JPS6147517A - Karman vortex flowmeter - Google Patents

Karman vortex flowmeter

Info

Publication number
JPS6147517A
JPS6147517A JP59168593A JP16859384A JPS6147517A JP S6147517 A JPS6147517 A JP S6147517A JP 59168593 A JP59168593 A JP 59168593A JP 16859384 A JP16859384 A JP 16859384A JP S6147517 A JPS6147517 A JP S6147517A
Authority
JP
Japan
Prior art keywords
optical fiber
karman vortex
oil
communication port
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59168593A
Other languages
Japanese (ja)
Inventor
Akira Wachi
和地 昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ohkura Electric Co Ltd
Original Assignee
Ohkura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ohkura Electric Co Ltd filed Critical Ohkura Electric Co Ltd
Priority to JP59168593A priority Critical patent/JPS6147517A/en
Publication of JPS6147517A publication Critical patent/JPS6147517A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/325Means for detecting quantities used as proxy variables for swirl
    • G01F1/3259Means for detecting quantities used as proxy variables for swirl for detecting fluid pressure oscillations

Abstract

PURPOSE:To allow the titled flowmeter to operate with sufficient sensitivity even in the case of gas of which the signal component is weak and, at the same time, to enhance the strength thereof against the vibration of a pipe while allowing the same to have a large S/N ratio, by modulating the quantity of the reflected light or transmitted light of an optical fiber by the flow of the fluid in a communication port. CONSTITUTION:Karman vortexes alternately flows to the downstream side along both sides of a sensor body 10 and differential pressure DELTAP is alternately generated transitionally in both sides of the sensor body 10 and, corresponding to this differential pressure DELTAP, a seal diaphragm 30 is bent and the oil F in a communication port 13 flows right and left, and a flag 22 and an optical fiber 16 also flows and vibrates right and left. Light enters the optical fiber 16 from the upper end thereof and is emitted to a reflective mirror 21 from the end surface thereof and a part thereof is reflected to be again returned to the optical fiber 16. Because of the relative shift vibration of the end surface 20 and the reflective mirror 21, this return light is modulated at Karman vortex frequency (f) and, by calculating this Karman vortex frequency (f), the flow amount and flow velocity in a pipe 1 are calculated. The oil F is sealed in order to prevent the seal diaphragm 30 from largely bending by the change in static pressure.

Description

【発明の詳細な説明】 発明の属する技術分野 本発明は光を利用したカルマン渦流量計または流速計に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a Karman vortex flow meter or current meter that uses light.

従来の技術 光を利用したカルマン渦流量計または流速官+は電磁的
な誘導に強く、不質的に爆発の危険力(ない等の大きな
長所を持つので、急速に開発さnつつあるO 本発明者は、この点に着目して鋭意研究を重ね、昭和5
8年特許出願公告第033522号公報に記載されてい
る如き「機械的光変調装置」(特願昭55−15481
4号)を提案した。この装置では、光ファイバの曲げに
よる光の損失から、カルマン渦周波数を求めている。突
成の結果によれば、被測定流体が液体の場合には渦は号
分Sが大きいために。
Conventional technology The Karman vortex flowmeter or flowmeter, which uses light, has great advantages such as being resistant to electromagnetic induction and having no inherent explosion hazard, so it is rapidly being developed. The inventor focused on this point and conducted extensive research, and in 1930,
``Mechanical light modulation device'' as described in Patent Application Publication No. 033522 (Japanese Patent Application No. 15481/1989)
4) was proposed. This device calculates the Karman vortex frequency from the loss of light due to bending of the optical fiber. According to the results of this study, when the fluid to be measured is a liquid, the vortex has a large number S.

十分なSハ比がとれて実現可能であることがわかった二
ただし、流体が気体の場合には渦盾号分Sが小さくて、
Sハ比に問題があることもわかった。
It was found that it is possible to obtain a sufficient S ratio. However, when the fluid is a gas, the vortex shield S is small,
It was also discovered that there was a problem with the S ratio.

本発明者は更に研究を重ね、さらに感度を増大した「機
械的光変調装置」を発明した。この「機械的光変調装置
」の内容は本出願と同一出願人の出願に係る昭和56年
特許願第145188号明細書に詳細に記載されている
。この装置では光ファイバの芯ずれによる効果も加味し
て感度を向上させている。しかしながら、この装置であ
っても流体が気体であシ、パイプの振動の強い環境下で
使用するとSハ比に問題が残り完全でないことがわかっ
た。
The inventor conducted further research and invented a "mechanical light modulator" with even greater sensitivity. The contents of this "mechanical light modulation device" are described in detail in Patent Application No. 145188 filed in 1982 by the same applicant as the present application. This device improves sensitivity by taking into account the effect of optical fiber misalignment. However, even with this device, when the fluid is gas and the device is used in an environment where the pipes vibrate strongly, it has been found that problems remain in the S ratio and the device is not perfect.

