cover state more accurately.

また、これを利用して、例えば、各判定単位に狭域属性2に対応した色彩を付してディスプレイ等に立体表示すると、地表面を点描した状態となるために、三次元空間における分布をより直感的に確認することが可能になる。   In addition, using this, for example, when a color corresponding to the narrow area attribute 2 is attached to each determination unit and stereoscopically displayed on a display or the like, the ground surface is in a stipulated state. It becomes possible to confirm more intuitively.

さらに、波長多重光掃引時の判定単位は単一のレーザパルスであり、さらに、単一波長光掃引の場合であっても、反射点密度が十分に高い場合には、判定単位の面積は小さくなるために、これらに付与される狭域属性2は、比較的小面積領域の属性を示しており、これを連結、集合させると、より大きなグループ(地物グループ3)に統合することができる。   Furthermore, the determination unit at the time of wavelength-multiplexed light sweep is a single laser pulse, and even in the case of single-wavelength light sweep, if the reflection point density is sufficiently high, the area of the determination unit is small. For this reason, the narrow area attribute 2 given to them indicates an attribute of a relatively small area, and when these are connected and assembled, they can be integrated into a larger group (feature group 3). .

すなわち、例えば、狭域属性2「葉」、「幹」の比率が大きな領域には、「樹木」あるいは「植生」等の地物グループ3を定義することが可能になり、「土」、「岩」の比率が大きな領域には「裸地」等を定義することができる。   That is, for example, it is possible to define a feature group 3 such as “tree” or “vegetation” in an area where the ratio of the narrow area attribute 2 “leaf” and “trunk” is large. In the region where the ratio of “rock” is large, “bare ground” or the like can be defined.

このような地物グループ3への統合によって、より現実に即した地物の配置を詳細に知ることが可能になり、さらに、地物グループ3への統合後においては、領域の属性が想定可能となるために、上述した狭域属性2の分類操作時における誤分類、あるいは影、ミクセル等によって未分類になった判定単位をグループ概念により正否判定することが可能になる。   Such integration into the feature group 3 makes it possible to know in more detail the arrangement of features that are more realistic, and after integration into the feature group 3, the attributes of the region can be assumed. Therefore, it is possible to determine whether the determination unit is unclassified due to misclassification at the time of the above-described classification operation of the narrow area attribute 2, or by shadow, mixel, or the like based on the group concept.

このようにして生成した成果物を利用してさらに、地表面形状を観察することが可能である。地表面形状観察結果は、DTM(数値地形モデル:Digital Terrain Model)生成の最終工程として、あるいは地表以外からの余分な反射パルス(P)を除くための最終的なフィルタリング処理の前処理としても利用される。   It is possible to further observe the ground surface shape by using the generated product. The ground surface shape observation results can be used as the final process of DTM (Digital Terrain Model) generation or as a pre-processing of the final filtering process to remove extra reflection pulses (P) from other than the ground surface. Is done.

地表面形状の観察に際し、地物グループ3には、地表面からの反射パルス(P)を含む可能性があるか否かにより分類される。例えば、地物グループ3が「植生」「裸地」、およびこれに加え、「人工地物部」「水部」というように統合された場合、人工地物部、水部内には地表面からの反射パルス(P)は存在しないと推定できるために、これらに属するパルス群は狭域属性2に「土」等が付与されていても削除し、「植生」等の残余の地物グループ3内のパルス群を最終フィルタリング対象として抽出する。   When observing the shape of the ground surface, the feature group 3 is classified according to whether or not there is a possibility of including a reflection pulse (P) from the ground surface. For example, when the feature group 3 is integrated as “vegetation”, “bare”, and “artificial feature” or “water”, the artificial feature and water are Therefore, even if “soil” or the like is added to the narrow area attribute 2, the remaining pulse group 3 such as “vegetation” is deleted. The pulse group is extracted as a final filtering target.

この状態で、地表面モデル生成に明らかに無関係な相当数のパルス群をふるいにかけることができるために、有効なフィルタリング効果が期待できるが、さらに、上記抽出したパルス群から低標高データのみを抽出すると、例えば、植生域内の樹木の頂部から反射した反射パルス(P)を除くことができるために、より高いフィルタリング効果が期待でき、結果、正確、かつ効率的な地表面形状の取得が可能になる。   In this state, since a considerable number of pulse groups that are clearly unrelated to the generation of the ground surface model can be screened, an effective filtering effect can be expected, but only low elevation data is extracted from the extracted pulse groups. When extracted, for example, since the reflected pulse (P) reflected from the top of the tree in the vegetation area can be removed, a higher filtering effect can be expected, and as a result, accurate and efficient ground surface shape can be obtained. become.

