JPS6147103B2 - - Google Patents

Info

Publication number
JPS6147103B2
JPS6147103B2 JP12734480A JP12734480A JPS6147103B2 JP S6147103 B2 JPS6147103 B2 JP S6147103B2 JP 12734480 A JP12734480 A JP 12734480A JP 12734480 A JP12734480 A JP 12734480A JP S6147103 B2 JPS6147103 B2 JP S6147103B2
Authority
JP
Japan
Prior art keywords
fire extinguishing
surfactant
water
fire
pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12734480A
Other languages
Japanese (ja)
Other versions
JPS56130167A (en
Inventor
Tei Konkurin Mitsucheru
Efu Moorii Chaarusu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUAIAA AUTO ENTAAPURAISEZU CO Inc
Original Assignee
FUAIAA AUTO ENTAAPURAISEZU CO Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUAIAA AUTO ENTAAPURAISEZU CO Inc filed Critical FUAIAA AUTO ENTAAPURAISEZU CO Inc
Publication of JPS56130167A publication Critical patent/JPS56130167A/en
Publication of JPS6147103B2 publication Critical patent/JPS6147103B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/60Aqueous agents
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62DCHEMICAL MEANS FOR EXTINGUISHING FIRES OR FOR COMBATING OR PROTECTING AGAINST HARMFUL CHEMICAL AGENTS; CHEMICAL MATERIALS FOR USE IN BREATHING APPARATUS
    • A62D1/00Fire-extinguishing compositions; Use of chemical substances in extinguishing fires
    • A62D1/0028Liquid extinguishing substances
    • A62D1/0035Aqueous solutions
    • A62D1/0042"Wet" water, i.e. containing surfactant