流体の密度をρ、流速をVとすると、カルマン渦の信号
分Sに相当する揚力はρv72に比例する。
When the density of the fluid is ρ and the flow velocity is V, the lift force corresponding to the signal S of the Karman vortex is proportional to ρv72.

被測定流体が液体から気体に変ると密度ρは約1/10
00 に下る。気体の流速を1桁上げても、気体のρV
2/2は液体の1/ioに下がってしまう。一方でノイ
ズNに相当する流体の流れるパイプの振動等は気体であ
っても液体と大差ないので、気体の場合の方がSハ比が
ずっと悪い。これが本質的に気体のカルマン渦流量計が
難しい理由である。
When the measured fluid changes from liquid to gas, the density ρ becomes approximately 1/10
It goes down to 00. Even if the gas flow rate is increased by one order of magnitude, the gas ρV
2/2 becomes 1/io of liquid. On the other hand, vibrations of a pipe through which a fluid flows, which corresponds to the noise N, are not much different from those of a liquid even if it is a gas, so the S/c ratio is much worse in the case of a gas. This is why gaseous Karman vortex flowmeters are inherently difficult.

発明の目的 本発明は従来の上記事情に鑑みてなされたものであシ、
従って本発明の目的は、盾号分Sが微弱な気体の場合で
も十分な感度で動作すると同時にパイプの振動等に強い
、大きなSハ比を持った光利用の新規なカルマン渦流量
計または流速計を得ることにある。 − 発明の構成 上記目的を達成する為に1本発明に係るカルマン渦流量
計は、流体の流れに直角に挿入されたカルマン渦発生体
またはその後流に挿入された渦センナのセンサボディの
両側面の圧力を前記渦センナに設けられた連通口に導き
、該連通口内の流体の流動によシ光ファイバの反射光量
または通過光量を変調することを特徴とする。
Purpose of the Invention The present invention has been made in view of the above-mentioned conventional circumstances.
Therefore, the object of the present invention is to provide a new Karman vortex flowmeter using light, which operates with sufficient sensitivity even when the shield number S is a weak gas, is resistant to pipe vibrations, etc., and has a large S ratio. It's about getting the measure. - Structure of the Invention In order to achieve the above object, the Karman vortex flowmeter according to the present invention has a Karman vortex generator inserted perpendicularly to the fluid flow or a vortex sensor inserted in its wake from both sides of the sensor body. This pressure is introduced into a communication port provided in the vortex sensor, and the amount of light reflected or transmitted through the optical fiber is modulated by the flow of fluid within the communication port.

発明の実症例 次に本発明をその好ましい各実施例について図面を参照
しながら具体的に説明する。
Practical Examples of the Invention Next, preferred embodiments of the present invention will be specifically explained with reference to the drawings.

第1図は本発明の一実施例を使用したカルマン渦流量計
の概略断面を示す。図において、パイプ1内を流体が左
から右へ矢印の方向に流れている。
FIG. 1 shows a schematic cross-section of a Karman vortex flowmeter using one embodiment of the present invention. In the figure, fluid flows in the pipe 1 from left to right in the direction of the arrow.

流れに直角に挿入されたカルマン渦発生体2のために、
ある流量範囲で規則的なカルマン渦3を発生する。下流
側に設置された本発明による渦センサAで渦3を検出し
、渦3の発生周波数よシバイブ1内の流量を求める。2
2はフラッグでラシ、後述する。
Because of the Karman vortex generator 2 inserted at right angles to the flow,
A regular Karman vortex 3 is generated within a certain flow rate range. The vortex 3 is detected by the vortex sensor A according to the present invention installed on the downstream side, and the flow rate in the shivibe 1 is determined from the generation frequency of the vortex 3. 2
2 is a flag, which will be explained later.

第3図は本発明の他の実癩例を示し、第3図ではカルマ
ン渦発生体2′自体に本発明による渦センサが仕損まれ
ている。
FIG. 3 shows another practical example of the invention, in which the vortex sensor according to the invention has been disposed of in the Karman vortex generator 2' itself.

第2図(a)は第1図のB −B’線に沿って切断し矢
印の方向に見た場合の渦センサAの第1の実施例を示す
拡大断面図である。第2図Φ)は渦センナAの側面を示
している。ただし、(b)ではパイプ1は省略されてい
る。
FIG. 2(a) is an enlarged sectional view showing the first embodiment of the vortex sensor A when cut along line B-B' in FIG. 1 and viewed in the direction of the arrow. FIG. 2 Φ) shows a side view of the vortex sensor A. However, in (b), pipe 1 is omitted.