低標高データには、単一波長光掃引の場合の評価単位の標高値の最も低いパルス、あるいは反射次数の最も高いパルスを採用することができ、波長多重レーザ掃引の場合の「土」等の狭域属性2が付与された反射パルス(P)、あるいはこれに加えて必要に応じ、ミクセル等の影響で狭域属性2が付与されなかった反射パルス(P)を採用することができる。   For the low altitude data, the pulse with the lowest altitude value of the evaluation unit in the case of single wavelength light sweep or the pulse with the highest reflection order can be adopted, such as “soil” in the case of wavelength multiplexed laser sweep. A reflected pulse (P) to which the narrow area attribute 2 is given, or a reflected pulse (P) to which the narrow area attribute 2 is not given due to the influence of a mixel or the like can be used as necessary.

また、地表面形状の観察のみを目的とする地表面観察方法としては、
航空レーザ測量により取得した反射パルス点群から地形抽出に必要な反射パルス(P)を地表面抽出要素として絞り込み、地表面抽出要素から地表面形状を観察する地表面観察方法であって、
飛行体1から地上への多波長のレーザ掃引によって地上から反射した異なる波長成分を有する適数の反射パルス(P)を判定単位として、各判定単位における波長-反射強度分布を基準に判定単位群を少なくとも地表面構成要素、植生構成要素を含んで適数に分類した後、
判定単位を統合して地表面属性を主とする地表面域、および植生属性を主とする植生域内のパルスデータを地表面抽出要素として抽出するように構成することも可能であり、この場合、掃引レーザとして波長多重レーザ光を使用することができる。
In addition, as a ground surface observation method only for the purpose of observation of the ground surface shape,
A ground surface observation method for narrowing down a reflection pulse (P) necessary for terrain extraction from a reflection pulse point group acquired by an aerial laser survey as a ground surface extraction element, and observing a ground surface shape from the ground surface extraction element,
Judgment unit group based on the wavelength-reflection intensity distribution in each judgment unit with an appropriate number of reflected pulses (P) having different wavelength components reflected from the ground by multi-wavelength laser sweep from the flying object 1 to the ground as a judgment unit After classifying a suitable number including at least ground surface components and vegetation components,
It is also possible to configure to extract the pulse data in the ground surface area mainly consisting of ground surface attributes and the vegetation area mainly based on vegetation attributes as ground surface extraction elements by integrating judgment units. Wavelength multiplexed laser light can be used as the sweep laser.

さらに、波長多重レーザ光を利用した地表面観察は、
土、岩等の地表面構成要素を植生、人工地物等の非地表面構成要素から波長-反射強度分布により分別可能な波長成分を多重化した波長多重レーザ光により飛行体1から地表を掃引し、
波長-反射強度分布により地表面構成要素として抽出された反射パルス(P)の位置情報から地表面形状を求める地表面観察方法によっても達成できる。
Furthermore, ground surface observation using wavelength multiplexed laser light
The ground surface is swept from the flying object 1 by wavelength multiplexed laser light that multiplexes the wavelength components that can be distinguished from the non-ground surface components such as vegetation and artificial features such as soil and rock by wavelength-reflection intensity distribution. And
This can also be achieved by a ground surface observation method that obtains the ground surface shape from the positional information of the reflected pulse (P) extracted as a ground surface component from the wavelength-reflection intensity distribution.

本発明によれば、レーザによる計測のみで土地表面の状態、あるいは土地表面形状を判断することが可能になる。   According to the present invention, it is possible to determine the state of the land surface or the land surface shape only by measurement with a laser.

レーザ計測を示す説明図で、(a)は飛行体1からのレーザ掃引を示す図、(b)は反射パルスを示す図である。It is explanatory drawing which shows a laser measurement, (a) is a figure which shows the laser sweep from the flying body 1, (b) is a figure which shows a reflected pulse. 波長-反射強度分布を示す図で、(a)は材料による波長に対する反射強度の違いを示す図、(b)は植物の波長-反射強度分布を示す図、(c)は土の波長-反射強度分布を示す図、(d)は水の波長-反射強度分布を示す図である。It is a figure which shows wavelength-reflection intensity distribution, (a) is a figure which shows the difference of the reflection intensity with respect to the wavelength by a material, (b) is a figure which shows the wavelength-reflection intensity distribution of a plant, (c) is the wavelength-reflection of soil The figure which shows intensity distribution, (d) is a figure which shows the wavelength-reflection intensity distribution of water. 本発明の手順を示す図である。It is a figure which shows the procedure of this invention. 本発明の実施例を示す図で、(a)は地物グループ3に分類した状態を示す図、(b)は地物グループ3によりフィルタリングした状態を示す図、(c)は地表面要素を抽出した状態を示す図である。It is a figure which shows the Example of this invention, (a) is a figure which shows the state classified into the feature group 3, (b) is a figure which shows the state filtered by the feature group 3, (c) is a surface element. It is a figure which shows the state extracted.