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Fire-Extinguishing Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は消火用組成物及びそれを使用する消火
方法に関する。特に本発明は、改良された消火特
性を有しかつ慣用の消火装置を最大限に利用せし
める消火溶液に関する。 種々の表面活性剤を含有し得る従来の消火用組
成物は許容時間内で充分消火を達成だきず、また
致命的な煙を制限するに充分な冷却作用を有して
いない。例えば、米国特許第3912647号明細書に
は高濃度の表面活性剤を溶剤中に配合し水と混合
して粘稠物質とした消火用組成物が開示されてい
るが、この場合粘稠ゲルを流動性にするためにナ
フサの如き溶剤を使用せねばならず、また表面活
性剤の約3%以上という高濃度は一般的な消火要
件を満していない。 現在一般的に利用されている消火設備及び装置
も大火災による悲惨な損害の危険性又は消防夫に
伴なう危険性の増大に充分対処できるものではな
い。近年新しい型の泡沫形成組成物及び機械的設
備が消火に利用されるようになつたが、この場合
にも消火能力は顕著には改良されていない。例え
ば、水性フイルム形成泡沫体として通常知られる
消火剤が一般に種類A又はBの火災に適用されて
いるが、かかる泡沫体も他の泡沫体も消火の迅速
性及び慣用のポンプ及び排水装置を用いる場合の
適用手段に関して特に欠点を有する。 典型的な泡沫形成濃厚液においては、弗素化表
面活性剤の如き泡沫形成剤を含む個々の濃厚液が
消防車に設置された慣用の遠心ポンプから多数の
排水ラインの一つに導かれる。供給タンクから排
水ラインに送られる泡沫形成濃厚液の所望濃度を
得るための計量装置は所望濃度の泡沫形成組成物
を与えるに充分正確なものでなければならない。
また、各々の排水ラインについて同様の計量装置
及び送出装置(eductor)を設けねばならない。
これらの付属装置は実質的に消火系のコストを高
めかつ消防車の有効空間を占め、更に重大なこと
にかかる装置は排出される消火液に対するポンプ
圧及びポンプ容量を下げるために、消火液を放射
し得る距離を制限する。 乳化を助長しかつ弗素化表面活性剤、溶剤及び
泡沫安定剤と組合せて用いた場合にコスト減にな
る種々の非イオン表面活性剤を添加剤として利用
した他の消火用泡沫組成物も公知である。低膨張
性の泡沫を生ずるかかる組成物の例は米国特許第
3772195号及び第4090967号明細書に記載されてい
る。これらの特許明細書に記載される非イオン表
面活性剤は、単独では燃焼する有機液体の表面を
ぬらす充分な湿潤性を有しないために、弗素化表
面活性剤と組合せて用いた場合にのみ有用であ
る。 さらに米国特許第3541010号及び同第3578590号
明細書には種類A及びBの火災の消火に有用な泡
沫消火剤としてエトキシル化アルキルフエノール
及び溶剤の混合物から形成される泡沫組成物が記
載されている。この組成物は非イオン系エトキシ
ル化アルキルフエノールのゲル化防止用の溶剤の
存在を必要とする最高30%までの水を含む濃厚液
から構成され、この濃厚液は放出流中に約0.5〜
約6容量%の該非イオン活性剤を含む泡沫を形成
する。 いずれにしても前述の如き泡沫組成物はポンプ
の排水側においてのみ水流中に加えられる。かか
る泡沫組成物をポンプの排水側でなく吸水側にお
いて放水流に加えると、過度の泡沫が生じてポン
プのキヤビテーシヨン及び全体として出力の損失
を引起す。従つて、各々の泡沫排水ラインに固有
の計量及び送出装置を設けねばならず、これは実
際上各々のポンプについて消防車上の泡沫排水ラ
インを唯一つに制限する。ポンプからの各排水ラ
インについて別個の分配送出装置及び泡沫濃厚液
供給装置の必要性は余りにコスト高となりかつ利
用できない余分の空間を必要とする。また、単一
の泡沫排水ラインの使用は消火装置の効率を著し
く制限する。 理想的な消火系を達成させるに重要と考えられ
る別の要素は消火に使用される消火溶液の容量で
あり、この容量は水の入手がポンプ消防車に付随
する移動供給タンクに制限される離れた場所にお
いて臨界的な要素となり得る。また、より小容量
の消火液の使用は通常の消火作業に伴なう資産所
有者が普通被る水による大きな損害を回避するの
にきわめて重要である。 本発明の主目的は、消火作業者が慣用の消火装
置を最大限に利用してより短時間で消火を可能に
する消火用組成物及び消火方法を提供することで
ある。本発明の別の目的は、過度の泡沫又はポン
プのキヤビテーシヨンを生ずることなくポンプの
吸水側に添加でき、それによつて火炎に放射され
る消火溶液を与える消火用濃厚液を提供すること
であり、更に本発明は、種類A,B及びDの火災
をより効率的かつ経済的に消火せしめるきわめて
低濃度の非イオン表面活性剤を含む消火溶液を与
えることを目的とする。 本発明による消火用組成物は、単独で使用する
場合にはそれ自体の曇り点が、一方2種又はそれ
以上を組合せて使用する場合にはその混合物の曇
り点が20〜100℃(68〜212〓)の範囲にある1種
又はそれ以上の非イオン表面活性剤を水性媒質中
に0.02〜0.2容量%の範囲のきわめて低い濃度で
配合してなるものである。この消火用組成物は該
表面活性剤の濃厚液から希釈水溶液として調製さ
れる。この濃厚液は消火装置上で得ることがで
き、例えば慣用の放射用ポンプの吸水側で放水流
中に加えることにより過度の泡沫形成又はポンプ
のキヤビテーシヨンなくそのまま使用される。 本発明で使用される表面活性剤は曇り点(2種
以上組合せて用いる場合はその混合物の曇り点)
が20〜100℃の範囲にある非イオン表面活性剤で
ある。本発明において曇り点はASTMD2042―65
に規定される試験法に従つて水100ml中の1重量
%の非イオン表面活性剤溶液について測定したも
のである。表面活性剤(単独又は混合物)の曇り
点が20℃より低いと充分に可溶性でなく有用性に
欠ける。一方曇り点が100℃より高いと消火能力
が失なわれる。しかしながら、それぞれの表面活
性剤がこの特定範囲外の曇り点を有する場合で
も、混合した場合にこの範囲内の曇り点を示す2
種以上の非イオン表面活性剤の混合物は充分可溶
性となり、本発明の消火目的に有効である。 本発明で有用な非イオン表面活性剤の主な例
は、エチレンオキシド又はプロピレンオキシドと
種々の化合物、特に側鎖含有フエノール系化合物
との縮合により得られるものである。かかる化合
物としては、ステアリン酸、ラウリン酸、パルミ
チン酸等の如き脂肪酸;マンニツト、ソルビツト
等の如き脂肪族アルコール;エタノール、イソプ
ロパノール、イソブタノール等の如き第1,第2
又は第3級アルコール;脂肪族アミン又はアミド
及びアルキロールアミンが挙げられる。分子量
1100〜15500のエチレンオキシドとプロピレンオ
キシドとのブロツク共重合体及びエチレンジアミ
ンから誘導されたオキシプロピレンオキシエチレ
ンポリオールのブロツク共重合体も非イオン表面
活性剤として有用である。特に有用な表面活性剤
はエチレンオキシドとアルキルフエノールとの縮
合により得られるものであり、ここでアルキルフ
エノールのアルキル基は炭素数1〜12個のもので
あり得るが、特に炭素数6〜9個のもの、例えば
オクチル、ノニル等が好ましい。 2種以上の表面活性剤の混合物は曇り点20〜
100℃の範囲内で水溶性となりかつ最少量の泡沫
を生ずるように選択される。 エチレンオキシドから誘導される表面活性剤に
おいてはエチレンオキシド分子の量は40モル%以
下、好ましくは1.5〜9モル%であり得る。 本発明の実施において濃厚液は非イオン表面活
性剤を30重量%以下、好ましくは20〜29重量%含
有する。表面活性剤の量がこれより多くなり、そ
の水中濃度が30重量%より高くなると表面活性剤
はゲルを形成して使用不適となる。従つて、濃厚
液中の非イオン表面活性剤の濃度は最大限30重量
%に保持することが必要である。 消防車上で貯蔵又は供給タンクに装入して消防
夫が使用するのはこの濃厚液である。この濃厚液
は最大限30重量%の濃度で貯蔵タンクに保持した
場合所要時にそのまま使用されて本発明の消火組
成物を与え得る。この貯蔵タンクから濃厚液は慣
用のポンプの吸水側に送られてその各排水ライン
から液状流が火炎に向けて放射される。この濃厚
液は予め水と混合してからポンプの吸水側に送つ
て排水ラインから放射できることは勿論である。 上記濃厚液は排水ラインのノズルに送る必要は
なく、ポンプの吸水側に導入し得るという特徴を
有する。これによつて消火溶液の混合調製をポン
プの吸水側で行なうことができ、その結果各排水
ラインから消火液の流れをポンプの過熱及び損傷
の原因となる過度の泡沫又はキヤビテーシヨンを
生ずることなく分配させることができる。また、
従来必要とされた各排水ライン上の送出及び計量
装置の設置が回避される結果、コストが改善され
かつ消防車上の空間が確保される。従つて、消防
ポンプは単一型の排水ラインに限定されることな
く多様性に富むことになる。 上記濃厚液を用いるには慣用の送出又は計量手
段を慣用のポンプの吸水側に設ける。通常のポン
プ消防車に設けられるポンプの容量は約946/
分,1893/分,2839/分,3785/分,4732
/分,5678/分(ガロン/分(gpm)で表わ
してそれぞれ250,500,750,1000,1250,
1500gpmに相当する)等である。容量約5678/
分(1500gpm)のポンプには通常各々が約946
/分(250gpm)の容量である約6.4cm(2.5イ
ンチ)の排水ラインが6系統設けられている。従
来消火用組成物を排水ラインに供給するのに送出
装置を用いた場合には、管の大きさは約3.8cm
(1.5インチ)〔容量約379/分(100gpm)〕に縮
小された。従つて、分配計量装置を設けた場合に
は、この特別なラインのみが泡沫の形成噴霧用に
有用であるため、ポンプ消防車の多様性が乏しく
なる。これに対し、本発明によれば、一定のポン
プ容量において消火溶液を放射するのに約6.4cm
(2.5インチ)の排水ライン6系統を使用できる。 消火溶液は上記濃厚液から、消火溶液が非イオ
ン表面活性剤を0.02〜0.2容量%含有するように
調製される。好ましくは消火溶液は表面活性剤を
0.03〜0.1容量%の濃度で含有する。 消火溶液中の表面活性剤の濃度は火災をきわめ
て迅速に消火せしめるのに重要である。表面活性
剤を本発明で規定する低濃度で使用することによ
つて、火災を消火溶液から生ずる雲によつて完全
に包囲し又は遮蔽し得ることが認められた。かく
して、本発明によれば、火災は従来の消火用組成
物を用いた場合より迅速に消火される。 消火溶液中の非イオン表面活性剤の低濃度はま
た、ポンプを損傷したり放水流の到達距離を制限
する過度の泡沫又はポンプのキヤビテーシヨンを
生ずることなく消火溶液をポンプで吸排水せしめ
るので重要である。表面活性剤の濃度を0.2容量
%以下にする重要性を立証するために、米国特許
第3578590号明細書に記載される如き表面活性剤
の濃度が0.5容量%の消火液を容量約1893(500
ガロン)の消防車で用いる比較試験を行なつた。
用いた非イオン表面活性剤はエチレンオキシド9
モル割合を含むノニルフエノールエトキシレート
であり、これを水流に非イオン表面活性剤0.3容
量%の濃度で加え、この混合物を約227/分
(60カロン/分)にセツトした標準ノズルを通じ
て送出した。この混合物をポンプの吸水側に導入
して放射したところ、その最大距離は約16.8〜
18.3m(55〜60フイート)であつたが、一方淡水
又は非イオン表面活性剤を水中に最大限0.2容量
%含む本発明の組成物を用いた場合には放射距離
は約25m(82フイート)であつた。 この結果、従来の組成物を用いた場合には泡沫
が生ずるため放射距離を短かくするポンプ圧の低
下が起つたことを明らかにする。 本発明の組成物と従来の組成物との相違を更に
明らかにするため、ある場合に消火時に行なわれ
るようにホースのノズルを閉めて上記の非イオン
表面活性剤溶液を慣用のバイパス弁により放水供
給タンク中に循環せしめたところ、ポンプに発生
した泡沫のためポンプは3分で過熱し始めた。ま
たポンプにキヤビテーシヨンが生じたため使用不
能になつた。ノズルを再び開いて流速を約227
/分(60ガロン/分)にしたところ、約7.6〜
12.2m(25〜40フイート)の放水流が生じたが、
この放水流は連続的ではなく、突発傾向があつ
た。水が全部タンクから排水された後タンクのゲ
ージはなお満杯を示したが、タンクを調べたとこ
ろタンクは細かい泡で満されていた(タンクゲー
ジが満杯を示していたのはこのためである)。こ
の泡沫は作業を妨げ、タンクの再補給もできなか
つた。 次に本発明を実施例により更に説明するが、本
発明はこれら実施例により何ら限定されるもので
はない。 実施例1と2は、重量により水74%、エチレン
オキシド9モル%のノニルフエノキシポリエトキ
シエタノール21.0%、エチレンオキシド3モル%
の縮合物とエチレンオキシド9モル%の縮合物と
の混合物であるノニルフエノキシポリエトキシエ
タノールブロツク重合体〔分子量2900,曇り点約
58℃(136〓)〕4.0%、硝酸ナトリウム及び硼酸
アミド(硼酸+モノエタノールアミン)の如き腐
食防止剤0.8%並びにナトリウム1―ヒドロキシ
ピリジン―2―チオンの如き殺生剤0.2%よりな
る濃厚液から形成された本発明の消火用組成物を
用いて行なつた。この腐食防止剤は慣用のもので
あり得るが、硝酸ナトリウム対硼酸アミドの重量
比が2:1〜1:2のものを0.1〜3重量%用い
るのが適当である。殺生剤は0.001〜1重量%の
量で配合でき、ナトリウムオマジン(olin社製の
1―ヒドロキシピリジン―2―チオンナトリウム
塩の商品名)、プロキセルCRL(米国ICI社製の
1,2―ベンズイソチアゾリン―3―オンの商品
名)、Kathon886(ロームアンドハース社製の5
―クロロ―2―メチル―4―イソチアゾリン―3
―オン8.6%と2―メチル―4―イソチアゾリン
―3―オン2.6%との混合物の商品名)等の1種
又は2種以上を配合し得る。上記の混合物の曇り
点は約58.5℃(137〓)であつた。上記の濃厚液
約3.785(1ガロン)を水約1893(500ガロ
ン)と予め混合してからポンプの吸水側に送り込
んだ。これは消火液中に該濃厚液0.2容量%又は
非イオン表面活性剤0.05容量%を与える。 実施例 1 直径約3m(10フイート)の試験用の穴にNo.2
燃料油約340(90ガロン)を入れて点火し、2
分間燃焼させた。この火炎を消火水中の市販湿潤
剤により消火したところ、放水速度約379/分
(100ガロン/分)のポンプライン2系統を用いて
90秒で消火した。水及び湿潤剤の消費量は約1136
(300ガロン)であつた。 上記の穴を清浄にし、再度No.2燃料油約340
(90ガロン)を装入して2分間燃焼させた。 前述した本発明の消火溶液を用いた場合消火は
20秒で終了した。この溶液はブースターポンプラ
イン1系統を用いて約87/分(23ガロン/分)
の速度で火炎に放射したが、過度の泡沫又はキヤ
ビテーシヨンは生じなかつた。消火に要した消火
溶液の量は約30.3(8ガロン)にすきず、これ
は濃厚液消費量約0.06(0.016ガロン)に相当
する。 実施例 2 可燃材として木材を使用し、木材約45.4Kg
(100ポンド)をガソリンで処理して点火し、消火
前4分間燃焼させた。放水速度約87/分(23ガ
ロン/分)のブースターポンプラインにより木材
の消火を行なつたところ、消火に72秒要した。 約45.4Kg(100ポンド)の木材の別の山を同様
に点火し、4分間燃焼させた。前述した本発明の
消火溶液を含む水を用いて約87/分(23ガロ
ン/分)の放水速度でブースターポンプラインに
より消火したところ、過度の泡沫又はキヤビテー
シヨンを生ずることなく消火は11秒で完了した。 以下の実施例3〜7はすべて、重量により水74
%、エチレンオキシド9モル%のノニルフエノキ
シポリエチレンオキシエタノール23.5%、エチレ
ンオキシド1.5モル%のノニルフエノキシポリエ
チレンオキシエタノール1.5%並びに実施例1〜
2と同じ腐食防止剤及び殺生剤1%からなる濃厚