第2図(a)、(b)において、渦検出用の渦センナA
はフラッグ部9と流れに挿入された平板状のセンサボデ
ィ10とで構成されている。フラッグ部9はねじ11で
パイプ1に固定されている。12はリーク防止用のrO
Jリングパツキンである。センサボディ10のほぼ中央
部に左右から皿穴秋のくぼみ14.15が形説され、底
部が連通して連通口13を形成する。フラッグ部9、セ
ンサボディ10の中心部には光ファイバ16が取付けら
れている。光ファイノ<16の上端はフェル−/L/1
7に挿入され芯出しされている。ねじ18を外して、接
着剤19を注入する。ねじ18を加減して、光ファイバ
16の下端面20の位置を正しく出した状態で固化させ
る。
In Fig. 2 (a) and (b), vortex sensor A for vortex detection is shown.
It is composed of a flag part 9 and a flat sensor body 10 inserted into the flow. The flag part 9 is fixed to the pipe 1 with a screw 11. 12 is rO for leak prevention
It is J-ring Patsukin. Countersink recesses 14 and 15 are formed from the left and right sides approximately at the center of the sensor body 10, and the bottoms communicate with each other to form a communication port 13. An optical fiber 16 is attached to the center of the flag portion 9 and sensor body 10. The upper end of the optical fiber <16 is Fel-/L/1
7 and is centered. Remove screw 18 and inject adhesive 19. By adjusting the screw 18, the optical fiber 16 is solidified with the lower end surface 20 of the optical fiber 16 properly exposed.

光ファイバ16の端面20と対面して1反射鏡21がセ
ンサボディ10に取付けられている。光7アイノ(16
はコア径50μm、クラツド径125μmの標準品が適
している。正しく組立てられた状態では端面20の丁度
半分が反射鏡21でふさがれている。端面20と反射鏡
21間のギャップは0 、1mm以下が望ましい。
A reflecting mirror 21 is attached to the sensor body 10 facing the end surface 20 of the optical fiber 16. Hikari 7 Aino (16
A standard product with a core diameter of 50 μm and a cladding diameter of 125 μm is suitable. When properly assembled, exactly half of the end face 20 is covered by the reflecting mirror 21. The gap between the end face 20 and the reflecting mirror 21 is preferably 0.1 mm or less.

このように小さいギャップであると、端面2oがら出射
した光のはホ5o%が反射されて光ファイバ16に%、
!’る。光ファイバ16には必要に応じてフラッグ22
が取付けられて−る。7ツツグ22は連通口13をふさ
ぐような位置に取付けるのが望ましい。
With such a small gap, 5o% of the light emitted from the end face 2o is reflected and enters the optical fiber 16.
! 'ru. A flag 22 is attached to the optical fiber 16 as necessary.
is installed. It is desirable that the 7-piece plug 22 be installed in a position that blocks the communication port 13.

渦センナAの下半身のセンサボディ10全体をシールダ
イヤフラム30で包み、31.32部で溶接する。
The entire lower half of the sensor body 10 of the vortex sensor A is wrapped in a seal diaphragm 30 and welded at 31 and 32 parts.

センサボデイlo内の空間にはオイル封入口33を通っ
てダンピング用オイルFが導入すれポー#34 テ封止
される。
Damping oil F is introduced into the space inside the sensor body lo through the oil sealing port 33, and the port #34 is sealed.

シールダイヤフラム3oは属人状くぼみ14.15をふ
さぐよ5に、その周辺で溶接してもよい。また。
The sealing diaphragm 3o may be welded to and around the groove 5 which closes the individual recess 14,15. Also.

属人状くぼみ14 、15や連通口13の形状は必ずし
も円形でちる必要はない。
The shapes of the individual recesses 14 and 15 and the communication opening 13 do not necessarily have to be circular.

次に本発明の第1の実織例について説明するに、カルマ
ン渦がセンサボディ1oの両側を交互に下流へ流れ去る
。そのために、センナボディ1oの両側に過渡的に差圧
ΔPが交互に発生する。それに応じて、シールダイヤフ
ラム3oが撓み、連通口13内のオイルFが左右に流動
する。それに応じてフラッグ22.光ファイバ16も左
右に流動し、振動する。
Next, to explain the first practical example of the present invention, Karman vortices alternately flow downstream on both sides of the sensor body 1o. Therefore, a transient pressure difference ΔP is alternately generated on both sides of the senna body 1o. Accordingly, the seal diaphragm 3o is bent, and the oil F in the communication port 13 flows left and right. Flag 22 accordingly. The optical fiber 16 also flows left and right and vibrates.

光コネクタ(図示せず)からの光は光ファイバ16の上
端面から入り、端面20から反射鏡2工に出射し、その
一部が反射されて再び光ファイバ16にもどる。端面2
0と反射鏡21の相対的ずれ振動のためにこのもどシ光
はカルマン渦周波数fで変調されている。これよシ、カ
ルマン渦周波数fを求め。
Light from an optical connector (not shown) enters from the upper end surface of the optical fiber 16, exits from the end surface 20 to the reflecting mirror 2, and part of it is reflected and returns to the optical fiber 16 again. End face 2
This return light is modulated by the Karman vortex frequency f due to the relative deviation vibration between the mirror 21 and the mirror 21. Now, find the Karman vortex frequency f.

