JPS6147058A - Flat surface type fluorescent lamp - Google Patents

Flat surface type fluorescent lamp

Info

Publication number
JPS6147058A
JPS6147058A JP16800084A JP16800084A JPS6147058A JP S6147058 A JPS6147058 A JP S6147058A JP 16800084 A JP16800084 A JP 16800084A JP 16800084 A JP16800084 A JP 16800084A JP S6147058 A JPS6147058 A JP S6147058A
Authority
JP
Japan
Prior art keywords
liquid crystal
coating
film
sealing glass
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16800084A
Other languages
Japanese (ja)
Inventor
Masaru Yamano
山野 大
Katsuhiro Hinotani
日野谷 勝弘
Hiroshi Hayama
葉山 啓
Shunichi Kishimoto
俊一 岸本
Yasuo Funatsukuri
康夫 船造
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP16800084A priority Critical patent/JPS6147058A/en
Publication of JPS6147058A publication Critical patent/JPS6147058A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • H01J61/35Vessels; Containers provided with coatings on the walls thereof; Selection of materials for the coatings

Abstract

PURPOSE:To prevent the noise resulting from an AC electric field and plasma discharge from being leaked externally without deteriorating luminous intensity by forming a conductive coating almost on all surfaces and using a transparent conductive coating as the conductive coating formed on a surface in which at least a liquid crystal display panel is opposed. CONSTITUTION:A transparent conductive coating 10 made of ITO is formed on an upper sealing glass 1 top surface (luminous surface) and a carbon coating 11 is formed on the surfaces other than the upper sealing glass 1 top surface and lower sealing glass 2. However, the insulation between an electrode lead and a shielded coating is maintained without applying any shielding coating to the preset sections in the vicinity of the electrode leads 4 and 4. An aluminum coating may be formed instead of the carbon coating 11. As a result, the noise resulting from the AC electric field applied between electrodes 3 and 3 and the noise resulting from the plasma at discharge can be prevented from being mixed in another circuit that is arranged in the vicinity, for example, a liquid crystal TV circuit, etc.

Description

【発明の詳細な説明】 (イ) 産業上の利用分野 本発明は液晶TV等の液晶表示装置のバックライトに好
適な平面型螢光灯に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a flat fluorescent lamp suitable for backlighting of liquid crystal display devices such as liquid crystal TVs.

(ロ)従来の技術 近年、液晶TV等のフラットディスプレイ装置の開発が
進められている。
(b) Prior Art In recent years, development of flat display devices such as liquid crystal TVs has been progressing.

上述の液晶TVに用いる液晶パネルは自らは発光しない
ため、何らかの光源をバックライトとして用い液晶を透
過せしめて、所定の輝度を得ることが必要である。
Since the liquid crystal panel used in the above-mentioned liquid crystal TV does not emit light by itself, it is necessary to use some kind of light source as a backlight to transmit light through the liquid crystal to obtain a predetermined brightness.

上述のバックライトとしては従来、例えば実開昭54−
111985号公報に示される様な平面型螢光灯が用い
られている。
The above-mentioned backlight has conventionally been used, for example,
A flat fluorescent lamp as shown in Japanese Patent No. 111985 is used.

上述の様な平面型螢光灯は、通常交流電源により駆動さ
れ、電極間には交流電界が印加される。
A flat fluorescent lamp as described above is usually driven by an AC power source, and an AC electric field is applied between the electrodes.

このため、交流によるノイズが発生する。更に、プラズ
マ放電によるノイズも発生する。
Therefore, noise due to alternating current is generated. Furthermore, noise is also generated due to plasma discharge.

よって、近接した液晶パネルを配する液晶TVにおいて
、例えば、TV用の回路にこのノイズが混入し画像を乱
すおそれがある。
Therefore, in a liquid crystal TV in which liquid crystal panels are arranged close to each other, for example, this noise may enter the TV circuit and disturb the image.