液を用いて試験した。この濃厚液の曇り点は約33
℃(92〓)であつた。この濃厚約3.785(1ガ
ロン)を水約1893(500ガロン)と予め混合し
て表面活性剤0.05容量%を含む消火溶液としてか
らポンプの吸水側に通送した。 実施例 3 No.2燃料油とガソリンとの50/50燃料混合物約
473(125ガロン)を直径約3.7m(12フイー
ト)の試験用の穴に入れて点火し、2分間燃焼さ
せた。これをまず市販のAFFF泡沫体を用いて6
%フオームノズルにより消火したところ、該6%
AFFF溶液を約379/分(100ガロン/分)で放
射して消火は31秒でなされた。かくしてAFFF溶
液の使用量は約193(51ガロン)であり、これ
はAFFF泡沫体約11.6(30.6ガロン)の消費に
相当する。 上記の穴を清浄にし、再度前記燃料混合物約
473(125ガロン)を装入して2分間燃焼させ
た。前述した本発明の消火溶液を用いた場合消火
は28秒で終了した。この溶液はブースターポンプ
ライン1系統を用いて約87/分(23ガロン/
分)の速度で火炎に放射した。従つて、消火に要
した消火溶液の量は約41.6(11ガロン)にすぎ
ず、これは濃厚液消費量約0.08(0.022ガロ
ン)に相当する。 実施例 4 各山がタイヤ200本からなるタイヤの2つの山
にガソリンとモータオイルの混合物約19(5ガ
ロン)を用いて点火し、6分間燃焼させた。この
時間は極高熱を発生させかつ火炎を山全体に伝播
させるに充分であつた。第一の山に約1893
(500ガロン)ポンプ1基からブースターライン2
系統により淡水を約114/分(30ガロン/分)
の速度で放射した。タンクは8分で空になつた
が、火はなお鎮火しなかつた。 第二の山には、前述した本発明の消火溶液をブ
ースターライン1系統により約114/分(30ガ
ロン/分)の速度で放射したところ、火は2分で
完全に鎮火した。消火溶液の使用量はわずか約
227(60ガロン)であり、これは濃厚液消費量
約0.45(0.12ガロン)に相当する。 実施例 5 マグネシウム約6.8Kg(15ポンド)を木材約
36.3Kg(80ポンド)と共に点火し、消火前5.5分
間燃焼させた。水をホース1本から約114/分
(30ガロン/分)で放射したところ、消火に12分
を要した。 同様にして燃焼させたマグネシウム火炎に前述
した本発明の消火溶液を約87/分(23ガロン/
分)で放射したところ、過度の泡沫又はポンプの
キヤビテーシヨンを生ずることなく消火は2.5で
終了した。 実施例 6 本例は本発明による消火用組成物が水と比較し
て優れた冷却作用を有することを実証するもので
ある。各試験においてL.P.ガス約511(135ガロ
ン:約0.511m3)を用いた。このL.P.ガスは圧解
放時に2500倍に膨張して約1277.5m3の容積にな
る。約946(250ガロン)のL.P.ガスタンクをタ
ンクに燃焼用ガスを入口弁から供給して他端の出
口弁から漏出せしめるようにセツトした。燃焼用
ガスの温度は約1150℃(2100〓)に見積もり、試
験はタンクを消防夫が該入口弁及び出口弁を閉め
ることができる程度の約27〜52℃(80〜125〓)
の温度範囲に冷却するのにどの位の時間を要する
かを測定するものである。 第一の試験では、水を2本のホースラインから
それぞれ約473/分(125ガロン/分)の速度で
放水した。タンク及び弁の温度を約27〜52℃(80
〜125〓)に下げるのに220秒を要し、この冷却に
用いた水の量は約3312(875ガロン)であつ
た。 第二の試験では、別の約1277.5m3(135ガロ
ン)のガスを同様に点火し、約946(250ガロ
ン)のL.P.ガスタンクに通送した。前述した本発
明の濃厚液約3.785(1ガロン)をポンプの吸
水側で水約1893(500ガロン)と混合してタン
ク表面に約87/分(23ガロン/分)の速度で放
射したところ、タンクは29秒で約27〜52℃(80〜
125〓)の温度に冷却された。タンクの冷却に用
いられた消火溶液の量はわずか約41.6(11ガロ
ン)であり、これは濃厚液約0.08(0.022ガロ
ン)に相当する。 実施例 7 約1.8m×2.4m(6フイート×8フイート)の
穴に水を深さ10cm前後(数インチ)入れ、その上
層にガスオイル約57(15ガロン)を添加し、こ
れを点火して30秒間燃焼させた。これを6%フオ
ームノズルから約340/分(90ガロン/分)の
速度でポンプ送りした市販のAFFF製品を用いて
消火したところ、消火後に常態では安定の泡沫が
急速に消散した。消火に用いられた6%AFFF溶
液の量は約85(22.5ガロン)であり、これは
AFFF製品約5.1(1.35ガロン)の消費量に相
当する。 第二の試験では、同様にガスオイルを点火燃焼
させて、前述した本発明の濃厚液約3.785(1
ガロン)をポンプの吸水側で水約1893(500ガ
ロン)と混合した消火溶液を用いて消火を行なつ
たところ、14秒で鎮火した。この消火溶液の使用
量はきわめて少量の約20.4(5.4ガロン)であ
り、これは濃厚液約0.04(0.0108ガロン)に相
当する。 実施例 8 実施例3〜7で使用した消火剤組成物(濃厚
液)において非イオン表面活性剤を下記第表の
ものに代えた濃厚液を調製し、これらを水で該活
性剤の濃度0.2容量%を与えるように稀釈してポ
ンプの吸水側に供給使用した。いずれの場合にも
ポンプにキヤビテーシヨンを生ずることなく排水
ラインから円滑に放水することができた。 またこれらの組成物の使用によつて生成された
泡沫の膨張度を比較するためつぎの試験を行なつ
た。 供試溶液25mlを容量250mlのガラス栓付きメス
シリンダーに装入し、このシリンダーを直立させ
そして10秒間激しく振盪した。生成した泡沫を15
秒間放置した後、泡沫の容量(ml)を記録した。
泡沫膨張度は泡沫の全容量から25mlを差引き、残
りを25で割ることにより求めた。すなわちこの商
は供試溶液の単位量を超えて膨張した泡沫の容量
を示す。試験は約21℃(70〓)で行なつた。この
結果から供試試料間の相対的膨張度を求めるた
め、下記第表に示す本発明の供試試料のうち最
大の泡沫膨張を示したものを独断的に泡沫膨張係
数(foam expansion index,以下F.E.I.と略称
する)1.0と定め、これを基準として各試料のF.
E.I.を算出して第表に示す。
The present invention relates to a fire extinguishing composition and a fire extinguishing method using the same. In particular, the present invention relates to fire extinguishing solutions having improved fire extinguishing properties and maximizing the use of conventional fire extinguishing equipment. Conventional fire extinguishing compositions, which may contain various surfactants, do not achieve sufficient extinguishment within acceptable times or have sufficient cooling action to limit deadly smoke. For example, U.S. Pat. No. 3,912,647 discloses a fire extinguishing composition in which a highly concentrated surfactant is blended into a solvent and mixed with water to form a viscous substance. Solvents such as naphtha must be used to provide fluidity, and high concentrations of surfactant, above about 3%, do not meet typical fire suppression requirements. Fire extinguishing equipment and devices currently in common use do not adequately address the risk of catastrophic damage from large fires or the increased risk to firefighters. In recent years, new types of foam-forming compositions and mechanical equipment have become available for fire extinguishing, but again the fire extinguishing performance has not been significantly improved. For example, while extinguishing agents commonly known as aqueous film-forming foams are commonly applied to Type A or B fires, such foams and other foams provide rapid extinguishing and use of conventional pumping and drainage equipment. It has particular drawbacks regarding the means of application in the case. In a typical foam-forming concentrate, a separate concentrate containing a foam-forming agent, such as a fluorinated surfactant, is directed from a conventional centrifugal pump installed on a fire engine into one of a number of drainage lines. The metering device to obtain the desired concentration of foam-forming concentrate delivered from the supply tank to the drain line must be accurate enough to provide the desired concentration of foam-forming composition.
Also, a similar metering device and eductor must be provided for each drainage line.
These accessories substantially increase the cost of the fire extinguishing system and take up the useful space of the fire engine, and more importantly, such devices do not allow the extinguishing fluid to be pumped in order to reduce the pump pressure and pump capacity for the extinguishing fluid being discharged. Limit the distance that can be emitted. Other firefighting foam compositions are known that utilize as additives various nonionic surfactants that promote emulsification and reduce cost when used in combination with fluorinated surfactants, solvents, and foam stabilizers. be. Examples of such compositions that produce low expansion foams are shown in U.S. Pat.
It is described in specifications No. 3772195 and No. 4090967. The nonionic surfactants described in these patents are useful only in combination with fluorinated surfactants because they do not have sufficient wetting properties alone to wet the surface of combustible organic liquids. It is. Additionally, U.S. Pat. Nos. 3,541,010 and 3,578,590 describe foam compositions formed from mixtures of ethoxylated alkylphenols and solvents as fire extinguishing foams useful in extinguishing Type A and B fires. . The composition consists of a concentrate containing up to 30% water which requires the presence of a solvent to prevent gelling of the non-ionic ethoxylated alkyl phenol, which concentrate is present in the discharge stream from about 0.5% to 30% water.