まず、図1により本発明に使用するレーザデータの取得を説明する。図1(a)において1は予め計画された飛行コース(C)に沿って飛行する航空機、ヘリコプター等の飛行体を示す。飛行体1には、レーザ測距装置4、および機体位置、撮影姿勢を計測するためのGPS、IMU(慣性計測装置:Inertial Measurement Unit)等の関連機器(図示せず)が搭載される。   First, acquisition of laser data used in the present invention will be described with reference to FIG. In FIG. 1A, reference numeral 1 denotes a flying object such as an aircraft or a helicopter that flies along a previously planned flight course (C). The flying object 1 is equipped with a laser distance measuring device 4 and related devices (not shown) such as a GPS for measuring the position and photographing posture of the aircraft, and an IMU (Inertial Measurement Unit).

レーザ測距装置4はレーザ発振装置4aと、スキャンミラー4bとを有し、レーザ発振装置4aから出力されたレーザ光は、スキャンミラー4bにより飛行方向に対して直角に振られて地上に向けて照射される。   The laser distance measuring device 4 includes a laser oscillation device 4a and a scan mirror 4b, and the laser light output from the laser oscillation device 4a is swung at right angles to the flight direction by the scan mirror 4b and directed toward the ground. Irradiated.

レーザ発振装置4aは、単一パルス中に複数の異なった波長成分を多重化した波長多重レーザパルスを出力するいわゆるマルチレーザ、あるいはハイパーレーザ装置であり、この実施の形態においては、単一パルス内に青色域(B)、緑色域(G)、赤色域(R)、近赤外域(IR)の4種の波長成分が多重化される。   The laser oscillation device 4a is a so-called multilaser or hyper laser device that outputs a wavelength-multiplexed laser pulse in which a plurality of different wavelength components are multiplexed in a single pulse. In addition, four types of wavelength components of blue region (B), green region (G), red region (R), and near infrared region (IR) are multiplexed.

飛行体1から発射されたレーザパルスのビーム径は地上に向かうにつれて拡大するために、反射対象の密集程度によってはビームの通過経路に反射対象が存在して当該対象からの反射パルス(P)が発生した後も、レーザパルスはビーム経路が遮られていない隙間部分からさらに直進して他の対象からの反射パルス(P)を発生させることができる。   Since the beam diameter of the laser pulse emitted from the flying object 1 increases as it goes to the ground, there is a reflection target in the beam passage path depending on the density of the reflection target, and the reflected pulse (P) from the target is Even after being generated, the laser pulse can travel further straight from the gap where the beam path is not obstructed to generate a reflected pulse (P) from another object.

図1(b)はこの状態を説明したもので、飛行体1から照射されたレーザパルスは、まず、樹木の「葉」部分で反射して最初の反射パルス(P1)(ファーストパルス)となり、次いで、「幹」部分で反射(P2)(中間パルス:セカンドパルス)し、最後に地表面からの反射パルス(PL)(ラストパルス)を発生させる。レーザ測距装置は、これらの複数の反射パルス(P)を捕捉して各反射パルス(P)の反射点を特定することができる。 FIG. 1B illustrates this state. The laser pulse emitted from the flying object 1 is first reflected at the “leaf” portion of the tree and becomes the first reflected pulse (P 1 ) (first pulse). Then, reflection (P 2 ) (intermediate pulse: second pulse) is performed at the “stem” portion, and finally a reflected pulse (P L ) (last pulse) from the ground surface is generated. The laser distance measuring device can identify the reflection point of each reflected pulse (P) by capturing the plurality of reflected pulses (P).

