JPS6147047A - Method of analyzing crystalline tissue of sample - Google Patents

Method of analyzing crystalline tissue of sample

Info

Publication number
JPS6147047A
JPS6147047A JP16911684A JP16911684A JPS6147047A JP S6147047 A JPS6147047 A JP S6147047A JP 16911684 A JP16911684 A JP 16911684A JP 16911684 A JP16911684 A JP 16911684A JP S6147047 A JPS6147047 A JP S6147047A
Authority
JP
Japan
Prior art keywords
sample
electron beam
electron
amount
scanning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16911684A
Other languages
Japanese (ja)
Inventor
Shojiro Tagata
田形 昭次郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP16911684A priority Critical patent/JPS6147047A/en
Publication of JPS6147047A publication Critical patent/JPS6147047A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/26Electron or ion microscopes; Electron or ion diffraction tubes
    • H01J37/295Electron or ion diffraction tubes
    • H01J37/2955Electron or ion diffraction tubes using scanning ray

Abstract

PURPOSE:To analyze the crystalline tissue of the sample by scanning an electron beam with a given incidence angle over the sample surface by installing an additional deflecting coil near the deflecting coil located in the middle between the convergent lens and the objective. CONSTITUTION:An additional deflecting coil 4 is installed near a deflecting coil 3 located in the middle between a convergent lens 2 and an objective 5 to scan an electron beam with a given incidence angle over the surface of a sample 7 divided into many picture elements by means of a digital scanning power supply 12. And, the amount of electrons reflected by the sample surface is detected by a reflected electron detector 6. After a reflected electron signal is amplified by an image signal amplifier 9, the amount of the amplified signal is digitized by means of an A/D converter 13. Then the thus obtained digitized value is stored as image information in a memory, a floppy disk 14, a hard disk 15, etc. installed in a CPU11 synchrnously with shifting of the address of the picture element performed by a digital scanning power supply 12. Accordingly, thus digitized values are classified into several stages according to the display program and the crystalline particle information for each color of picture elements is displayed on a color displayer 17.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、一定の電子線入射角ををしたまま試料の表面
上を電子ビームにより面走査する試料結晶性組織の分析
方法に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for analyzing the crystalline structure of a sample in which the surface of the sample is scanned by an electron beam while maintaining a constant electron beam incidence angle. .

〔従来の技術〕[Conventional technology]

結晶構造を有する物質は種々存在するが、その結晶構造
を分析するには、xlIA回折法や電子線回折法が採用
されている。
There are various substances that have crystal structures, and xlIA diffraction and electron beam diffraction are used to analyze their crystal structures.

(発明が解決しようとする問題点〕 しかしながら、例えばX線回折法による場合には、試料
上の分析場所はX線照射領域が広く微小部の回折が困難
であり、さらに、分析場所は目視、光学顕!鏡等での観
察によるため結晶粒の透過形電子顕微鏡像や走査形電子
顕微鏡像のような分析と合わせた観察ができないという
問題がある。また、電子線回折法による場合には、結晶
粒の透過形電子顕微鏡像や走査形電子顕微鏡像のような
分析と合わせた観察を行うことは可能であるが、透過形
電子顕微鏡像等から逆に試料上の各場所(各結晶粒)が
どのような結晶構造であるかを、叉どの場所とどの場所
が同性格の結晶能であるかをデータ・ディスプレイ処理
することができないという問題がある0本発明は、上記
問題点の解決を図るものであり、試料の結晶構造を容易
に分析することが可能な試料結晶性組線の分析方法を提
供することを目的とするものである。
(Problems to be Solved by the Invention) However, when using X-ray diffraction, for example, the analysis location on the sample has a wide X-ray irradiation area, making it difficult to diffract microscopic parts. Since observation is performed using an optical microscope, etc., there is a problem in that it is not possible to perform observations in conjunction with analyzes such as transmission electron microscopy images or scanning electron microscopy images of crystal grains.Furthermore, when using electron beam diffraction, Although it is possible to perform observation in conjunction with analysis such as transmission electron microscopy images and scanning electron microscopy images of crystal grains, it is possible to conduct observations in combination with analysis such as transmission electron microscopy images and scanning electron microscopy images of crystal grains. There is a problem in that it is not possible to process the data display to determine what kind of crystal structure the crystal structure has and which locations have the same crystallinity.The present invention aims to solve the above-mentioned problems. It is an object of the present invention to provide a method for analyzing sample crystallinity lines, which makes it possible to easily analyze the crystal structure of a sample.