(ハ) 発明が解決しようとする問題点本発明は上記欠
点を除去すべくなされたものであり、液晶表示パネルを
近接配置してなる液晶TV用のバックライトとして用い
てもテレビ用回路等にノイズが混入することのない平面
型螢光灯を提供するものである。
(c) Problems to be Solved by the Invention The present invention has been made to eliminate the above-mentioned drawbacks, and even if it is used as a backlight for a liquid crystal TV in which liquid crystal display panels are arranged close to each other, it will not work in a television circuit, etc. To provide a flat fluorescent lamp that does not introduce noise.

(ニ)  問題点を解決するための手段本発明は平面型
螢光灯の略全面に導電膜を形成すると共に、少なくとも
液晶表示パネルが対向する面に形成する前記導電膜を透
明導電膜とした構成である。
(d) Means for Solving the Problems The present invention forms a conductive film on substantially the entire surface of a flat fluorescent lamp, and at least the conductive film formed on the surface facing the liquid crystal display panel is a transparent conductive film. It is the composition.

(ホ)作用 上述の構成により、平面型螢光灯の発光面における発光
強度を劣化させることなくシールドでき、交流電界及び
プラズマ放電により発生するノイズが外部↓こ漏洩する
のを防止する。
(E) Function The above-described configuration allows shielding without degrading the luminous intensity at the light emitting surface of the flat fluorescent lamp, and prevents noise generated by the alternating current electric field and plasma discharge from leaking to the outside.

(へ) 実施例 以下、図面に従い本発明の一実施例を説明する。(f) Examples An embodiment of the present invention will be described below with reference to the drawings.

第2図は本実施例における平面型螢光灯の分解斜視図、
第3図(イ)(ロ)()1)は夫々、同平面図、正面図
及び側面図、第4図(イ)(口〉は夫々、第3図(イ)
のA−A’断面図及びB−B’断面図である。
Figure 2 is an exploded perspective view of the flat fluorescent lamp in this embodiment;
Figure 3 (a), (b), and () 1) are respectively the same plan view, front view, and side view, and Figure 4 (a) and (mouth) are respectively, Figure 3 (a).
FIG. 2 is an AA' cross-sectional view and a BB' cross-sectional view.

図中、(1バ2)は伏皿状の上封止ガラス及び平板状の
下封止ガラスであり、夫々、その縦横比が3:4の長方
形に形成されている。前記上封止ガラスの長手方向の一
側部には排気管(1a)が形成跡れている。
In the figure, (1 bar 2) denotes an upper sealing glass in the form of a dish and a lower sealing glass in the form of a flat plate, each of which is formed into a rectangular shape with an aspect ratio of 3:4. An exhaust pipe (1a) is formed on one side of the upper sealing glass in the longitudinal direction.

(3)(3)はステンレス或いは鉄−ニッケル合金より
成り互いに対向する一対の電極である。この一対の電極
は夫々、後壁(3a)、この後壁に対して弾性を有する
一対の側壁(3b)(3c)、土壁(3d)及び下壁(
36)より構成され、その横断面及び縦断面は夫々コ字
状になっている。また、上下壁(3dバ3e)の突出量
(21)よりも側壁(3b)(3c)の突出量(j22
)の方が大きくされている0本実施例では11−511
11%  j!2−”7m1lトシi:Ir%ル1尚、
本実施例における電極形式はその陰極が冷陰極である冷
陰極型である。
(3) (3) is a pair of electrodes made of stainless steel or iron-nickel alloy and facing each other. These pair of electrodes are respectively connected to a rear wall (3a), a pair of side walls (3b) (3c) having elasticity with respect to the rear wall, a soil wall (3d), and a bottom wall (3a).
36), and its cross section and longitudinal section are each U-shaped. Also, the amount of protrusion (j22) of the side walls (3b) (3c) is greater than the amount of protrusion (21) of the upper and lower walls (3d bar 3e).
) is larger than 11-511 in this example.
11% j! 2-"7ml toshii:Ir%le1 furthermore,
The electrode type in this embodiment is a cold cathode type in which the cathode is a cold cathode.