以上のようにして地上から受信した各反射パルス(P)(評価単位)には、位置関連データに加え、波長-反射強度分布データとが付与される。位置関連データは、照射から反射パルス(P)受信までの所要時間データ、あるいはGPS/IMUデータにより示されるレーザ照射時の飛行体1の位置、傾き情報、スキャンミラー4bの角度をもとに割り出された高さ情報を含む位置情報により構成される。波長-反射強度分布データは、反射パルス(P)を適宜の分光手段により分光して得られ、図2に示すように、反射パルス(P)に含まれる4種類の波長毎の反射強度により構成される。   In addition to position-related data, wavelength-reflection intensity distribution data is given to each reflected pulse (P) (evaluation unit) received from the ground as described above. The position-related data is calculated based on the time required from irradiation to reception of the reflected pulse (P), or the position of the flying object 1 at the time of laser irradiation indicated by the GPS / IMU data, tilt information, and the angle of the scan mirror 4b. Consists of position information including the height information. The wavelength-reflection intensity distribution data is obtained by dispersing the reflection pulse (P) with an appropriate spectroscopic means, and is composed of reflection intensity for each of the four types of wavelengths included in the reflection pulse (P) as shown in FIG. Is done.

土地被覆の推定と、反射パルス(P)のフィリタリングは、以上のようにして得られた反射パルスデータ群を使用して行われ、図3に示すように、まず、各反射パルス(P)データに対して、
Pn(Xn,Yn,Zn)
ただし、nはデータ番号、Xは緯度、Yは経度、Zは高さの要素
からなる位置データと、
Pn(Bn,Gn,Rn,IRn)
ただし、Bは青色域の反射強度、Gは緑色域の反射強度、Rは赤色域の反射強度、IRは近赤外域の反射強度
とからなる分光分布データとから構成される反射パルス(P)データ構造を付与する(ステップS1)。
Land cover estimation and reflection pulse (P) filtering are performed using the reflection pulse data group obtained as described above. First, as shown in FIG. 3, each reflection pulse (P) data is obtained. Against
P n (X n , Y n , Z n )
Where n is the data number, X is the latitude, Y is the longitude, and Z is the height data
P n (B n , G n , R n , IR n )
Where B is the reflection intensity in the blue region, G is the reflection intensity in the green region, R is the reflection intensity in the red region, and IR is the spectral distribution data consisting of the reflection intensity in the near infrared region (P) A data structure is assigned (step S1).

次いで、上記反射パルスデータ群のうち、分光分布データを分類する(ステップS2)。分類には周知の種々の方法を使用することができるが、例えば、教師付き分類の場合、まず、分類クラスを設定した後、当該分類クラスに属することが予め分かっている分光分布データを教師データとして抽出し、次いで、教師データと取得した反射パルスデータの分光分布データとの統計的な類似の程度を基準に分類して処理が終了する。   Next, spectral distribution data is classified from the reflected pulse data group (step S2). Various known methods can be used for classification. For example, in the case of supervised classification, first, after setting a classification class, spectral distribution data that is known in advance to belong to the classification class is used as the teacher data. Then, the processing is completed by classifying the teacher data and the statistical distribution data of the acquired reflected pulse data with statistical similarity.

本例において、分類クラスは、「葉」、「幹」、「土」、「岩」、「水」、「コンクリート等人工地物構造体」(表示せず)等が設定され、教師データとの比較には、多次元レベルスライス法、最尤法等が利用できる。   In this example, “Leaf”, “Stem”, “Soil”, “Rock”, “Water”, “Artificial structure such as concrete” (not displayed), etc. are set as the classification class. For comparison, a multidimensional level slice method, a maximum likelihood method, or the like can be used.

図2(a)に示すように、RGB、およびIR域の波長の反射強度は反射対象によって異なることが知られており、例えば、植物はIR域の波長を強く反射し、土は、波長が長くなるにつれて反射強度が弱まり、水はIRの光をレーザ測距装置4に返さない(全反射)。したがって、RGB、およびIR域の波長に対し、植物が密集する領域における大域的反射強度は図2(b)に、土は図2(c)に、水は図2(d)に各々示すような分布で与え、教師データは、これらをもとにして、あるいはこれらを「葉」、「幹」等まで細分化した際の分布を実験的に求めたものを使用することができる。   As shown in FIG. 2 (a), it is known that the reflection intensities of wavelengths in the RGB and IR regions differ depending on the reflection target. For example, plants strongly reflect the wavelengths in the IR region, and soil has a wavelength of The reflection intensity decreases as the length increases, and water does not return IR light to the laser distance measuring device 4 (total reflection). Accordingly, for the wavelengths in the RGB and IR regions, the global reflection intensity in the region where the plants are dense is shown in FIG. 2 (b), the soil is shown in FIG. 2 (c), and the water is shown in FIG. 2 (d). As the teacher data, it is possible to use data obtained by experimentally determining the distribution when subdividing these into “leaves”, “stems”, and the like.