〔問題点を解決するための手段〕 そのために本発明の試料結晶性組織の分析方法け、電子
銃からの電子線を収束レンズにより対物レンズの上方焦
点位置に収束させ、対物レンズにより試料面に平行ビー
ムとして照射する電子顕微鏡を使って試料の結晶性組織
を分析する試料結晶性組織の分析方法であって、収束レ
ンズと対物レンズとの中間に位置する偏向コイルに一定
の電子線入射角を有したまま試料の表面上を電子ビーム
走査するための追加偏向コイルを設け、試料上を一定の
電子線入射角を育したまま多数の画素にわけ電子ビーム
により面走査して反射電子量を検出し、該反射電子量を
数値化して試料の結晶組織を分析することを特徴とする
ものである。
[Means for Solving the Problems] For this purpose, the method for analyzing the crystalline structure of a sample according to the present invention focuses an electron beam from an electron gun on the upper focal point of an objective lens using a converging lens, and A method for analyzing the crystalline structure of a sample using an electron microscope that emits parallel beams, in which a constant electron beam incidence angle is applied to a deflection coil located between a converging lens and an objective lens. An additional deflection coil is installed to scan the electron beam over the surface of the sample while holding the sample, and the amount of reflected electrons is detected by dividing the sample into many pixels while maintaining a constant electron beam incidence angle and scanning the surface with the electron beam. The method is characterized in that the amount of reflected electrons is quantified to analyze the crystal structure of the sample.

〔作用〕[Effect]

本発明の試料結晶性組織の分析方法では、追加偏向コイ
ルにより一定の電子線入射角を有したまま試料の表面上
を電子ビーム走査して反射電子量を検出し、さらに数値
化してレベル分けするため、結晶粒の格子間隔の違いや
、結晶粒の結晶方向の違い等に対応した反射電子信号を
得ることができる。従って、これを色分は疑似カラー表
示することにより、結晶粒を認識することができ、また
、これと試料上の照射点を移動せず入射角のみを変化し
て電子線を照射して得られるエレクトロン・チャンネリ
ング・パターン情報を合わせて表示することによって、
結晶粒の認識と結晶構造の分析を行うことができる。
In the method of analyzing the crystalline structure of a sample according to the present invention, the electron beam is scanned over the surface of the sample while maintaining a constant electron beam incidence angle using an additional deflection coil, the amount of reflected electrons is detected, and the amount is further digitized and classified into levels. Therefore, reflected electron signals corresponding to differences in the lattice spacing of crystal grains, differences in crystal orientation of crystal grains, etc. can be obtained. Therefore, the crystal grains can be recognized by displaying them in pseudo-color, and by irradiating the sample with an electron beam by changing only the incident angle without moving the irradiation point on the sample. By displaying the electron channeling pattern information
Capable of recognizing crystal grains and analyzing crystal structure.

〔実施例〕〔Example〕

以下、実施例を図面を参照しつつ説明する。 Examples will be described below with reference to the drawings.

第1図は本発明の1実施例システム構成を示す図、第2
図は各観察モードを説明する図である。
FIG. 1 is a diagram showing the system configuration of one embodiment of the present invention, and FIG.
The figure is a diagram explaining each observation mode.

図において、1は電子銃、2は収束レンズ、3は偏向コ
イル、4は追加偏向コイル、5は対物レンズ、6は反射
電子検出器、7は試料−8は偏向切換調整器、9は映像
信号増幅器、10は観察用CRT、11はcpu (中
央処理装置)、12はディジタル走査電源、13はA/
D変換器、14はフロッピィ・ディスク、15はハード
・ディスク、16はコンソール、17はカラー・ディス
プレイ、・18はフレーム・メモリをそれぞれ示してい
る。
In the figure, 1 is an electron gun, 2 is a converging lens, 3 is a deflection coil, 4 is an additional deflection coil, 5 is an objective lens, 6 is a backscattered electron detector, 7 is a sample, 8 is a deflection switching adjuster, and 9 is an image Signal amplifier, 10 is CRT for observation, 11 is CPU (central processing unit), 12 is digital scanning power supply, 13 is A/
A D converter, 14 a floppy disk, 15 a hard disk, 16 a console, 17 a color display, and 18 a frame memory.