A foam containing about 6% by volume of the nonionic active agent is formed. In any case, the foam composition as described above is added to the water stream only on the discharge side of the pump. When such foam compositions are added to the discharge stream on the intake side of the pump rather than on the discharge side, excessive foaming can occur causing cavitation of the pump and overall loss of output. Therefore, each foam drain line must be provided with its own metering and delivery device, which effectively limits the number of foam drain lines on the fire engine to only one for each pump. The need for separate dispensing and foam concentrate supplies for each drainage line from the pump is too costly and requires additional space that is not available. Also, the use of a single foam drainage line significantly limits the efficiency of the fire extinguishing system. Another factor considered important in achieving an ideal fire extinguishing system is the volume of extinguishing solution used for extinguishing the fire, which is limited to remote areas where water availability is limited to mobile supply tanks associated with pumping fire engines. It can be a critical element in certain places. Additionally, the use of smaller volumes of fire extinguishing fluid is critical to avoiding significant water damage commonly incurred by property owners during normal firefighting operations. The main object of the present invention is to provide a fire extinguishing composition and a fire extinguishing method that enable fire extinguishers to extinguish fires in a shorter time by making maximum use of conventional fire extinguishing equipment. Another object of the present invention is to provide a fire extinguishing concentrate that can be added to the suction side of a pump without excessive foaming or cavitation of the pump, thereby providing a fire extinguishing solution that is radiated onto the flame; Furthermore, it is an object of the present invention to provide a fire extinguishing solution containing very low concentrations of nonionic surfactants which makes it possible to extinguish fires of types A, B and D more efficiently and economically. The fire extinguishing composition according to the present invention has a cloud point of itself when used alone, and a cloud point of the mixture of 20 to 100 °C (68 to 68 °C) when used in combination of two or more. 212〓) in an aqueous medium at a very low concentration in the range of 0.02 to 0.2% by volume. The fire extinguishing composition is prepared from a concentrated solution of the surfactant as a dilute aqueous solution. This concentrated liquid can be obtained on the fire extinguishing system and used as such without undue foam formation or pump cavitation, for example by adding it into the discharge stream on the suction side of a conventional discharge pump. The cloud point of the surfactant used in the present invention (if two or more types are used in combination, the cloud point of the mixture)
It is a nonionic surfactant whose temperature ranges from 20 to 100°C. In the present invention, the cloud point is ASTMD2042-65
Measurements were made on a 1% by weight nonionic surfactant solution in 100 ml of water according to the test method specified in . If the cloud point of the surfactant (individually or as a mixture) is lower than 20°C, it will not be sufficiently soluble and will lack usefulness. On the other hand, if the cloud point is higher than 100℃, the fire extinguishing ability will be lost. However, even if each surfactant has a cloud point outside of this specified range, two surfactants that when mixed exhibit a cloud point within this range.
Mixtures of more than one nonionic surfactant are sufficiently soluble to be effective for the fire suppression purposes of the present invention. Principal examples of nonionic surfactants useful in the present invention are those obtained by condensation of ethylene oxide or propylene oxide with various compounds, especially side chain-containing phenolic compounds. Such compounds include fatty acids such as stearic acid, lauric acid, palmitic acid, etc.; aliphatic alcohols such as mannite, sorbitol, etc.; primary and secondary fatty acids such as ethanol, isopropanol, isobutanol, etc.
or tertiary alcohols; aliphatic amines or amides and alkylolamines. molecular weight
Also useful as nonionic surfactants are block copolymers of ethylene oxide and propylene oxide having a molecular weight of 1,100 to 15,500 and oxypropyleneoxyethylene polyols derived from ethylene diamine. Particularly useful surfactants are those obtained by the condensation of ethylene oxide and alkylphenols, where the alkyl group of the alkylphenol can have from 1 to 12 carbon atoms, but especially from 6 to 9 carbon atoms. Preferred are octyl, nonyl and the like. A mixture of two or more surfactants has a cloud point of 20~
It is selected to be water soluble within a range of 100°C and to produce a minimum amount of foam. In surfactants derived from ethylene oxide, the amount of ethylene oxide molecules can be up to 40 mol%, preferably from 1.5 to 9 mol%. In the practice of this invention, the concentrate contains less than 30% by weight nonionic surfactant, preferably 20-29% by weight. If the amount of surfactant is greater than this and its concentration in water is higher than 30% by weight, the surfactant will form a gel and become unsuitable for use. It is therefore necessary to keep the concentration of nonionic surfactant in the concentrate at a maximum of 30% by weight. It is this concentrate that is used by firefighters in storage or supply tanks on the fire engine. This concentrate, when kept in a storage tank at a concentration of up to 30% by weight, can be used as is to provide the fire extinguishing composition of the present invention when required. From this storage tank, the concentrate is fed to the suction side of a conventional pump whose respective drain lines direct a liquid stream toward the flame. Of course, this concentrated liquid can be mixed with water in advance and then sent to the suction side of the pump and discharged from the drain line. The concentrated liquid does not need to be sent to the nozzle of the drainage line, but can be introduced into the water suction side of the pump. This allows mixing and preparation of the extinguishing solution to take place on the suction side of the pump, so that the flow of extinguishing solution from each drain line is distributed without excessive foaming or cavitation that could cause overheating and damage to the pump. can be done. Also,
The previously required delivery and metering devices on each drainage line are avoided, resulting in improved costs and space on the fire engine. Therefore, fire pumps are not limited to a single type of drainage line, but are rich in diversity. To use the concentrates described above, conventional delivery or metering means are provided on the suction side of a conventional pump. The capacity of the pump installed in a normal pump fire engine is approximately 946/
min, 1893/min, 2839/min, 3785/min, 4732
/min, 5678/min (250, 500, 750, 1000, 1250, respectively in gallons per minute (gpm))
(equivalent to 1500gpm) etc. Capacity approx. 5678/
(1500 gpm) pumps typically have approximately 946
There are six drainage lines approximately 6.4 cm (2.5 inches) each with a capacity of 250 gpm (250 gpm). Traditionally, when a delivery device is used to deliver fire extinguishing composition to a drainage line, the pipe size is approximately 3.8 cm.
(1.5 inches) [capacity approximately 379/min (100 gpm)]. The provision of a dispensing metering device therefore reduces the versatility of the pump fire engine, since only this special line is useful for foam-forming spraying. In contrast, according to the present invention, it takes approximately 6.4 cm to emit extinguishing solution at a given pump volume.