分類により各反射点には「葉」、「幹」等の分類項目(狭域属性2)が付与され、さらに、分類操作中に教師データと有意な類似性が認められなかった反射パルス(P)には、「未分離」属性が付与される。   Classification items (narrow region attribute 2) such as “leaf” and “stem” are assigned to each reflection point by classification, and further, a reflected pulse (P) in which no significant similarity with teacher data was recognized during the classification operation. ) Is given an “unseparated” attribute.

次いで、「未分離」以外の狭域属性2が付与された反射パルス(P)を統合して地物グループ3属性を付与する(ステップS3)。反射パルス(P)の統合は、例えば、反射パルス(P)群により構成される3次元空間に設定された単位立方体、あるいは3次元に広がる反射パルス(P)群を2次元空間に投射した単位メッシュに狭域属性2の分布をもとに別途設定した地物グループ3の属性を付与した後、地物グループ3属性の一致、および位置の隣接、近接を条件に同一グループ属性を統合することにより実現できる。   Next, the reflection pulse (P) to which the narrow area attribute 2 other than “unseparated” is added is integrated to give the feature group 3 attribute (step S3). The integration of the reflected pulse (P) is, for example, a unit cube set in a three-dimensional space composed of reflected pulse (P) groups, or a unit obtained by projecting a reflected pulse (P) group spreading in three dimensions into a two-dimensional space. After the attribute of the feature group 3 set separately based on the distribution of the narrow attribute 2 is given to the mesh, the same group attribute is integrated on condition that the feature group 3 attribute matches and the position is adjacent and close. Can be realized.

本例において地物グループ3は、図3に示すように、「葉」、「幹」、「土」を要素とする「樹木地」、「葉」、「土」を要素とする「草地」、「土」を要素とする「裸地」、「岩」を要素とする「岩場」、「水」を要素とする「水部」、「コンクリート等人工地物構造体」を要素とする「人工地物部」(表示せず)等に区分される。図4(a)に地物グループ3属性を領域に付与した状態を示す。   In this example, as shown in FIG. 3, the feature group 3 is “grassland” having “leaves”, “trunks”, and “soil” as elements and “trees”, “leaves”, and “soil” as elements. , “Bare” with “soil” as an element, “rock” with “rock” as an element, “water” with “water” as an element, and “artificial features such as concrete” “Artificial features” (not shown). FIG. 4A shows a state in which the feature group 3 attribute is assigned to the area.

なお、以上において地物グループ3への統合を、適当な広さの領域内における狭域属性2の分布状態に基づいて行う場合を示したが、この他に、例えば、まず狭域属性2の集合状態からその上位概念、すなわち、「葉」、「幹」の集合から「樹木」グループを定義し、この後、「樹木」グループの集合から「樹木地」を導き出すように構成することもできる。   In the above, the case where the integration into the feature group 3 is performed based on the distribution state of the narrow area attribute 2 in the area of an appropriate area has been shown. It is also possible to define the “tree” group from the set of “leaves” and “trunk” from the set state, and then derive the “tree” from the set of “tree” groups. .

以上のようにして得られた各地物グループ3は、色分けしてディスプレイ等に3次元表示、または2次元空間に投射して表示することが可能であり、土地被覆の状態を正確に確認することができる。   Each feature group 3 obtained as described above can be color-coded and displayed on a display or the like in a three-dimensional display or in a two-dimensional space, and the land cover state can be confirmed accurately. Can do.

さらに、この土地被覆情報を利用して地表面データを抽出する際には、まず、以上の地物グループ3のうち、地表面データを含んでいる可能性のあるグループ属性のものを選択する(ステップS4)。図3に示すように選択グループには、明らかに地表面を構成する「裸地」、「岩場」からなる地表面域に加えて、統合時において、「葉」、「幹」等の隙間を通り抜けて地表面に達したパルスによる反射パルス(P)が高次パルスに含まれる可能性のある「樹木地」、「草地」の植生域も含まれる。これに対し、「水部」、あるいは「人工地物部」等からの反射パルス(P)からは地表面形状を抽出することができないために、これらは除外される。「水部」等が除外されたフィルタリング結果を図4(b)に示す。   Further, when extracting the ground surface data using the land cover information, first, of the above feature groups 3, those having group attributes that may include the ground surface data are selected ( Step S4). As shown in Fig. 3, the selected group has gaps such as "leaves" and "trunks" at the time of integration in addition to the ground surface area consisting of "bare ground" and "rocky ground" that clearly constitute the ground surface. Also included are vegetation areas of “woody land” and “grassland” in which reflected pulses (P) due to pulses that have passed through and reached the ground surface may be included in higher-order pulses. On the other hand, since the ground surface shape cannot be extracted from the reflection pulse (P) from the “water part” or “artificial feature part”, these are excluded. FIG. 4B shows the filtering result excluding “water” and the like.