第1図において、電子銃1からの電子線は、収束レンズ
2により対物レンズ5の上方焦点位置に収束され、対物
レンズ5により試料7面に平行ビームとして照射される
。その照射による反射電子量は、反射電子検出器6によ
り検出され、増幅器9で増幅された後観察用CRTIO
に送られ表示されると共に、A/D変換器13にも送ら
れる。A/D変換器13に送られた反射電子信号は、こ
こで数値化(ディジタル化)された後、CP Ullに
より処理されてCPυ11内蔵のメモリやフロッピィ・
ディスク14、ハード・ディスク15等に画像情報とし
て収納され、さらにはカラー・ディスプレイ17に擬似
カラー表示される。
In FIG. 1, an electron beam from an electron gun 1 is focused by a converging lens 2 onto the upper focal point of an objective lens 5, and is irradiated by the objective lens 5 onto the surface of a sample 7 as a parallel beam. The amount of backscattered electrons due to the irradiation is detected by a backscattered electron detector 6, and amplified by an amplifier 9.
The signal is sent to the A/D converter 13 for display and is also sent to the A/D converter 13. The reflected electron signal sent to the A/D converter 13 is digitized here, then processed by the CP Ull and sent to the built-in memory or floppy disk of the CPυ11.
The information is stored as image information on the disk 14, hard disk 15, etc., and is further displayed in pseudo color on the color display 17.

本発明は、電子Igi徽鏡において収束レンズ2と対物
レンズ5との中間に位置する偏向コイル3に、第1図図
示の如く、追加偏向コイル4を設け、この追加偏向コイ
ル4により一定の電子線入射角を有したまま試料の表面
上を電子ビーム走査して得た画像情報と従来より行って
いるECP情報とをもとに試料の結晶組織の分析を行う
ようにしたものである。即ち、追加偏向コイル4を設け
ることにより、第2図1m1図示の如きエレクトロン・
チャンネリング・パターン・モード<ECPモード)、
第2図Ib1V!J示の如き入射一定角面走査モード、
及び第2図(C1図示の如き走査電子顕微鏡像モード(
38Mモード)による電子ビームの偏向モードが実現で
きる。
The present invention provides an additional deflection coil 4 to the deflection coil 3 located between the converging lens 2 and the objective lens 5 in the electronic Igi mirror, as shown in FIG. The crystal structure of the sample is analyzed based on the image information obtained by scanning the surface of the sample with an electron beam while maintaining the linear incidence angle and the conventional ECP information. That is, by providing the additional deflection coil 4, the electron beam as shown in FIG.
Channeling pattern mode <ECP mode),
Figure 2 Ib1V! Constant angle of incidence plane scanning mode as shown in J.
and FIG. 2 (scanning electron microscope image mode as shown in C1)
38M mode) can be realized.

入射一定角面走査モードでは、第2図(b1図示の如く
、一定の電子線入射角θを冑したまま試料7の表面上を
電子ビーム走査する。この電子ビーム走査では、デジタ
ル走査電源12により、試料7上を多数の画素(一般的
に1000 x 1000画素)に分け、て面走査し、
その面走査による反射電子量を反射電子検出器6により
検出する。そ0検出した反射電子信号は、映像信号増幅
器9で増幅された後、A/D変換器13(約8ビット;
256諧lIi〜10ピツ) i 102411調)で
信号量の数値化が行われる。この数値化された値は、C
PLIIIの制御のもと、デジタル走査電源12の画素
の番地移動(面走査)と同期して、CPUII内蔵のメ
モリやフロッピィ・ディスク14、ハード・ディスク1
5等に画像情報として収納される0M像情報では、試料
T上の同一結晶粒ごと、はぼ同一の数値が得られるが、
電子線入射角θを一定で面走査しているので、結晶粒の
格子間隔2dが異なっていたり、結晶粒の結晶方向が試
料7上で異なっていれば、それぞれに対応した反射電子
信号としてデータが収録される。
In the constant incident angle surface scanning mode, as shown in FIG. , the surface of the sample 7 is divided into a large number of pixels (generally 1000 x 1000 pixels), and the surface is scanned.
A backscattered electron detector 6 detects the amount of backscattered electrons resulting from the surface scanning. The detected backscattered electron signal is amplified by the video signal amplifier 9 and then sent to the A/D converter 13 (approximately 8 bits;
The signal amount is digitized in 102411 (102411 tone). This numerical value is C
Under the control of the PLIII, the internal memory of the CPU II, the floppy disk 14, and the hard disk 1 are synchronized with the pixel address movement (area scanning) of the digital scanning power supply 12.
In the 0M image information stored as image information in 5 etc., almost the same numerical values are obtained for each identical crystal grain on the sample T.
Since surface scanning is performed with the electron beam incident angle θ constant, if the lattice spacing 2d of the crystal grains differs or the crystal orientation of the crystal grains differs on the sample 7, the data will be reflected as the corresponding reflected electron signal. will be recorded.