Six (2.5 inch) drainage lines can be used. A fire extinguishing solution is prepared from the above concentrate such that the fire extinguishing solution contains 0.02 to 0.2% by volume of nonionic surfactant. Preferably the extinguishing solution contains a surfactant.
Contained at a concentration of 0.03-0.1% by volume. The concentration of surfactant in the extinguishing solution is important in extinguishing the fire very quickly. It has been found that by using surfactants at the low concentrations defined in this invention, a fire can be completely surrounded or shielded by the cloud resulting from the extinguishing solution. Thus, according to the invention, fires are extinguished more quickly than with conventional fire extinguishing compositions. A low concentration of nonionic surfactant in the extinguishing solution is also important because it allows the extinguishing solution to be pumped without excessive foam or pump cavitation that would damage the pump or limit the reach of the water flow. be. To demonstrate the importance of keeping surfactant concentrations below 0.2% by volume, approximately 1893 (500
A comparative test was conducted for use in a fire engine (Gal. gallon).
The nonionic surfactant used was ethylene oxide 9
The molar proportion of nonylphenol ethoxylate was added to the water stream at a concentration of 0.3% by volume of nonionic surfactant, and the mixture was delivered through a standard nozzle set at about 227/min (60 cal/min). When this mixture was introduced into the water suction side of the pump and emitted, the maximum distance was approximately 16.8 ~
18.3 m (55-60 ft), whereas using compositions of the present invention containing up to 0.2% by volume of freshwater or nonionic surfactants in water, the radiation distance was approximately 25 m (82 ft). It was hot. The results reveal that when conventional compositions are used, foam is generated, which causes a decrease in pump pressure that shortens the radiation distance. In order to further clarify the differences between the compositions of the present invention and conventional compositions, the above nonionic surfactant solution is discharged by means of a conventional bypass valve by closing the hose nozzle, as is done in some cases when extinguishing a fire. When circulated into the feed tank, the pump began to overheat in 3 minutes due to foam generated in the pump. The pump also became unusable due to cavitation. Reopen the nozzle and increase the flow rate to approximately 227
/ minute (60 gallons/minute), about 7.6 ~
A discharge of water of 12.2 m (25 to 40 ft) occurred, but
This water discharge was not continuous, but tended to occur suddenly. After all the water was drained from the tank, the tank gauge still showed full, but when the tank was inspected, it was filled with fine bubbles (this is why the tank gauge was showing full). . This foam impeded operations and made it impossible to refill the tanks. Next, the present invention will be further explained with reference to Examples, but the present invention is not limited to these Examples in any way. Examples 1 and 2 were made by weight of 74% water, 21.0% nonylphenoxy polyethoxyethanol with 9 mol% ethylene oxide, and 3 mol% ethylene oxide.
and a condensate of 9 mol% ethylene oxide, a nonylphenoxypolyethoxyethanol block polymer [molecular weight 2900, cloud point approx.
58°C (136〓)] from a concentrate consisting of 4.0%, 0.8% of a corrosion inhibitor such as sodium nitrate and boric acid amide (boric acid + monoethanolamine) and 0.2% of a biocide such as sodium 1-hydroxypyridine-2-thione. A fire extinguishing composition of the present invention was prepared. The corrosion inhibitor may be any conventional one, but suitably from 0.1 to 3% by weight of sodium nitrate to boric acid amide in a weight ratio of 2:1 to 1:2. Biocides can be blended in an amount of 0.001 to 1% by weight, including sodium omazine (trade name of 1-hydroxypyridine-2-thione sodium salt manufactured by Olin), Proxel CRL (1,2-benzine manufactured by ICI, USA), (trade name of isothiazolin-3-one), Kathon 886 (manufactured by Rohm and Haas)
-Chloro-2-methyl-4-isothiazoline-3
(trade name of a mixture of 8.6% of 1-one and 2.6% of 2-methyl-4-isothiazolin-3-one) or the like may be blended. The cloud point of the above mixture was approximately 58.5°C (137°). Approximately 3.785 (1 gallon) of the above concentrate was premixed with approximately 1893 (500 gallons) of water before being pumped into the suction side of the pump. This gives 0.2% by volume of the concentrate or 0.05% by volume of non-ionic surfactant in the fire extinguishing fluid. Example 1 No. 2 was inserted into a test hole approximately 3 m (10 ft) in diameter.
Pour approximately 340 (90 gallons) of fuel oil, ignite it, and
Burned for minutes. This flame was extinguished using a commercially available wetting agent in extinguishing water, and two pump lines with a water discharge rate of approximately 379/min (100 gallons/min) were used to extinguish the flame.
The fire was extinguished in 90 seconds. Water and wetting agent consumption is approximately 1136
(300 gallons). Clean the above hole and use No. 2 fuel oil again with approximately 340 ml of No. 2 fuel oil.
(90 gallons) and burned for 2 minutes. When using the above-mentioned fire extinguishing solution of the present invention, extinguishing
It finished in 20 seconds. This solution is pumped at approximately 87/min (23 gal/min) using one booster pump line.
of the flame without excessive foaming or cavitation. The amount of extinguishing solution required to extinguish the fire was approximately 30.3 (8 gallons), which corresponds to approximately 0.06 (0.016 gallons) of concentrate consumption. Example 2 Using wood as combustible material, approximately 45.4 kg of wood
(100 lbs.) was treated with gasoline, ignited, and allowed to burn for 4 minutes before being extinguished. The wood fire was extinguished using a booster pump line with a water discharge rate of approximately 87/min (23 gallons/min) and took 72 seconds to extinguish. Another pile of 100 pounds of wood was similarly ignited and allowed to burn for 4 minutes. When a fire was extinguished by a booster pump line using water containing the fire extinguishing solution of the present invention described above at a water discharge rate of approximately 87 gallons per minute (23 gallons per minute), the fire was extinguished in 11 seconds without excessive foam or cavitation. did. Examples 3-7 below all contain 74% water by weight.
%, 23.5% nonylphenoxypolyethyleneoxyethanol with 9 mol% ethylene oxide, 1.5% nonylphenoxypolyethyleneoxyethanol with 1.5 mol% ethylene oxide, and Examples 1-
The same corrosion inhibitor and 1% biocide concentrate as in Example 2 were tested. The cloud point of this concentrate is approximately 33
It was ℃ (92〓). Approximately 3.785 (1 gallon) of this concentrate was premixed with approximately 1893 (500 gallons) of water to form a fire extinguishing solution containing 0.05% by volume surfactant before being delivered to the intake side of the pump. Example 3 50/50 fuel mixture of No. 2 fuel oil and gasoline approx.