更に前記一対の電極の各側壁のうち前記排気管(1a)
が位置する方の側M(3b)(3b)には夫々、電極と
同材質の平板状の電極リード(4)(4)がスポット溶
接により電気的及び機械的に結合されている。この電極
リードは途中で略90″弯曲されて前記上下壁(3d 
)(3e )と平行に電極(3)の側方に延出しており
、前記湾曲部分は弾性を備えている。
Further, among the side walls of the pair of electrodes, the exhaust pipe (1a)
Flat electrode leads (4) (4) made of the same material as the electrodes are electrically and mechanically connected to the sides M (3b) (3b) on which the electrodes are located, respectively, by spot welding. This electrode lead is curved approximately 90 inches in the middle to form the upper and lower walls (3d
)(3e) and extends laterally of the electrode (3), and the curved portion is elastic.

一方、前記側壁のうち他方の側壁(3c)(3c)にも
夫々、電極と同材質の平板状の電極支持板(5)(5)
がスポット溶接により機械的に結合されている。この電
極支持板も途中で略90°弯曲されて前記上下!!!(
3d)(3e)と平行に電極(3)の側方に延出してお
り前記弯曲部分は前記電極リードと同様に弾性を、備え
ている。
On the other hand, the other side walls (3c) (3c) are also provided with flat electrode support plates (5) (5) made of the same material as the electrodes.
are mechanically connected by spot welding. This electrode support plate is also curved approximately 90 degrees in the middle, and the above-mentioned upper and lower! ! ! (
3d) The curved portion extends to the side of the electrode (3) in parallel with (3e) and has elasticity similar to the electrode lead.

ここで、前記電極リードと電極支持板との差異は、電極
リードが電極(3)の機械的支持を為すと共に電気的に
結合されることにより、外部への電気的リードとなって
いるのに対し、電極支持板は電極(3)の単に機械的支
持を為す点である。
Here, the difference between the electrode lead and the electrode support plate is that the electrode lead mechanically supports the electrode (3) and is electrically connected to the electrode (3), thereby serving as an electrical lead to the outside. On the other hand, the electrode support plate merely provides mechanical support for the electrode (3).

そして、前記上下封止ガラス(1バ2)はその間縁部に
おいて、ガラスフリット等のシール材(6)にて熱溶着
され密閉されている。このとき、前記電極リード及び電
極支持板も同時に前記上下封止ガラス間に熱溶着され前
記封止ガラスに対して固定されている。そして、電極支
持板(5バ5)は前記上下封止ガラス端部から突出して
いないが、電極リード(4)(4>は前記端部から更に
外部へ突出している。
The upper and lower sealing glasses (1 bar 2) are hermetically sealed at their edges by heat welding with a sealing material (6) such as glass frit. At this time, the electrode lead and the electrode support plate are also thermally welded between the upper and lower sealing glasses and fixed to the sealing glass at the same time. Although the electrode support plate (5 bar 5) does not protrude from the ends of the upper and lower sealing glasses, the electrode leads (4) (4>) further protrude from the ends to the outside.

すなわち、前記電極は前記電極リード及び電極支持板に
より弾性的に支持されている。
That is, the electrode is elastically supported by the electrode lead and the electrode support plate.

よって、熱溶着後に前記上下封止ガラス及び電極が常温
に下った際、両者の熱膨張係数の違いにより、前記電極
の支持部すなわち、前記上下封止ガラス、と電極リード
及び電極支持板との接合部に発生する機械的な応力は前
記電極が弾性的に支持されることにより吸収されるため
前記上下封止ガラスに割れが生ずることがない。
Therefore, when the upper and lower sealing glasses and the electrodes cool down to room temperature after thermal welding, due to the difference in thermal expansion coefficient between the two, the supporting parts of the electrodes, that is, the upper and lower sealing glasses, and the electrode leads and electrode support plates Since the mechanical stress generated at the joint is absorbed by the elastic support of the electrodes, no cracks occur in the upper and lower sealing glasses.