パイプ1内の流量または流速が求まる。オイルFは不可
欠のものではないが、これを封入する主な理由は被測定
流体の圧力が変っても、シールダイヤフラム30が静水
圧の変化で大きく撓んぞシしなりようにするためである
。振動系のダンピングを適度にすると同時に端面201
反射鏡21の結露による雲シ防止もかねている。7レネ
ル反射損を減少するのにも役立っている。
The flow rate or flow velocity in the pipe 1 is determined. Although oil F is not indispensable, the main reason for sealing it in is to prevent the seal diaphragm 30 from flexing due to changes in hydrostatic pressure even if the pressure of the fluid to be measured changes. . At the same time, the damping of the vibration system is moderated, and the end face 201
It also serves to prevent cloud formation due to dew condensation on the reflecting mirror 21. It also helps to reduce 7-Renel reflection loss.

測定周波数の下限周波数fX、以下の極低周波の差圧Δ
Pが加えられると、オイルFも極低周波で流動するが、
フラッグ22と連通口13間のギャップ23をオイルF
が自由に通過し、フラッグ22はほとんど撓まない。従
って、極低周波ではもどシ光がほとんど変調さnない。
Lower limit frequency fX of measurement frequency, differential pressure Δ of extremely low frequency below
When P is added, oil F also flows at an extremely low frequency,
Fill the gap 23 between the flag 22 and the communication port 13 with oil F.
passes freely, and the flag 22 hardly bends. Therefore, at very low frequencies, the light is hardly modulated.

不必要な極低周波には応答しないというバイパスフィル
タの性質を持っている。実用上この性質は望ましい。
It has the property of a bypass filter, not responding to unnecessary extremely low frequencies. This property is desirable in practice.

測定下限周波数fz付近でのフラッグ22、t:+端面
20の振幅を制限する要素はシールダイヤフラム3゜の
スチフネスである。シールダイヤフラム3oは有効直径
が大きく、板厚が薄いほど感度が高くなる。
The element that limits the amplitude of the flag 22, t:+ end face 20 near the measurement lower limit frequency fz is the stiffness of the seal diaphragm 3°. The larger the effective diameter of the seal diaphragm 3o is, and the thinner the plate thickness, the higher the sensitivity.

シールダイヤフラム30、オイルFを除去してしまうと
、振幅を制限するのけ光ファイバ16の曲げに対する抵
抗だけにな)、最高感度にはなるが、端面20、反射鏡
21の経年的な汚れや雲シのために実験室的な用途にし
か使用できなく71:D用途の制限を受ける。
If the seal diaphragm 30 and oil F are removed, the only thing that limits the amplitude is the resistance to bending of the optical fiber 16), and the highest sensitivity is achieved, but the end face 20 and reflector 21 become dirty due to aging. Due to cloud cover, it can only be used for laboratory purposes and is limited to 71:D applications.

高周波での振幅制限要素は王と−して、連通口13内を
左右に流動するオイルFの質量である。前記のように、
オイルFを振動させようとする揚力は流速Vの2乗に比
例する。カルマン周波数fは流速■に比例Tる。−カで
連通口13内の一定質量のオイルを一定振幅で振動させ
るに必要な交番力もカルマン周波数fの2乗部ち流速■
の2乗に比例するから、流速Vが増加するとカルマン周
波数fもそれに比例して増加するが、フラグ22の振@
はほとんど変らず、一定のままである。この性質は非常
に望ましい性質である。特に、シールダイヤフラム30
ノ疲労破損を防ぐために、シールダイヤフラム30の撓
みは小さいほど良い。コア径50μmの場合、フラッグ
22の振部は1μmあnば十分だから、シールダイヤフ
ラム30の撓みも1μm穆度であシ、疲労の心配がない
。高周波域での振幅の加減は連通口13の穴径、皿穴径
、オイル粘度等による。センサボディlOの幅Wが大き
いと、連通口13内のオイルFの質量が増加し、高周波
域での振幅が下シ好ましくない。パイプの横方向の振動
でオイルFかにせの振動を起す。それに応じてフラッグ
22もにせの振動をして、ノイズ分Nを発生する。幅W
は小さいほど良い。オイルFの密度ρ0と被測定流体の
密度ρとの差が小さいほどパイプの振動に強くなる。被
測定流体が液体の場合にはオイルFとの密度の差は小さ
いので、パイプの振動によるノイズNは小さい。気体の
場合には差が大きいのでパイプ振動に対してどうしても
弱くlる0 フラッグ22の密度はオイルFの密度ρ0に近いのが璽
ましい。オイルFの密度ρ0中1 (g、/e”)だか
ら、薄板状のプラスチック製が望ましい。このようにフ
ラッグ材質に注意すれば、取付姿勢による端面20と反
射鏡21のずれを数ミクロン以内に保持できる。従って
、取付姿勢が変っても再調整は不要でおる。
The main amplitude limiting factor at high frequencies is the mass of the oil F flowing from side to side within the communication port 13. As mentioned above,
The lift force that causes the oil F to vibrate is proportional to the square of the flow velocity V. The Kalman frequency f is proportional to the flow velocity (T). - The alternating force required to vibrate a constant mass of oil in the communication port 13 with a constant amplitude is also the square of the Kalman frequency f, which is the flow rate ■
Since it is proportional to the square of
remains constant, almost unchanged. This property is a highly desirable property. In particular, the seal diaphragm 30
In order to prevent fatigue damage, the smaller the deflection of the seal diaphragm 30, the better. In the case of a core diameter of 50 μm, it is sufficient that the swinging portion of the flag 22 is 1 μm, so the seal diaphragm 30 can be bent to a degree of 1 μm, so there is no fear of fatigue. The adjustment of the amplitude in the high frequency range depends on the hole diameter of the communication port 13, the countersink diameter, the oil viscosity, etc. If the width W of the sensor body 1O is large, the mass of the oil F in the communication port 13 increases, and the amplitude in the high frequency range becomes undesirable. The horizontal vibration of the pipe causes vibration of the oil F. In response to this, the flag 22 also makes a fake vibration and generates a noise amount N. Width W
The smaller the better. The smaller the difference between the density ρ0 of the oil F and the density ρ of the fluid to be measured, the stronger the pipe becomes resistant to vibration. When the fluid to be measured is a liquid, the difference in density from the oil F is small, so the noise N due to pipe vibration is small. In the case of gas, the difference is large, so it is inevitably weak against pipe vibration.The density of the flag 22 is surprisingly close to the density ρ0 of the oil F. Since the density of the oil F is 1 in ρ0 (g, /e''), it is desirable to use a thin plate of plastic.If you pay attention to the material of the flag in this way, the deviation between the end face 20 and the reflector 21 due to the mounting orientation can be kept within a few microns. Therefore, readjustment is not necessary even if the mounting orientation changes.