照射ビームと試料結晶との関係は、 λ−2dsinθ λ:照射電子線の波長 (加速電圧により決まる) 2d:試料結晶の格子間隔 θ:電子線入射角 で表される。The relationship between the irradiation beam and the sample crystal is λ−2dsinθ λ: Wavelength of irradiated electron beam (Determined by accelerating voltage) 2d: Lattice spacing of sample crystal θ: Electron beam incidence angle It is expressed as

CPυ11内蔵のメモリやフロッピィ・ディスク14、
ハード・ディスク15等に収納されたデータは、CPυ
11により表示プログラムに従ってその数値が数段階に
分類されカラー・ディスプレイ17上に、。
CPυ11 built-in memory and floppy disk 14,
The data stored on the hard disk 15 etc. is CPυ
11, the numerical values are classified into several levels according to the display program and displayed on the color display 17.

色分けされて画素ごと結晶粒情報となって面分析表示さ
れる。
Color-coded crystal grain information for each pixel is displayed for surface analysis.

なお、反射電子信号の数値化された値をメモリに画像情
報として収納する場合、上記CPUII内蔵のメモリや
フロッピィ・ディスク14、ハード・ディスク15等の
メモリ類の他、フレーム・メモリー18を用いることに
より、直接面情報の取り込みと、カラー・ディスプレイ
17への表示を高速で行うこともできる。
In addition, when storing the digitized value of the reflected electron signal as image information in memory, the frame memory 18 can be used in addition to the above-mentioned CPU II built-in memory, floppy disk 14, hard disk 15, and other memories. Accordingly, it is also possible to directly capture surface information and display it on the color display 17 at high speed.

A/D変換してレベル分けするメリットは、色分は疑似
カラー表示することにより、よりはうきり結晶粒を認識
できることにある0例えば、試料7表面のわずかな部分
的汚れにより、同一結晶粒であっても反射電子量が異な
ったり、ビーム走査領域が大きい時、ビーム照射位置と
検出器の位置関係により走査面の中心と輸とでぽ、検出
器で受は取る信号量がわずかに異なったり、叉、試料7
面の傾き等により信号量が左右(上下)画面で傾斜をも
った値となったりする現象が見られるが、上述の処理を
施すことによって、ある値からある値までは同一数値幅
の中にレベル分けして一つのf(色指定)に変換出来る
ので、試料7の条件等を補正することが可能である。
The advantage of using A/D conversion to classify the levels is that by displaying the colors in pseudo-color, it is possible to more easily recognize crystal grains. However, when the amount of backscattered electrons differs or the beam scanning area is large, the amount of signals received at the center of the scanning plane and the center of the scanning plane and at the detector may differ slightly depending on the positional relationship between the beam irradiation position and the detector. Sample 7
There is a phenomenon where the signal amount becomes a sloped value on the left and right (top and bottom) screens due to the slope of the screen, etc., but by applying the processing described above, from one value to another value can be within the same numerical range. Since it can be divided into levels and converted into one f (color designation), it is possible to correct the conditions of the sample 7, etc.