更に、前記上下封止ガラス内には排気管(1a)より空
気が排気された後水銀及びアルゴンガスが流入される。
Furthermore, after air is exhausted from the exhaust pipe (1a), mercury and argon gas are introduced into the upper and lower sealing glasses.

そして、排気管先端が熱溶着により密閉される。Then, the tip of the exhaust pipe is sealed by heat welding.

また、下封止ガラス(2)の内面には第4図(イ)(ロ
)に示す如く、反射膜(7)が形成跡れている。
Further, on the inner surface of the lower sealing glass (2), there are traces of formation of a reflective film (7), as shown in FIGS. 4(a) and 4(b).

この反射膜(7)はアルミニウムを真空蒸着したもので
薄膜状に形成されている。
This reflective film (7) is made of vacuum-deposited aluminum and is formed into a thin film.

更に、上下封止ガラス(1)(2)の夫々内面には螢光
膜(8)(9)が後述する所定膜厚で形成されている。
Furthermore, fluorescent films (8) and (9) are formed on the inner surfaces of the upper and lower sealing glasses (1) and (2), respectively, to a predetermined thickness to be described later.

尚、螢光膜(8)は上封止ガラス内面に直接塗布形成さ
れているが、螢光膜(9)は下封止ガラス上に形成され
た前記反射膜上に塗布形成される。
The fluorescent film (8) is formed by coating directly on the inner surface of the upper sealing glass, but the fluorescent film (9) is formed by coating on the reflective film formed on the lower sealing glass.

よって、下封止ガラス(2)を透過して射出されようと
する光は全て反射膜(7)で上方へ反射され、上封止ガ
ラス(1)のみを透過して外部へ効率良く射出される。
Therefore, all the light that is about to be emitted after passing through the lower sealing glass (2) is reflected upward by the reflective film (7), and is efficiently emitted outside by passing only through the upper sealing glass (1). Ru.

次に前記螢光膜(8)(9)の膜厚設定について説明す
−る。
Next, the thickness setting of the fluorescent films (8) and (9) will be explained.

第5図は下封止ガラス上の螢光膜の透過率と発光強度と
の関係を示す図である。実験は反射膜を形成したガラス
基板i;螢光膜を形成し、この螢光膜に所定強度の紫外
線を照射したときの反射光の強度を測定することにより
行ない、横軸は螢光膜の透過率(透過率と膜厚との逆比
例関係にある)、縦軸は最高発光強度を1とした相対発
光強度を示す。
FIG. 5 is a diagram showing the relationship between the transmittance of the fluorescent film on the lower sealing glass and the emission intensity. The experiment was carried out by forming a fluorescent film on a glass substrate i on which a reflective film was formed, and measuring the intensity of the reflected light when the fluorescent film was irradiated with ultraviolet rays of a predetermined intensity, and the horizontal axis represents the intensity of the fluorescent film. Transmittance (transmittance and film thickness are in an inversely proportional relationship), and the vertical axis indicates relative luminous intensity with the maximum luminous intensity being 1.

同図より明らかな如く、透過率50%以上のときは膜厚
と発光強度は略比例しているが、透過率50%以下のと
きは、膜厚を大きくしても発光強度は略飽和状態となり
略一定となることがわかる。
As is clear from the figure, when the transmittance is 50% or more, the film thickness and the emission intensity are approximately proportional, but when the transmittance is 50% or less, the emission intensity is almost saturated even if the film thickness is increased. It can be seen that it remains approximately constant.

よって、下封止ガラス(2)上の螢光膜(9)は透過率
が50%以下となる様な膜厚に設定するのが望ましい。
Therefore, it is desirable to set the thickness of the fluorescent film (9) on the lower sealing glass (2) so that the transmittance is 50% or less.