オイル封入口33内に同心的に受光用光ファイバを設置
し、反射鏡21を除去して端面同志を接近させておくと
、端面のずn振動に工9受光用光ファイバの通過光量が
変調さnることは明らかでらる0第2図でフラッグ22
の位@はそのままで、反射鏡22を下刃に下げ、同時に
光ファイバを延長して端面20を下刃に下げると、光フ
ァイバが機械的なてこの作用を持つようになる0すなわ
ち、フラッグ22の振動振幅に比べて、端面20の振幅
は大きくなυ、偏位が拡大される。流量が小さくて信号
が微弱な用途には有用でおる0 フラッグ22は必要不可欠のものではない。これがなけ
nばオイルFの流動に対する光ファイノくの追従が悪く
なり、振幅が下るだけである。
If the light-receiving optical fiber is installed concentrically in the oil sealing port 33 and the end faces are brought close to each other by removing the reflector 21, the amount of light passing through the light-receiving optical fiber will be modulated by the Zn vibration of the end face. It's obvious that it's flag 22 in Figure 2.
If the reflector 22 is lowered to the lower blade while the position @ is left as is, and at the same time the optical fiber is extended and the end face 20 is lowered to the lower blade, the optical fiber will have a mechanical lever effect. Compared to the vibration amplitude of the end face 22, the amplitude of the end face 20 is larger υ, and the deflection is expanded. The 0 flag 22, which is useful in applications where the flow rate is small and the signal is weak, is not essential. Without this, the optical fiber will not be able to follow the flow of the oil F, and the amplitude will only decrease.

第4図(a)は本発明の第2の実施例の要部拡大断面図
でらシ、第4図(b)、(C)はその側面を示す0第2
図に示した第1の実施例と大きく異なる点は光ファイバ
16が固定さn1逆に反射鏡21が振動する点にある。
FIG. 4(a) is an enlarged sectional view of the main part of the second embodiment of the present invention, and FIG. 4(b) and (C) are side views thereof.
The major difference from the first embodiment shown in the figure is that the optical fiber 16 is fixed, whereas the reflecting mirror 21 vibrates.

第4図において、光ファイバ16は接着剤19でセンサ
ボディ10に固定さnている。端面20の丁度半分が反
射鏡21でふさがれている0反射鏡21はフラッグ22
に取付けらnている。フラッグ22は連通口13をふさ
ぐ工うに置かnlその周辺が器でセンサボディ10に溶
接されてVる。数多くのスリット24が入れられていて
、わずかの力で撓むようになっている0 カルマン渦に19、連通口13内のオイルFが左右に流
動Tると、フラッグ22、反射鏡21がそnに°応じて
振動し、光ファイバ16への反射光量をカルマン渦周波
数で変調する0 受光用光ファイバをオイル導入口33に設置して、通過
光量変調型に変更するのも容易である。
In FIG. 4, the optical fiber 16 is fixed to the sensor body 10 with an adhesive 19. Exactly half of the end face 20 is covered by the reflector 21. The reflector 21 is the flag 22.
It is attached to the The flag 22 is placed in a position to block the communication port 13, and its periphery is welded to the sensor body 10 with a screw. A large number of slits 24 are inserted so that the oil F in the communication port 13 flows from side to side due to the Karman vortex 19, which allows it to bend with a slight force. It is also easy to install a light-receiving optical fiber in the oil inlet 33 to modulate the amount of light reflected to the optical fiber 16 by the Kármán vortex frequency, thereby changing the amount of light that passes through the optical fiber to a modulating type.