以上のようにして地物グループ3によって反射パルス群のフィルタリングを行って選択グループ内の反射パルス(P)群を地表面抽出要素として抽出した後(ステップS5)、これら抽出要素から地表面からの反射パルス(P)を抽出する(ステップS6)。   After filtering the reflected pulse group by the feature group 3 as described above and extracting the reflected pulse (P) group in the selected group as the ground surface extraction element (step S5), from these extracted elements from the ground surface The reflected pulse (P) is extracted (step S6).

地表面からの反射パルス(P)の抽出は、地表面抽出要素として抽出された反射パルス(P)から、狭域属性2が「土」、「岩」であるものを抽出することにより行われ、さらに2次元空間での位置の隣接、近接に加え、Z値(高さ情報)の近隣パルスとの差分が小さな未分類として分類された反射パルス(P)を含めることができる。   Extraction of the reflection pulse (P) from the ground surface is performed by extracting those whose narrow area attribute 2 is “soil” or “rock” from the reflection pulse (P) extracted as the ground surface extraction element. Further, in addition to the adjacent and close positions in the two-dimensional space, the reflected pulse (P) classified as unclassified with a small difference from the neighboring pulse of the Z value (height information) can be included.

図4(c)に以上の操作により抽出された反射パルス(P)の分布を示す。X-Y平面上に表示される各反射パルス(P)はZ値を有しているために、この後、例えばX-Y平面にメッシュを設定して代表位置を付与し、TIN表示等をすることによりDTMを生成することができる。   FIG. 4C shows the distribution of the reflected pulse (P) extracted by the above operation. Since each reflection pulse (P) displayed on the XY plane has a Z value, for example, a mesh is set on the XY plane to give a representative position, and a TIN display or the like is performed. By doing so, a DTM can be generated.

なお、以上においては、波長多重レーザパルスによるレーザ点群を使用する場合を示したが、単一波長光掃引の場合には、ステップS1における反射パルデータ構造は、各反射パルス(P)ごとの位置データと、評価単位ごとの分光分布データが定義され、以後、評価単位に対して各ステップが実行された後、ステップS6において、各反射パルス(P)のZ値を基準に地表面要素が抽出される。
また、「樹木地」の高さ情報を得ることができるので、森林の状況を把握することができ、例えばカーボンオフセット等の排出量取引に利用することができる。
In the above, the case where the laser point group by the wavelength multiplexed laser pulse is used is shown. However, in the case of the single wavelength light sweep, the reflection pulse data structure in step S1 is the same for each reflection pulse (P). After the position data and spectral distribution data for each evaluation unit are defined, and after each step is executed for the evaluation unit, in step S6, the ground surface element is determined based on the Z value of each reflected pulse (P). Extracted.
Further, since the height information of the “arboretum” can be obtained, the state of the forest can be grasped, and for example, it can be used for emissions trading such as carbon offset.

1 飛行体
2 狭域属性
3 地物グループ
P 反射パルス
1 Aircraft 2 Narrow attribute 3 Feature group P Reflected pulse

Claims (7)