次に第6図は上封止ガラス上の螢光膜の透過率と発光強
度との関係を示す図である。実験はガラス基板上に形成
した螢光膜に所定強度の紫外線を照射したときの透過光
を測定することにより行な  −い、横軸は螢光膜の透
過率、縦軸は透過率100%すなわち螢光膜無塗布状態
の発光強度を1とした相対発光強度を示す。
Next, FIG. 6 is a diagram showing the relationship between the transmittance of the fluorescent film on the upper sealing glass and the emission intensity. The experiment was conducted by measuring the transmitted light when a fluorescent film formed on a glass substrate was irradiated with ultraviolet rays of a predetermined intensity, with the horizontal axis representing the transmittance of the fluorescent film and the vertical axis representing the transmittance of 100%. In other words, the relative luminescence intensity is shown, with the luminescence intensity in a state where no fluorescent film is coated as 1.

同図より明らかな如く、膜厚をあまり大きくすると発光
強度が急激に減少する。すなわち、透過率15%以下で
は相対発光強度が1以下となってしまう、これは、透過
率が比較的高いときには、膜厚を大きくすることによる
透過率の減少の割合よりも螢光膜自体の発光の増加の割
合の方が多いため透過光の発光強度は膜厚の増加により
増加するが、透過率が比較的低いときは、所定値よりも
膜厚を大きくすると螢光膜自体の発光量が飽和してしま
うために透過光の強度は透過率の減少に大きく左右され
てしまうためと考えられる。
As is clear from the figure, when the film thickness is increased too much, the emission intensity decreases rapidly. In other words, when the transmittance is 15% or less, the relative emission intensity becomes 1 or less. This is because when the transmittance is relatively high, the decrease in transmittance due to increasing the film thickness is more than the decrease in the transmittance due to the phosphor film itself. Since the rate of increase in luminescence is higher, the luminescence intensity of transmitted light increases as the film thickness increases.However, when the transmittance is relatively low, increasing the film thickness beyond a predetermined value will increase the luminescence intensity of the phosphor film itself. This is thought to be because the intensity of the transmitted light is greatly influenced by the decrease in transmittance because it becomes saturated.

よって上封止ガラス(1)上の螢光膜(8)は透過率が
15%以上となる様な膜厚が望ましい。
Therefore, the thickness of the fluorescent film (8) on the upper sealing glass (1) is preferably such that the transmittance is 15% or more.

以上の様な理由から本実施例においては上下封止ガラス
(1)(2’)上の螢光膜(8バ9)を夫々、その透過
率が39.8%及び18.2%となる様な膜厚に設定す
ることにより良好な発光強度が得られた。
For the above reasons, in this example, the transmittance of the fluorescent films (8 and 9) on the upper and lower sealing glasses (1) and (2') is 39.8% and 18.2%, respectively. Good emission intensity was obtained by setting various film thicknesses.

更に本実施例の平面型螢光灯は第4図(イ)(ロ)に示
す如く、上下封止ガラス(1)(2)の外側の略全域に
わたってシールド膜が施されている。すなわち、上封止
ガラス(1)天面(発光面)にはITOよりなる透明導
電膜(10ンが形成されると共に、前記上封止ガラスの
天面以外及び下封止ガラス(2)にはカーボン膜(11
)が形成されている。尚、電極リード(4)(4)近傍
の所定部分はいかなるシールド膜をも施さずに、電極リ
ードとシールド膜との間の絶縁を維持することが必要で
ある。
Furthermore, as shown in FIGS. 4(a) and 4(b), the flat fluorescent lamp of this embodiment is provided with a shield film over substantially the entire outside of the upper and lower sealing glasses (1) and (2). That is, a transparent conductive film (10 mm) made of ITO is formed on the top surface (light emitting surface) of the upper sealing glass (1), and a transparent conductive film (10 mm) made of ITO is formed on the top surface of the upper sealing glass (1) and on the lower sealing glass (2). is carbon film (11
) is formed. Note that it is necessary to maintain insulation between the electrode lead and the shield film without applying any shield film to a predetermined portion near the electrode lead (4) (4).