第3図ではカルマン渦発生体2′がセンサボディを兼用
している。シールダイヤフラムの代シにベローズ30′
を使用してオイルFを封入している。このように、シー
ル要素はダイヤプラムとは限らない。材質も金属とは限
らない。概して、ベローズ30′の力がダイヤプラムz
シも低スチフネスに設計できるので感度は高い。
In FIG. 3, the Karman vortex generator 2' also serves as a sensor body. Bellows 30' in place of the seal diaphragm
Oil F is sealed using . Thus, the sealing element is not necessarily a diaphragm. The material is not limited to metal either. In general, the force of the bellows 30' is the force on the diaphragm z
The sensor can also be designed with low stiffness, resulting in high sensitivity.

第5図は本発明のWS3の実施例を示している。FIG. 5 shows an embodiment of the WS3 of the present invention.

属人状くぼみ14.15の圧力はパイプ外の連通口13
に導かわる。22はフラッグであシ、この作用は前述の
過多である。ガスの流量測定では測定周波数の上限周波
数fIrは数kHz になる。連通口13への圧力み入
口での損失が増加するので注意が8袂である。
The pressure in the individual depressions 14 and 15 is the communication port 13 outside the pipe.
will lead you to. 22 is a flag, and this effect is the same as described above. In gas flow rate measurement, the upper limit frequency fIr of the measurement frequency is several kHz. Care must be taken when using the 8th line, as the loss at the pressure inlet to the communication port 13 will increase.

第2図のようにオイルFを封入した場合には、普通の意
味の共振周波数は現れない。シールダイヤフラム30の
スチフネスとXイルFの質量とによる共振周波数がある
はずであるが、オイルFの制動のためにピーク値が現わ
rL72:い。した力(つて、共振周波数をどこにとる
かは自由である0ただし、測定下限周波数f4の近くか
またはさらに低周波にした力が感度は上る。
When oil F is sealed as shown in FIG. 2, a resonant frequency in the ordinary sense does not appear. There should be a resonance frequency due to the stiffness of the seal diaphragm 30 and the mass of the oil F, but a peak value appears due to the damping of the oil F. However, the sensitivity increases if the force is set close to the measurement lower limit frequency f4 or at an even lower frequency.

圧力導入口をシール要素でふさぐこと、その内部にオイ
ルを封入することは不可欠の事項ではない。実用上の性
能が1シベターになるだけでおる。
It is not essential to block the pressure inlet with a sealing element or to seal oil inside it. Practical performance is only 1 shibeta.

発明の効果 本発明は以上の如く構成され、作用するものでラシ、本
発明に2れば、信号分Sの小さい気体の流量測定であっ
ても十分な大きさのカルマン渦周波数信号が得らn1パ
イプの振動に強く、構造も簡単なために信頼性が高く、
廉価なカルマン渦流量計が得らn1実用上の効果が大き
い。
Effects of the Invention The present invention is constructed and operates as described above. According to the second aspect of the present invention, a sufficiently large Karman vortex frequency signal can be obtained even when measuring the flow rate of gas with a small signal component S. The N1 pipe is highly resistant to vibration and has a simple structure, making it highly reliable.
An inexpensive Karman vortex flowmeter can be obtained, which has great practical effects.

可動部の振幅は数μm以下であシ、実質上は振動しない
として良い点も信頼性向上に役立っているQ センナ部には光だけしか使用していなイノテ、爆発に対
して本質的に安全でおシ、電磁誘導を受けないのはいう
までもない。
The amplitude of the moving part is less than a few micrometers, and there is virtually no vibration, which helps improve reliability. Needless to say, it is not subject to electromagnetic induction.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一基本原理図、第2図(a)は本発明
に係る渦センサの第1の実施例を示し、第1図のB−B
線に沿って切断し矢印の方向に見た拡大断面図、第2図
(b)は第2図(a)に示した渦センサの側面図、第3
図は本発明の他の基本原理図、第4図(a)は本発明の
第2の実施例を示す要部拡大断面図、第4図中)、(C
)は第2の実施例の側面図、第5図は本発明の第3の実
施例を示す要部拡大断面図である。 1 @11−パイプ、2.2′・・・カルマン渦発生体
、3・・嗜カルマン渦、9・・・フランジ部、10・・
・センサボディ、12−−−0リングパツキン、13・
・・連通孔、14.15・・・属人状くぼみ、16・・
・光ファイバ、17・・φフェルール、19−・・接着
剤、2011Φ・光ファイバ16の端面、21−−・反
射m、22・自のフラッグ、23・・・ギャツ7’、3
0−・・シールダイヤフラム、33争−・オイル封入口
、34・・・ボール、A・・・渦センサ、F・・・ダン
ピング用オイル 第1図 ρ 第3図 第4 鴻 (C)
FIG. 1 is a diagram showing one basic principle of the present invention, and FIG. 2(a) shows a first embodiment of the vortex sensor according to the present invention.
FIG. 2(b) is an enlarged cross-sectional view cut along the line and viewed in the direction of the arrow, and FIG. 2(b) is a side view of the vortex sensor shown in FIG. 2(a).
The figure is another basic principle diagram of the present invention, and FIG. 4(a) is an enlarged sectional view of the main part showing the second embodiment of the present invention.
) is a side view of the second embodiment, and FIG. 5 is an enlarged sectional view of essential parts showing the third embodiment of the present invention. 1 @11-pipe, 2.2'... Karman vortex generator, 3... Karman vortex, 9... flange part, 10...
・Sensor body, 12---0 ring packing, 13・
・Communication hole, 14.15 ・Individual hollow, 16...
- Optical fiber, 17... φ ferrule, 19-... Adhesive, 2011Φ - End face of optical fiber 16, 21-- Reflection m, 22- Own flag, 23... Gats 7', 3
0-...Seal diaphragm, 33--Oil filling port, 34...Ball, A...Vortex sensor, F...Dumping oil Fig. 1 ρ Fig. 3 Fig. 4 Ko (C)