一方、A/D変換器13を通さない信号は、観察用CR
TIOにより通常の反射電子走査像として観察できる。
On the other hand, the signal that does not pass through the A/D converter 13 is transmitted to the observation CR.
It can be observed as a normal backscattered electron scanning image using TIO.

ここでは、信号値の換算処理がなされないので、結晶粒
の格子間隔2dのわずかな変化を強調して観察すること
は困難である。しかし試料7上の結晶粒分布状態、位置
硼化には便利である。
Here, since signal value conversion processing is not performed, it is difficult to emphasize and observe slight changes in the lattice spacing 2d of crystal grains. However, it is convenient for controlling the crystal grain distribution state and position on the sample 7.

反射電子信号をA/D変換してレベル分けすることによ
り上述の如く結晶粒を認識することはできるが、その結
晶粒がどのような結晶構造であるかを調べ、画像と対応
させるには、偏向コイルの偏向モードをECPモードに
変え、一つの結晶粒上で電子線入射角θを変えてパター
ンを観察すればよい、ECPモードでは、先に述べた如
く、試料7上の照射点を移動せず入射角のみを変化して
電子線を照射するため、試料7の結晶構造により試料7
からの反射電子信号量は照射ビーム入射角に依存して異
なる。すなわち、上記の式が満足する電子線入射角θの
とき反射電子量が大きくなる。
Crystal grains can be recognized as described above by A/D converting the backscattered electron signal and dividing it into levels, but in order to find out what kind of crystal structure the crystal grain has and to correlate it with the image, it is necessary to Simply change the deflection mode of the deflection coil to ECP mode and observe the pattern by changing the incident angle θ of the electron beam on one crystal grain. In ECP mode, as mentioned earlier, the irradiation point on the sample 7 is moved. Since the electron beam is irradiated by changing only the incident angle without changing the angle of incidence, the crystal structure of sample 7
The amount of reflected electron signal from the irradiation beam varies depending on the incident angle of the irradiation beam. That is, when the electron beam incident angle θ satisfies the above equation, the amount of reflected electrons increases.

従つて電子線入射角θを変化させれば、照射電子線の波
長λ、試料結晶の格子間隔2dが一定であるので、反射
電子強度変化が得られる。その信号は、反射電子検出器
6(ビーム通過孔を有する)で、検出、映像信号増幅H
9を経゛由して観察用CRTIOに入力される。観察用
CRTIOでは、一般の面走査をさせると、XY定走査
照射ビームの試料7面における入射角偏向と同期するの
で、反射電子信号によるニレトロン・チャンネリング・
パターン(E CP ;Electron Chano
elling Pattar++)が描画観察される0
以上が反射電子igi微鏡等における通常のニレトロン
・チャンネリング・パターンを得る方法である。なお、
このときの信号を面走査と同様にA/D変換して取り込
′み、ECPの解析をCPUIIにより行うこともでき
る。
Therefore, if the electron beam incident angle θ is changed, the reflected electron intensity can be changed because the wavelength λ of the irradiated electron beam and the lattice spacing 2d of the sample crystal are constant. The signal is detected by a backscattered electron detector 6 (having a beam passage hole), and a video signal amplified H
The data is input to the observation CRTIO via 9. In the observation CRTIO, when general surface scanning is performed, it is synchronized with the incident angle deflection of the XY constant scanning irradiation beam on the sample surface 7, so Niletron channeling by backscattered electron signals is performed.
Pattern (E CP ; Electron Chano
elling Pattern++) is drawn and observed 0
The above is a method for obtaining a normal Niletron channeling pattern in a backscattered electron igi microscope or the like. In addition,
It is also possible to A/D convert the signal at this time and capture it in the same manner as in surface scanning, and to perform ECP analysis using the CPU II.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明によれば、入射
一定角面走査観察情報とECP情報とをA/D変換し、
CPUにより任意にレベル分けして観察することができ
るので、結晶粒像が装置条件、試料処理条件による影響
要素を除いてはっきり認識することができる。また、入
射一定角面走査観察情報とECP情報が直接CPUで取
り込めるので、CPUでそのまま演算解析することによ
り、結晶構造解析ができる。
As is clear from the above description, according to the present invention, constant incident angle plane scanning observation information and ECP information are A/D converted,
Since the CPU allows the observation to be performed in arbitrary levels, the crystal grain image can be clearly recognized, excluding factors affected by the device conditions and sample processing conditions. Furthermore, since the constant incident angle plane scanning observation information and ECP information can be directly taken in by the CPU, crystal structure analysis can be performed by performing calculation analysis directly on the CPU.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例システム構成を示す図、第2
図は各観察モードを説明する図である。 1・・・電子銃、2・・・収束レンズ、3・・・偏向コ
イル、4・・・追加偏向コイル、5・・・対物レンズ、
6・・・反射電子検出器、7・・・試料、8・・・偏向
切換調整器、9・・・映像信号増幅器、10・・・観察
用CRT、11・・・cpυ(中央処理装置)、12・
・・ディジタル走査電源、13・・A/DI[器、14
・・・フロッピィ・ディスク、15・・・ハード・ディ
スク、16・・・コンソール、17・・・カラー・ディ
スプレイ、18・・・フレーム・メモリ。
FIG. 1 is a diagram showing the system configuration of one embodiment of the present invention, and FIG.
The figure is a diagram explaining each observation mode. 1... Electron gun, 2... Converging lens, 3... Deflection coil, 4... Additional deflection coil, 5... Objective lens,
6... Backscattered electron detector, 7... Sample, 8... Deflection switching adjuster, 9... Video signal amplifier, 10... CRT for observation, 11... cpυ (central processing unit) , 12・
・・Digital scanning power supply, 13 ・・A/DI [device, 14
...Floppy disk, 15...Hard disk, 16...Console, 17...Color display, 18...Frame memory.