尚、前記カーボン膜の代わりにアルミニウム膜を形成す
るようにしても良い。
Note that an aluminum film may be formed instead of the carbon film.

また、このアルミニウム膜を用いることにより、前記ア
ルミニウムの反射膜(7)の機能を兼用することが可能
となるため、この反射膜(7)を省略することもできる
Further, by using this aluminum film, it is possible to double the function of the aluminum reflective film (7), so this reflective film (7) can be omitted.

上述の如く形成したシールド膜により、電極(−j)(
a)間に印加される交流電界により発生するノイズ及び
放電時のプラズマによるノイズが近接配置される他の回
路、例えば液晶TV用回路等へ混入することを防止でき
る。
With the shield film formed as described above, the electrode (-j) (
a) It is possible to prevent noise generated by an alternating current electric field applied therebetween and noise caused by plasma during discharge from entering other circuits disposed in close proximity, such as a liquid crystal TV circuit.

次に上述の平面型螢光灯を3インチ液晶TVに用いた実
施例を第1図(イ)(ロ)に従い説明する。
Next, an embodiment in which the above-described flat type fluorescent lamp is used in a 3-inch liquid crystal TV will be described with reference to FIGS. 1(A) and 1(B).

<100>ハjulのアモルファスシリフンTPTアク
ティブマトリクスを用いた液晶TV用の液晶パネルであ
り、(101)(102)は一対の上下ガラス基板、(
103)(103)はこの一対のガラス基板の外側に配
された一対の偏向板、(104>は前記下ガラス基板上
に形成されたカラーフィルタ、(105)(106)は
夫々前記上ガラス基板(101)及びカラーフィルタ(
104)上に形成された表示電極及び対向電極、(10
7)(107)は前記表示電極及び対向電極上に形成さ
れた配向膜、(108)(10g>は前記上下ガラス基
板を所定間隔をもって結合するスペーサ、(109)は
前記上下ガラス基板内に封入されたツイストネマティッ
ク液晶である。
<100> This is a liquid crystal panel for a liquid crystal TV using Hajul's amorphous silicon TPT active matrix, (101) and (102) are a pair of upper and lower glass substrates, (
103) (103) is a pair of deflection plates arranged on the outside of the pair of glass substrates, (104> is a color filter formed on the lower glass substrate, and (105) and (106) are the upper glass substrates, respectively. (101) and color filter (
104) Display electrode and counter electrode formed on (10
7) (107) is an alignment film formed on the display electrode and the counter electrode, (108) (10g> is a spacer that connects the upper and lower glass substrates at a predetermined interval, and (109) is sealed in the upper and lower glass substrates. It is a twisted nematic liquid crystal.

そして、この液晶パネル(100)は平面型費光灯の前
記上封止ガラス(1)の天面上に接着材等により接合さ
れている。
The liquid crystal panel (100) is bonded to the top surface of the upper sealing glass (1) of the flat lamp using an adhesive or the like.

次に、前記液晶パネルの表示部と、平面型費光灯の発光
部との太ききの関係について説明する。
Next, the relationship between the display section of the liquid crystal panel and the light emitting section of the flat lamp will be explained.

第1図(イ)において、液晶パネル(100)の有効表
示部(第1図(ロ)二点鎖線図示)の横の長きを81平
面型螢光灯の有効発光部(第1図(ロ)一点鎖線図示)
の横の長tb、前記有効表示部と有効発光部との高感の
差をd、0点から見た視野角をθとすると、前記有効表
示部の端部まで均一な輝度を得るための条件式は b≧@ + 2 dtan(θ/2)・・・・・・・・
・・・・・(1)となる。
In FIG. 1(a), the horizontal length of the effective display area of the liquid crystal panel (100) (indicated by the two-dot chain line in FIG. )Dotted chain line shown)
Assuming that the horizontal length tb of The conditional expression is b≧@+2 dtan (θ/2).
...(1).