Claims (6)

【特許請求の範囲】[Claims] (1)、流体の流れに直角に挿入されたカルマン渦発生
体またはその後流に挿入された渦センサのセンサボディ
の両側面の圧力を前記渦センサに設けられた連通口に導
き、該連通口内の流体の流動により光ファイバの反射光
量または通過光量を変調することを特徴としたカルマン
渦流量計。
(1) The pressure on both sides of the sensor body of the Karman vortex generator inserted at right angles to the fluid flow or the vortex sensor inserted in its wake is guided to the communication port provided in the vortex sensor, and the pressure is guided into the communication port provided in the vortex sensor. A Karman vortex flowmeter characterized by modulating the amount of light reflected or transmitted through an optical fiber by the flow of fluid.
(2)、前記光ファイバを前記連通口に突出させ、前記
光ファイバの撓みにより反射光量または通過光量を変調
することを更に特徴とする特許請求の範囲第(1)項に
記載のカルマン渦流量計。
(2) The Karman vortex flow rate according to claim (1), further characterized in that the optical fiber is made to protrude into the communication port, and the amount of reflected light or the amount of transmitted light is modulated by bending of the optical fiber. Total.
(3)、前記光ファイバにフラッグを取付けたことを更
に特徴とする特許請求の範囲第(1)項または第(2)
項に記載のカルマン渦流量計。
(3) Claim (1) or (2) further characterized in that a flag is attached to the optical fiber.
Karman vortex flowmeter as described in section.
(4)、前記連通口にフラッグを設け、該フラッグの撓
みにより前記光ファイバの反射光量または通過光量を変
調することを更に特徴とする特許請求の範囲第(1)項
に記載のカルマン渦流量計。
(4) A Karman vortex flow rate according to claim (1), further characterized in that a flag is provided at the communication port, and the amount of reflected light or the amount of light passing through the optical fiber is modulated by deflection of the flag. Total.
(5)、圧力導入口をシール要素(ダイヤフラム、ベロ
ーズ等)でふさいだことを更に特徴とする特許請求の範
囲第(1)項〜第(4)項に記載のカルマン渦流量計。
(5) The Karman vortex flowmeter according to claims (1) to (4), further characterized in that the pressure introduction port is closed with a sealing element (diaphragm, bellows, etc.).
(6)、前記シール要素でふさいだ領域にオイルを封入
したことを更に特徴とする特許請求の範囲第(5)項に
記載のカルマン渦流量計。
(6) The Karman vortex flowmeter according to claim (5), further characterized in that oil is sealed in the region blocked by the sealing element.
JP59168593A 1984-08-11 1984-08-11 Karman vortex flowmeter Pending JPS6147517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59168593A JPS6147517A (en) 1984-08-11 1984-08-11 Karman vortex flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59168593A JPS6147517A (en) 1984-08-11 1984-08-11 Karman vortex flowmeter

Publications (1)

Publication Number Publication Date
JPS6147517A true JPS6147517A (en) 1986-03-08

Family

ID=15870926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59168593A Pending JPS6147517A (en) 1984-08-11 1984-08-11 Karman vortex flowmeter

Country Status (1)