473 (125 gallons) was ignited in a 12 foot diameter test hole and allowed to burn for 2 minutes. This was first done using commercially available AFFF foam.
When the fire was extinguished using a foam nozzle, the 6%
The fire was extinguished in 31 seconds by discharging AFFF solution at approximately 379/min (100 gal/min). Thus, the amount of AFFF solution used is approximately 193 (51 gallons), which corresponds to the consumption of approximately 11.6 (30.6 gallons) of AFFF foam. Clean the hole above and reapply the fuel mixture to approx.
473 (125 gallons) was charged and burned for 2 minutes. When the above-mentioned fire extinguishing solution of the present invention was used, extinguishing was completed in 28 seconds. This solution is pumped at approximately 87/min (23 gal/min) using one booster pump line.
minutes) into the flame. Therefore, the amount of extinguishing solution required to extinguish the fire was only about 41.6 (11 gallons), which corresponds to a concentrate consumption of about 0.08 (0.022 gallons). Example 4 Two piles of tires, each consisting of 200 tires, were ignited with approximately 5 gallons of a mixture of gasoline and motor oil and allowed to burn for 6 minutes. This time was sufficient to generate extremely high heat and spread the flames throughout the mountain. About 1893 to the first mountain
(500 gallons) 1 pump to 2 booster lines
Approximately 114/min (30 gallons/min) of fresh water depending on the system
radiated at a speed of The tank was emptied in eight minutes, but the fire was still not extinguished. The fire extinguishing solution of the present invention described above was applied to the second mountain at a rate of approximately 114 gallons per minute (30 gallons per minute) through one booster line, and the fire was completely extinguished in two minutes. The amount of extinguishing solution used is only approx.
227 (60 gallons), which corresponds to approximately 0.45 (0.12 gallons) of concentrate consumption. Example 5 Approximately 6.8 Kg (15 lbs) of magnesium was
It ignited with 36.3 Kg (80 lb) and burned for 5.5 minutes before being extinguished. When water was sprayed from a single hose at a rate of approximately 114/min (30 gallons/min), it took 12 minutes to extinguish the fire. The extinguishing solution of the present invention described above was applied to a similarly burned magnesium flame at approximately 87/min (23 gallons/min).
The fire was extinguished in 2.5 minutes without excessive foam or pump cavitation. Example 6 This example demonstrates that the fire extinguishing composition according to the invention has a superior cooling effect compared to water. Approximately 511 (135 gallons: approximately 0.511 m 3 ) of LP gas was used in each test. When the pressure is released, this LP gas expands 2500 times to a volume of approximately 1277.5m 3 . An approximately 946 (250 gallon) LP gas tank was set up so that combustion gas was supplied to the tank through an inlet valve and leaked through an outlet valve at the other end. The temperature of the combustion gas is estimated to be about 1150℃ (2100〓), and the test temperature is about 27~52℃ (80~125〓), which is enough to allow firefighters to close the inlet and outlet valves.
It measures how much time it takes to cool down to a temperature range of . In the first test, water was discharged from two hose lines each at a rate of approximately 473 gallons per minute (125 gallons per minute). The temperature of the tank and valve should be approximately 27-52℃ (80℃).
It took 220 seconds to cool down to ~125〓), and the amount of water used for this cooling was about 3312 (875 gallons). In a second test, another 135 gallons of gas was similarly ignited and delivered to a 250 gallon LP gas tank. When about 3.785 (1 gallon) of the concentrated liquid of the present invention described above was mixed with about 1893 (500 gallons) of water on the suction side of the pump and irradiated onto the tank surface at a rate of about 87/min (23 gallon/min), The tank heats up approximately 27-52℃ (80-52℃) in 29 seconds.
125〓). The amount of fire extinguishing solution used to cool the tank was only about 41.6 (11 gallons), which is equivalent to about 0.08 (0.022 gallons) of concentrate. Example 7 Fill a hole approximately 1.8 m x 2.4 m (6 ft x 8 ft) with water to a depth of approximately 10 cm (several inches), add about 57 (15 gallons) of gas oil to the top layer, and ignite it. and burned for 30 seconds. This was extinguished using a commercially available AFFF product pumped through a 6% foam nozzle at a rate of approximately 340 g/min (90 gal/min), and the normally stable foam rapidly dissipated after the extinguishment. The amount of 6% AFFF solution used to extinguish the fire was approximately 85 (22.5 gallons), which is
Equivalent to consumption of approximately 5.1 (1.35 gallons) of AFFF product. In the second test, gas oil was similarly ignited and burned, and the concentrated liquid of the present invention described above was tested at approximately 3.785% (1
The fire was extinguished in 14 seconds using a fire extinguishing solution mixed with approximately 1,893 gallons (500 gallons) of water on the water intake side of the pump. The amount of fire extinguishing solution used is very small, about 20.4 (5.4 gallons), which is equivalent to about 0.04 (0.0108 gallons) of concentrate. Example 8 A concentrated liquid was prepared by replacing the nonionic surfactant with those in the table below in the fire extinguishing agent compositions (concentrated liquid) used in Examples 3 to 7, and these were mixed with water to a concentration of the active agent of 0.2. It was diluted to give % by volume and used by supplying it to the water suction side of the pump. In either case, water could be discharged smoothly from the drainage line without causing cavitation in the pump. The following tests were also conducted to compare the degree of expansion of foam produced by the use of these compositions. 25 ml of the test solution was placed in a 250 ml graduated cylinder with a glass stopper, the cylinder was held upright and shaken vigorously for 10 seconds. 15 bubbles generated
After standing for seconds, the volume of foam (ml) was recorded.
The degree of foam expansion was determined by subtracting 25 ml from the total foam volume and dividing the remaining amount by 25. That is, this quotient indicates the volume of foam expanded beyond a unit amount of the test solution. The test was conducted at approximately 21°C (70°C). In order to determine the relative degree of expansion between the test samples from this result, we arbitrarily determined the foam expansion index (hereinafter referred to as foam expansion index) of the test samples of the present invention shown in the table below that showed the maximum foam expansion. FEI (abbreviated as FEI) is set as 1.0, and the F of each sample is determined based on this value.
The EI was calculated and shown in the table.