すなわち、有効表示部と有効発光部との間には所定の高
さの差dが生ずるため所定の視野角θで見た場合、(1
)式を満たす平面型費光灯でないと液晶パネル(100
)の端部が暗くなってしまう。
That is, since there is a predetermined height difference d between the effective display section and the effective light emitting section, when viewed at a predetermined viewing angle θ, (1
) If the flat lamp does not satisfy the formula, the liquid crystal panel (100
) ends become dark.

よって、本実施例における液晶TVも(1)式を満たす
べく液晶パネル(100)の有効表示部より平面型費光
灯の有効発光部の方が大きく構成されている。
Therefore, in order to satisfy the formula (1) in the liquid crystal TV in this embodiment, the effective light emitting part of the flat type overhead light is larger than the effective display part of the liquid crystal panel (100).

そこで、本実施例ではθ■90°、d−5−とし、 b −a + 10tan45°−a + lQmmと
している。すなわち、平面型費光灯の有効発光部の横の
長さを液晶パネル(100)の有効表示部の横の長さよ
りもiom+長くしている。また同様の理由により前記
有効発光部の縦の長さも前記有効表示部の縦の長きより
も所定量長くしている。
Therefore, in this embodiment, θ■90°, d-5-, and b-a+10tan45°-a+lQmm. That is, the horizontal length of the effective light-emitting part of the flat lamp is made longer than the horizontal length of the effective display part of the liquid crystal panel (100) by iom+. Further, for the same reason, the vertical length of the effective light emitting section is also made longer than the vertical length of the effective display section by a predetermined amount.

よって本実施例における液晶TVは画面端部が暗くなる
という不都合は生じない。
Therefore, the liquid crystal TV in this embodiment does not have the disadvantage that the edges of the screen become dark.

(ト) 発明の効果 上述の如く本発明に依れば平面型費光灯の発光面におけ
る発光強度を劣化させることなく、交流電界及びプラズ
マ放電により発生するノイズが外部に漏洩するのを妨止
できるので液晶パネルを近接配置した液晶TVのバック
ライトとして用いてもTV用回路等へノイズが混入する
ことがなく良好な画像を得ることができる。
(G) Effects of the Invention As described above, according to the present invention, the noise generated by the alternating current electric field and plasma discharge can be prevented from leaking to the outside without deteriorating the luminous intensity on the light emitting surface of the flat lamp. Therefore, even when used as a backlight for a liquid crystal TV in which a liquid crystal panel is arranged close to each other, it is possible to obtain a good image without introducing noise into the TV circuit or the like.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はいずれも本発明の一実施例に関し、第1図(イ)
は液晶TVの模式的横断面図、第1図(ロ)は同平面図
、第2図は本実施例に用いる平面型費光灯の分解斜視図
、第3図(イ)(ロ)(ハ)は夫々、同平面図、正面図
及び側面図、第4図(イ)く口)は夫々、同縦断面図及
び横断面図、第5図及び第6図は夫々、螢光膜の透過率
と発光強度との関係を示す図である。 (1)(2)・・・上下封止ガラス、(3)(3)・・
・電極、(4)(4)・・・電極リード、(5)(5)
・・・電極支持板、(7)・・・反射膜、(8)(9)
・・・螢光膜、(10)・・・透明導電膜、(11)・
・・カーボン膜、(100)・・・液晶パネル。
The drawings all relate to one embodiment of the present invention, and FIG.
1 is a schematic cross-sectional view of the LCD TV, FIG. 1 (B) is a plan view thereof, FIG. (c) is a plan view, a front view and a side view of the same, FIG. FIG. 3 is a diagram showing the relationship between transmittance and emission intensity. (1)(2)...Top and bottom sealing glass, (3)(3)...
・Electrode, (4) (4)... Electrode lead, (5) (5)
... Electrode support plate, (7) ... Reflection film, (8) (9)
... Fluorescent film, (10) ... Transparent conductive film, (11)
...Carbon film, (100)...Liquid crystal panel.