Country Link
JP (1) JPS6147517A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2602865A1 (en) * 1986-08-14 1988-02-19 Flonic Sa Optical sensor for physical magnitudes
DE102009039659A1 (en) * 2009-09-02 2011-03-03 Krohne Meßtechnik GmbH & Co KG Vortex flow meter for measuring e.g. fluid medium, has optical fiber connected with membrane, so that deflection of membrane caused by medium pressure in effectively connected region leads to extension and/or compression of fiber
DE102011107547A1 (en) * 2011-07-11 2013-01-17 Krohne Messtechnik Gmbh Vortex flowmeter, vortex flowmeter pressure transducer, and method of making such a pressure transducer
JP2013108989A (en) * 2011-11-21 2013-06-06 Krohne Messtechnik Gmbh Vortex flowmeter and fiber guide of the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388161A (en) * 1977-01-12 1978-08-03 Hitachi Chemical Co Ltd Method of insulating metal core for metal core contained printed circuit board
JPS57206825A (en) * 1981-06-15 1982-12-18 Fuji Electric Co Ltd Flow meter for karman's vortex street
JPS5833522A (en) * 1981-08-24 1983-02-26 Yamaha Motor Co Ltd Rear wheel driving mechanism of motor tricycle
JPS5954919A (en) * 1982-09-21 1984-03-29 Ohkura Electric Co Ltd Mechanical light modulating device
JPS5997009A (en) * 1982-11-15 1984-06-04 ユナイテッド・テクノロジ−ズ・コ−ポレイション Transducer measuring flow rate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5388161A (en) * 1977-01-12 1978-08-03 Hitachi Chemical Co Ltd Method of insulating metal core for metal core contained printed circuit board
JPS57206825A (en) * 1981-06-15 1982-12-18 Fuji Electric Co Ltd Flow meter for karman's vortex street
JPS5833522A (en) * 1981-08-24 1983-02-26 Yamaha Motor Co Ltd Rear wheel driving mechanism of motor tricycle
JPS5954919A (en) * 1982-09-21 1984-03-29 Ohkura Electric Co Ltd Mechanical light modulating device
JPS5997009A (en) * 1982-11-15 1984-06-04 ユナイテッド・テクノロジ−ズ・コ−ポレイション Transducer measuring flow rate

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2602865A1 (en) * 1986-08-14 1988-02-19 Flonic Sa Optical sensor for physical magnitudes
DE102009039659A1 (en) * 2009-09-02 2011-03-03 Krohne Meßtechnik GmbH & Co KG Vortex flow meter for measuring e.g. fluid medium, has optical fiber connected with membrane, so that deflection of membrane caused by medium pressure in effectively connected region leads to extension and/or compression of fiber
DE102009039659A8 (en) * 2009-09-02 2011-06-01 Krohne Meßtechnik GmbH & Co KG Vortex flowmeter
DE102009039659B4 (en) * 2009-09-02 2015-08-20 Krohne Meßtechnik GmbH & Co KG Vortex flowmeter and pressure transducer for a vortex flowmeter
DE102011107547A1 (en) * 2011-07-11 2013-01-17 Krohne Messtechnik Gmbh Vortex flowmeter, vortex flowmeter pressure transducer, and method of making such a pressure transducer
US8904879B2 (en) 2011-07-11 2014-12-09 Krohne Messtechnik Gmbh Vortex flowmeter having a pressure sensor with an optical fiber on the measuring diaphragm for detecting deflections
DE102011107547B4 (en) * 2011-07-11 2015-08-06 Krohne Messtechnik Gmbh Pressure transducer for a vortex flowmeter, vortex flowmeter and method of making such a pressure transducer
US9410829B2 (en) 2011-07-11 2016-08-09 Krohne Messtechnik Gmbh Method for producing a pressure sensor with an optical fiber on the measuring diaphragm for detecting deflections
JP2013108989A (en) * 2011-11-21 2013-06-06 Krohne Messtechnik Gmbh Vortex flowmeter and fiber guide of the same

Similar Documents

Publication Publication Date Title
US9658123B2 (en) All-optical pressure sensor
US3732731A (en) Bluff body flowmeter with internal sensor
US4523477A (en) Planar-measuring vortex-shedding mass flowmeter
US4003253A (en) Multi-range vortex-shedding flowmeter
US7412902B2 (en) Device for determination and/or monitoring of the volumetric and/or mass flow of a medium and having coupling element including two element portions
US4472022A (en) Vortex flowmeter
US4206642A (en) Flowmeter
US4329880A (en) Vortex-shedding flowmeter with torsional sensor mounted on torque tube
JPS6147517A (en) Karman vortex flowmeter
JPS6048687B2 (en) Flowmeter
JPS5997009A (en) Transducer measuring flow rate
US4416159A (en) Vortex flowmeter
JPH0719920A (en) Vortex flowmeter
JPS632451B2 (en)
JPS5833522B2 (en) mechanical light modulator
JP2984689B2 (en) Fluid meter
KR102478319B1 (en) Flow slot member
RU2681225C1 (en) Sensitive element of vortex flow meter
RU1770756C (en) Fiber-optic flowmeter
KR20050064695A (en) Fiberoptic vortex shedding flowmeter
JPS6215811B2 (en)
GB2084719A (en) Measuring fluid flow
JPH07209038A (en) Fluid flowmeter
JPS6158765B2 (en)
JPS6212253Y2 (en)