【表】【table】

【表】 実施例 9 実施例3〜7で使用した濃厚液から調製した
種々の活性剤濃度をもつ本発明の組成物のF.F.I.
を実施例8の試験法に従つて既知の非イオン表面
活性剤を用いた泡沫消火剤のF.E.I.と比較した。
その結果を第表に示す。なお第表中比較に用
いた濃厚液はいずれも重量によりアルキルフエノ
ールエトキシレート40%、エチレングリコールモ
ノブチルエーテル30%及び水30%の組成をもつも
のである。
Table: Example 9 FFI of compositions of the invention with various active agent concentrations prepared from the concentrates used in Examples 3-7.
was compared to the FEI of a fire extinguishing foam using a known nonionic surfactant according to the test method of Example 8.
The results are shown in Table 1. The concentrated liquids used for comparison in Table 1 all have a composition by weight of 40% alkyl phenol ethoxylate, 30% ethylene glycol monobutyl ether, and 30% water.

【表】【table】

【表】 前記実施例で用いた本発明による消火溶液の少
容量はそれが大量の水を用いることなくより離れ
た場所において有用であることを実証するもので
ある。更に、消火溶液の使用量が少なくてすむこ
とは従来の消火溶液に比べて水による損害が著し
く低減されることを示す。 前記の試験及び他の消火状況を考察すると理論
的に次のことがいえる。すなわち、本発明の消火
用組成物は高温において可燃性混合物上に容易に
気化される非イオン表面活性剤のフイルムを形成
し、この蒸気は水が水蒸気になる場合より何倍も
膨張し、この気化が火炎の周囲に雲を発生させ、
空気の支燃性を阻止することによつて火炎を迅速
に遮蔽する。この消火性蒸気の発生現象は可燃表
面に強力な冷却作用を及ぼす。 例えば、本発明の組成物により消火された燃焼
物は消火直後に手に持つことができるが、水及び
より高濃度の他の湿潤剤を用いて消火された燃焼
物は消火後でも熱くて触れることができない。本
発明の組成物を用いることにより、消防夫は種類
A,B又はDの火災が発生した建物中にすばやく
侵入して最少量の水により火災を迅速に鎮火する
ことができる。 本発明による組成物の効力は泡沫に依存しない
ことは明らかである。実際に、本発明の消火剤と
しての有用性を立証するために消泡剤を用いて試
験した。本発明の消火溶液は安価であり、多量の
水で希釈して使用され、濃厚液の形で腐食なく保
存でき、使用前に水と混合して腐食危険性のない
消火液とすることができ、また硬水、軟水、海水
もしくは塩水で希釈でき、しかも従来のものに比
して実質的に改良された消火能力を発揮する。
TABLE The small volume of fire extinguishing solution according to the invention used in the examples above demonstrates that it is useful in more remote locations without using large amounts of water. Additionally, the reduced amount of fire extinguishing solution used represents a significant reduction in water damage compared to conventional fire extinguishing solutions. Considering the above test and other fire extinguishing situations, the following can be said theoretically. That is, the fire extinguishing compositions of the present invention form a film of non-ionic surfactant that is readily vaporized on the flammable mixture at high temperatures, and this vapor expands many times more than when water becomes steam and this Vaporization creates clouds around the flame,
Quickly suppresses flames by inhibiting combustibility of air. This phenomenon of generation of extinguishing vapor exerts a strong cooling effect on combustible surfaces. For example, combustion materials extinguished with the compositions of the present invention can be held in the hand immediately after extinguishing, whereas combustion materials extinguished with water and other higher concentrations of wetting agents are hot to the touch even after extinguishing. I can't. By using the compositions of the present invention, firefighters can quickly enter a building with a Type A, B or D fire and quickly extinguish the fire with a minimum amount of water. It is clear that the efficacy of the compositions according to the invention does not depend on foam. In fact, a test was conducted using an antifoaming agent to prove the usefulness of the present invention as a fire extinguishing agent. The fire extinguishing solution of the present invention is inexpensive, can be used diluted with large amounts of water, can be stored in concentrated liquid form without corrosion, and can be mixed with water before use to form a fire extinguishing fluid without the risk of corrosion. It can also be diluted with hard water, soft water, seawater or salt water, yet provides substantially improved fire extinguishing performance compared to conventional products.

Claims (1)