飛行体から地上への多波長のレーザ掃引によって地上から反射した異なる波長成分を有する適数の反射パルスを判定単位として、各判定単位における波長-反射強度分布を基準に判定単位群を適数に分類し、
各判定単位に物性に関連付けられた狭域属性を付与して土地被覆状態を観察する地表面観察方法。
Using the appropriate number of reflected pulses with different wavelength components reflected from the ground by multi-wavelength laser sweep from the flying object to the ground as the judgment unit, the number of judgment units is set to the appropriate number based on the wavelength-reflection intensity distribution in each judgment unit. Classify and
A ground surface observation method for observing the land cover state by assigning a narrow area attribute associated with physical properties to each judgment unit.
飛行体から地上に向けて照射された波長多重レーザパルス群の地上からの各反射パルスを判定単位として、各判定単位における分光分布を基準に判定単位群を適数に分類し、
各判定単位に物性に関連付けられた狭域属性を付与して土地被覆状態を観察する地表面観察方法。
Using each reflected pulse from the ground of the wavelength multiplexed laser pulse group irradiated from the flying object to the ground as a judgment unit, classify the judgment unit group into an appropriate number based on the spectral distribution in each judgment unit,
A ground surface observation method for observing the land cover state by assigning a narrow area attribute associated with physical properties to each judgment unit.
前記判定単位の適数を、狭域属性の集合状態を基準に予め定められた地物グループに統合して土地被覆状態を観察する請求項1または2記載の地表面観察方法。   The ground surface observation method according to claim 1 or 2, wherein the land cover state is observed by integrating an appropriate number of the determination units into a feature group predetermined based on a set state of the narrow area attribute. 請求項3記載の地物グループのうち、地表面からの反射パルスを含む可能性のある地物グループ内の低標高データを地形抽出要素として抽出し、
該地形抽出要素から地表面形状を観察する地表面観察方法。
Among the feature groups according to claim 3, low altitude data in the feature group that may include a reflection pulse from the ground surface is extracted as a terrain extraction element,
A ground surface observation method for observing the ground surface shape from the topographic extraction element.
航空レーザ測量により取得した反射パルス点群から地形抽出に必要な反射パルスを地表面抽出要素として絞り込み、地表面抽出要素から地表面形状を観察する地表面観察方法であって、
飛行体から地上への多波長のレーザ掃引によって地上から反射した異なる波長成分を有する適数の反射パルスを判定単位として、各判定単位における波長-反射強度分布を基準に判定単位群を少なくとも地表面構成要素、植生構成要素を含んで適数に分類した後、
判定単位を統合した地表面属性を主とする地表面域、および植生属性を主とする植生域内のパルスデータを地表面抽出要素として抽出する地表面観察方法。
A ground surface observation method for narrowing down reflection pulses necessary for terrain extraction from reflected pulse point groups acquired by aerial laser surveying as ground surface extraction elements, and observing the ground surface shape from ground surface extraction elements,
Using the appropriate number of reflected pulses having different wavelength components reflected from the ground as a result of multi-wavelength laser sweep from the flying object to the ground, the judgment unit group is at least the ground surface based on the wavelength-reflection intensity distribution in each judgment unit. After categorizing the components and vegetation components into appropriate numbers,
A ground surface observation method for extracting, as ground surface extraction elements, ground surface areas mainly composed of ground surface attributes integrated with judgment units and pulse data in vegetation areas mainly composed of vegetation attributes.
前記飛行体からの掃引レーザが、波長多重レーザ光により行われるとともに、分類属性には、土、岩等の地表面構成要素を含み、
かつ、前記地表面域、および植生域からの地表面抽出要素の抽出が、地表面構成要素と、分類付与時に未分離となったパルスデータを対象に行われる請求項5記載の地表面観察方法。
The sweep laser from the aircraft is performed by wavelength multiplexed laser light, and the classification attributes include ground surface components such as soil and rock,
The ground surface observation method according to claim 5, wherein the extraction of the ground surface extraction element from the ground surface area and the vegetation area is performed on the ground surface constituent elements and pulse data that has not been separated at the time of classification. .
土、岩等の地表面構成要素を植生、人工地物等の非地表面構成要素から波長-反射強度分布により分別可能な波長成分を多重化した波長多重レーザ光により飛行体から地表を掃引し、
波長-反射強度分布により地表面構成要素として抽出された反射パルスの位置情報から地表面形状を求める地表面観察方法。
The ground surface is swept from the flying object by wavelength multiplexed laser light that multiplexes the wavelength components that can be separated from the non-ground surface components such as vegetation and artificial features such as soil and rock by wavelength-reflection intensity distribution. ,
A ground surface observation method that obtains the ground surface shape from the position information of reflected pulses extracted as ground surface components from the wavelength-reflection intensity distribution.
JP2010037977A 2010-02-23 2010-02-23 Ground surface observation method Active JP5580076B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010037977A JP5580076B2 (en) 2010-02-23 2010-02-23 Ground surface observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010037977A JP5580076B2 (en) 2010-02-23 2010-02-23 Ground surface observation method

Publications (2)

Publication Number Publication Date
JP2011175387A true JP2011175387A (en) 2011-09-08
JP5580076B2 JP5580076B2 (en) 2014-08-27

Family

ID=44688195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010037977A Active JP5580076B2 (en) 2010-02-23 2010-02-23 Ground surface observation method

Country Status (1)