Claims (1)

【特許請求の範囲】[Claims] (1)液晶表示パネルに対向配置され一対の略平板上の
封止ガラスにより構成される平面型螢光灯において、略
全面に導電膜を形成すると共に、少なくとも前記液晶表
示パネルが対向する面に形成する前記導電膜を透明導電
膜とすることを特徴とする平面型螢光灯。
(1) In a flat fluorescent lamp composed of a pair of substantially flat plates of sealing glass disposed opposite to a liquid crystal display panel, a conductive film is formed on substantially the entire surface, and at least on the surface facing the liquid crystal display panel. A flat fluorescent lamp characterized in that the conductive film to be formed is a transparent conductive film.
JP16800084A 1984-08-10 1984-08-10 Flat surface type fluorescent lamp Pending JPS6147058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16800084A JPS6147058A (en) 1984-08-10 1984-08-10 Flat surface type fluorescent lamp

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16800084A JPS6147058A (en) 1984-08-10 1984-08-10 Flat surface type fluorescent lamp

Publications (1)

Publication Number Publication Date
JPS6147058A true JPS6147058A (en) 1986-03-07

Family

ID=15859940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16800084A Pending JPS6147058A (en) 1984-08-10 1984-08-10 Flat surface type fluorescent lamp

Country Status (1)

Country Link
JP (1) JPS6147058A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389821A (en) * 1986-10-03 1988-04-20 Toshiba Corp Transmission type liquid crystal display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116069A (en) * 1975-04-03 1976-10-13 Teijin Ltd Rapid start type fluorescent lamp
JPS5490877A (en) * 1978-10-31 1979-07-18 Stanley Electric Co Ltd Flat fluorescent lamp and method of manufacturing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116069A (en) * 1975-04-03 1976-10-13 Teijin Ltd Rapid start type fluorescent lamp
JPS5490877A (en) * 1978-10-31 1979-07-18 Stanley Electric Co Ltd Flat fluorescent lamp and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6389821A (en) * 1986-10-03 1988-04-20 Toshiba Corp Transmission type liquid crystal display device

Similar Documents

Publication Publication Date Title
KR100769191B1 (en) flat fluorescent lamp and method for manufacturing the same
US6771330B2 (en) Flat panel fluorescent lamp having high luminance
KR101183418B1 (en) External Electrode Florescent Lamp And Backlight Unit Of Liquid Crtstal Display Device
JPH0552024B2 (en)
JPS6147058A (en) Flat surface type fluorescent lamp
US20060255714A1 (en) Flat fluorscent lamp and backlight unit having the same
KR101002312B1 (en) methode for forming external electrode of external electrode fluorescent lamp
JPS63232255A (en) Plane-type fluorescent lamp
JP2000182565A (en) Flat fluorescent lamp, liquid crystal display using same and manufacture thereof
JPS6147050A (en) Plate-type fluorescent lamp
US20060152130A1 (en) Flat fluorescent lamp, backlight assembly and liquid crystal display device having the same
KR101157289B1 (en) Backlight assembly and liquid crystal display having the same
JPS6146973A (en) Liquid crystal display unit
JPS6147059A (en) Flat surface type fluorescent lamp
KR100760934B1 (en) Flat luminescence lamp and method for manufacturing the same
US7903202B2 (en) Liquid crystal display device
KR101150200B1 (en) Fluorescent lamp comprising prism pattern on the surface and liquid crystal display module using the same
TW200820305A (en) Surface light source, method of driving the same, and backlight unit having the same
KR100447237B1 (en) Method for insulation electrode back light of liquid crystal display device
JPS617559A (en) Plate-type fluorescent lamp
JP2006114248A (en) Planar discharge light emitting element and glass substrate for it
KR101002345B1 (en) The back light of the liquid crystal display device
JP2003031182A (en) Flat discharge tube
JPH0747791Y2 (en) Flat fluorescent lamp
JPS63232261A (en) Plane type fluorescent lamp