【特許請求の範囲】 1 単独で使用する場合にはそれ自体の曇り点
が、一方2種又はそれ以上を組合せて使用する場
合にはその混合物の曇り点が20〜100℃の範囲に
ある1種又はそれ以上の非イオン表面活性剤を水
性媒質中に0.02〜0.2容量%の濃度で配合してな
る、過度の泡沫を生成せずに液体流として放射さ
れる消火用組成物。 2 表面活性剤がアルキルフエノキシポリオキシ
エチレンエタノール類から選んだものである特許
請求の範囲第1項記載の組成物。 3 アルキルフエノキシ基がノニルフエノールで
あり、ポリオキシエチレン基がエチレン基がエチ
レンエキシドを1.5〜40モル含有するものである
特許請求の範囲第2項記載の組成物。 4 非イオン表面活性剤の他に殺生剤及び腐食防
止剤を含有する特許請求の範囲第1〜3項にいず
れかに記載の組成物。 5 単独で使用する場合にはそれ自体の曇り点
が、一方2種又はそれ以上を組合せて使用する場
合にはその混合物の曇り点が20〜100℃の範囲に
ある1種又はそれ以上の非イオン表面活性剤及び
該表面活性剤の濃厚液中の濃度が30重量%以下と
なる充分な量の水を含有する濃厚液を調製し、こ
の濃厚液を水と混合して該表面活性剤を0.2容量
%以下含む消火溶液を調製し、この消火溶液を泡
沫を過度に生じない少くとも一つの液体流として
火炎に放射することを特徴とする消火方法。 6 表面活性剤がエトキシル化アルコール類から
選んだものである特許請求の範囲第5項記載の消
火方法。 7 表面活性剤がエチレンオキシドを1.5〜40モ
ル%含むノニルフエノキシポリオキシエチレンエ
タノールである特許請求の範囲第5項記載の消火
方法。 8 濃厚液と水との混合を放射用ポンプの吸水側
で行なう特許請求の範囲第5項記載の消火方法。 9 表面活性剤を消火溶液中に0.02〜0.2容量%
の量で存在させる特許請求の範囲第5〜8項のい
ずれかに記載の消火方法。 10 消火溶液をポンプに通水し、これを複数の
排水ラインからポンプにキヤビテーシヨンを生ぜ
ずに放射する特許請求の範囲第5〜8項のいずれ
かに記載の消火方法。 11 表面活性剤を消火溶液中に0.03〜0.1容量
%の濃度で存在させる特許請求の範囲第10項記
載の消火方法。 12 濃厚液が表面活性剤を20〜29重量%含有す
る特許請求の範囲第5〜8項のいずれかに記載の
消火方法。 13 消火溶液が表面活性剤を0.03〜0.1容量%
の濃度で含有しかつ濃厚液が表面活性剤を20〜29
重量%含有する特許請求の範囲第5〜8項のいず
れかに記載の消火方法。 14 濃厚液が表面活性剤を20〜29重量%含有す
る特許請求の範囲第10項記載の消火方法。 15 表面活性剤がエチレンオキシドとプロピレ
ンオキシドとの分子量1100〜15500であるブロツ
ク共重合体又はエチレンジアミンから誘導された
オキシプロピレンオキシエチレンポリオールであ
る特許請求の範囲第5項記載の消火方法。
[Claims] 1. When used alone, the cloud point of itself is in the range of 20 to 100°C, while when used in combination of two or more, the cloud point of the mixture is in the range of 20 to 100°C. A fire extinguishing composition comprising one or more nonionic surfactants in an aqueous medium at a concentration of 0.02 to 0.2% by volume, which is delivered as a liquid stream without excessive foam formation. 2. The composition according to claim 1, wherein the surfactant is selected from alkyl phenoxy polyoxyethylene ethanols. 3. The composition according to claim 2, wherein the alkylphenoxy group is nonylphenol, and the polyoxyethylene group is an ethylene group containing 1.5 to 40 moles of ethylene oxide. 4. The composition according to any one of claims 1 to 3, which contains a biocide and a corrosion inhibitor in addition to the nonionic surfactant. 5 When used alone, the cloud point of itself is within the range of 20 to 100 °C, while when used in combination of two or more, the cloud point of the mixture is in the range of 20 to 100 ° C. A concentrated liquid containing an ionic surfactant and a sufficient amount of water such that the concentration of the surfactant in the concentrated liquid is 30% by weight or less is prepared, and this concentrated liquid is mixed with water to dissolve the surfactant. A method for extinguishing fires, characterized in that an extinguishing solution containing not more than 0.2% by volume is prepared and this extinguishing solution is radiated onto the flame in at least one liquid stream that does not produce excessive foam. 6. The fire extinguishing method according to claim 5, wherein the surfactant is selected from ethoxylated alcohols. 7. The fire extinguishing method according to claim 5, wherein the surfactant is nonylphenoxy polyoxyethylene ethanol containing 1.5 to 40 mol% of ethylene oxide. 8. The fire extinguishing method according to claim 5, wherein the concentrated liquid and water are mixed on the water suction side of the radiation pump. 9 Surfactant at 0.02-0.2% by volume in fire extinguishing solution
The fire extinguishing method according to any one of claims 5 to 8, wherein the fire extinguishing method is present in an amount of . 10. The fire extinguishing method according to any one of claims 5 to 8, wherein a fire extinguishing solution is passed through a pump and is radiated from a plurality of drainage lines to the pump without cavitation. 11. The fire extinguishing method according to claim 10, wherein the surfactant is present in the fire extinguishing solution at a concentration of 0.03 to 0.1% by volume. 12. The fire extinguishing method according to any one of claims 5 to 8, wherein the concentrated liquid contains 20 to 29% by weight of a surfactant. 13 Extinguishing solution contains 0.03-0.1% by volume of surfactant
The concentrated liquid contains surfactants at a concentration of 20 to 29
The fire extinguishing method according to any one of claims 5 to 8, containing % by weight. 14. The fire extinguishing method according to claim 10, wherein the concentrated liquid contains 20 to 29% by weight of a surfactant. 15. The fire extinguishing method according to claim 5, wherein the surfactant is a block copolymer of ethylene oxide and propylene oxide having a molecular weight of 1,100 to 15,500 or an oxypropyleneoxyethylene polyol derived from ethylenediamine.
JP12734480A 1980-03-12 1980-09-16 Composition for fire extinguishing and fire extinguishing method Granted JPS56130167A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US12958480A 1980-03-12 1980-03-12

Publications (2)

Publication Number Publication Date
JPS56130167A JPS56130167A (en) 1981-10-12
JPS6147103B2 true JPS6147103B2 (en) 1986-10-17

Family

ID=22440672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12734480A Granted JPS56130167A (en) 1980-03-12 1980-09-16 Composition for fire extinguishing and fire extinguishing method

Country Status (4)

Country Link
JP (1) JPS56130167A (en)
DE (1) DE3100158A1 (en)
FR (1) FR2477891A1 (en)
GB (1) GB2071492B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0143133A1 (en) * 1983-11-25 1985-06-05 Fire Out Enterprises Company, Inc. Cooling heated metal surfaces
DE3525684A1 (en) * 1985-07-18 1986-10-30 TOJ Produktions- und Handelsgesellschft für technische Produkte mbH, 8466 Bruck Firefighting composition for spraying
DE3681455D1 (en) * 1986-07-18 1991-10-17 Doeka Feuerloeschgeraete AGENT, ESPECIALLY FOR FIRE FIGHTING AND IMPREGNATION.
GB2331457B (en) * 1997-11-12 2001-07-04 Graviner Ltd Kidde Fire or explosion suppressants and methods
DE102014206228A1 (en) * 2014-04-02 2015-10-08 Robert Bosch Gmbh Extinguishing media for electronic or electrical devices
CN104190040B (en) * 2014-09-09 2018-07-10 西安新竹防灾救生设备有限公司 A kind of ABC ultra-fine dry powder extinguishing agents and preparation method thereof
WO2020033255A1 (en) 2018-08-09 2020-02-13 Carrier Corporation Fire extinguishing composition and method of making

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3457172A (en) * 1966-08-10 1969-07-22 Flame Out Inc Flame extinguishing composition
US3578590A (en) * 1968-08-19 1971-05-11 Jefferson Chem Co Inc Fire-extinguishing composition comprising ethoxylated alkylphenol and ethylene glycol mono lower alkyl ether

Also Published As

Publication number Publication date
FR2477891A1 (en) 1981-09-18
GB2071492B (en) 1984-12-12
DE3100158A1 (en) 1981-11-19
GB2071492A (en) 1981-09-23
JPS56130167A (en) 1981-10-12
FR2477891B1 (en) 1984-06-22

Similar Documents

Publication Publication Date Title
US4398605A (en) Fire extinguishing composition and method
EP0774279B1 (en) Water additive and method for fire prevention and fire extinguishing
US3475333A (en) Fire extinguishing
US11577110B2 (en) Post-foaming composition for protection against fire and/or heat
US9675828B1 (en) Methods and compositions for producing foam
WO2003043526A1 (en) Fluorosurfactant-free foam fire-extinguisher
KR20210082445A (en) digestive composition
RU2290240C1 (en) Fire-extinguishing composition
US3457172A (en) Flame extinguishing composition
US20230302315A1 (en) Apparatus for diluting and applying firefighting chemical
US6231778B1 (en) Aqueous foaming fire extinguishing composition
JPS6147103B2 (en)
US8257607B1 (en) Fluorocarbon-free, environmentally friendly, natural product-based, and safe fire extinguishing agent
WO1984001302A1 (en) Foam fire-extinguishing composition
JPH06218075A (en) Water-based fire extinguishing agent
JP2008518735A (en) How to prevent and / or extinguish a fire
US3578590A (en) Fire-extinguishing composition comprising ethoxylated alkylphenol and ethylene glycol mono lower alkyl ether
US4476687A (en) Cooling heated metal surfaces
KR101724583B1 (en) fire-fighting foam composition comprising 1% synthetic surfactant applicable compressed air foam system(CAFS) and general foam extinguishing system
US6814880B1 (en) Water based liquid foam extinguishing formulation
Senecal Halon replacement chemicals: Perspectives on the alternatives
US4031961A (en) Oil and gasoline fire extinguishing composition
RU2223804C1 (en) Multipurpose aqueous fire-extinguishing composition
KR102068668B1 (en) High foaming compositions for foam extinguishing agents used in compressed air foam system
JPS643505B2 (en)