Country Link
JP (1) JP5580076B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035232A (en) * 2012-08-08 2014-02-24 Kokusai Kogyo Co Ltd Reflection pulse estimation method and reflection pulse estimation program
JP2021110689A (en) * 2020-01-15 2021-08-02 株式会社パスコ Ground covered condition determination device and program
JP7322237B1 (en) 2022-04-27 2023-08-07 大和ハウス工業株式会社 Temporary housing complex design system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147522A (en) * 1984-08-14 1986-03-08 Tech Res & Dev Inst Of Japan Def Agency Image processing apparatus
JP2000131063A (en) * 1998-10-26 2000-05-12 Nakanihon Koku Kk Surveying method and system employing flying object
JP2007240516A (en) * 2006-03-07 2007-09-20 Leica Geosystems Ag Increase in measuring speed of propagation time measuring device
JP2008152709A (en) * 2006-12-20 2008-07-03 Hitachi Software Eng Co Ltd Geographic image processor and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6147522A (en) * 1984-08-14 1986-03-08 Tech Res & Dev Inst Of Japan Def Agency Image processing apparatus
JP2000131063A (en) * 1998-10-26 2000-05-12 Nakanihon Koku Kk Surveying method and system employing flying object
JP2007240516A (en) * 2006-03-07 2007-09-20 Leica Geosystems Ag Increase in measuring speed of propagation time measuring device
JP2008152709A (en) * 2006-12-20 2008-07-03 Hitachi Software Eng Co Ltd Geographic image processor and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014035232A (en) * 2012-08-08 2014-02-24 Kokusai Kogyo Co Ltd Reflection pulse estimation method and reflection pulse estimation program
JP2021110689A (en) * 2020-01-15 2021-08-02 株式会社パスコ Ground covered condition determination device and program
JP6998410B2 (en) 2020-01-15 2022-02-04 株式会社パスコ Ground cover condition determination device and program
JP7322237B1 (en) 2022-04-27 2023-08-07 大和ハウス工業株式会社 Temporary housing complex design system
JP2023162690A (en) * 2022-04-27 2023-11-09 大和ハウス工業株式会社 Temporary housing estate design system

Also Published As

Publication number Publication date
JP5580076B2 (en) 2014-08-27

Similar Documents

Publication Publication Date Title
Modica et al. Monitoring the vegetation vigor in heterogeneous citrus and olive orchards. A multiscale object-based approach to extract trees’ crowns from UAV multispectral imagery
Whitehead et al. Remote sensing of the environment with small unmanned aircraft systems (UASs), part 1: A review of progress and challenges
Kattenborn et al. Automatic single tree detection in plantations using UAV-based photogrammetric point clouds
Dufour et al. Monitoring restored riparian vegetation: how can recent developments in remote sensing sciences help?
Karpina et al. UAV-based automatic tree growth measurement for biomass estimation
Wu et al. Inter-comparison of remote sensing platforms for height estimation of mango and avocado tree crowns
Comba et al. 2D and 3D data fusion for crop monitoring in precision agriculture
Sanchez‐Azofeifa et al. Twenty‐first century remote sensing technologies are revolutionizing the study of tropical forests
CN107085710A (en) A kind of single wooden extraction method based on multispectral LiDAR data
Chen et al. An object-based method for urban land cover classification using airborne lidar data
JP6347064B2 (en) Laser measurement result analysis system
Fernández-Guisuraga et al. Monitoring post-fire neighborhood competition effects on pine saplings under different environmental conditions by means of UAV multispectral data and structure-from-motion photogrammetry
Mesas-Carrascosa et al. Combining LiDAR intensity with aerial camera data to discriminate agricultural land uses
Coluzzi et al. On the LiDAR contribution for landscape archaeology and palaeoenvironmental studies: the case study of Bosco dell'Incoronata (Southern Italy)
Ballaria et al. Uav monitoring for enviromental management in galapagos islands
JP5580076B2 (en) Ground surface observation method
Wieser et al. ULS LiDAR supported analyses of laser beam penetration from different ALS systems into vegetation
Vepakomma et al. Potential of multi-temporal UAV-borne lidar in assessing effectiveness of silvicultural treatments
Mozgeris et al. Hyperspectral and color-infrared imaging from ultralight aircraft: Potential to recognize tree species in urban environments
Yilmaz et al. Determination of tree crown diameters with segmentation of a UAS-Based canopy height model
Maurya et al. Recent advancement and role of drones in forest monitoring: Research and practices
Vepakomma et al. Potential of UAV based convergent photogrammetry in monitoring regeneration standards
Gallo et al. Design a Web Platform to manage environmental monitoring information to be used in multicriteria evaluations of Green Infrastructures
Olsson et al. Current and emerging operational uses of remote sensing in Swedish forestry
Stone et al. Integrating plantation health surveillance and wood resource inventory systems using remote sensing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121218

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131008

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131209

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20131209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140320

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140320

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140710

R150 Certificate of patent or registration of utility model

Ref document number: 5580076

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250