Claims (3)

【特許請求の範囲】[Claims] (1)電子銃からの電子線を収束レンズにより対物レン
ズの上方焦点位置に収束させ、対物レンズにより試料面
に平行ビームとして照射する電子顕微鏡を使って試料の
結晶性組織を分析する試料結晶性組織の分析方法であっ
て、収束レンズと対物レンズとの中間に位置する偏向コ
イルに一定の電子線入射角を有したまま試料の表面上を
電子ビーム走査するための追加偏向コイルを設け、試料
上を一定の電子線入射角を有したまま多数の画素にわけ
電子ビームにより面走査して反射電子量を検出し、該反
射電子量を数値化して試料の結晶組織を分析することを
特徴とする試料結晶性組織の分析方法。
(1) Sample crystallinity: Analyzing the crystalline structure of a sample using an electron microscope, in which the electron beam from the electron gun is converged to the upper focal point of the objective lens using a converging lens, and the objective lens irradiates the sample surface as a parallel beam. In this tissue analysis method, an additional deflection coil is provided to scan the electron beam over the surface of the sample while maintaining a constant electron beam incidence angle in the deflection coil located between the converging lens and the objective lens. It is characterized by detecting the amount of backscattered electrons by scanning the surface of the sample with an electron beam divided into a large number of pixels with a constant electron beam incident angle, and analyzing the crystal structure of the sample by quantifying the amount of backscattered electrons. A method for analyzing the crystalline structure of a sample.
(2)数値化した反射電子量をレベル分けし色分けカラ
ー表示するとともに、数値化前の反射電子量のデータを
反射電子走査像として表示することを特徴とする特許請
求の範囲第(1)項に記載の試料結晶性組織の分析方法
(2) Claim (1) characterized in that the quantified amount of backscattered electrons is divided into levels and displayed in different colors, and the data on the amount of backscattered electrons before being digitized is displayed as a backscattered electron scanning image. A method for analyzing a sample crystalline structure described in .
(3)一定の電子線入射角を有したまま試料の表面上を
電子ビームにより面走査して得られた反射電子走査像を
もとに結晶粒を認識し、試料上の照射点を移動せず電子
線入射角のみを変え電子ビームを照射して得られたエレ
クトロン・チャンネリング・パターンをもとに結晶構造
の認識を行うことを特徴とする特許請求の範囲第(1)
項及び第(2)項に記載の試料結晶性組織の分析方法。
(3) Recognize crystal grains based on the backscattered electron scanning image obtained by scanning the surface of the sample with an electron beam while maintaining a constant electron beam incidence angle, and move the irradiation point on the sample. Claim (1) characterized in that the crystal structure is recognized based on the electron channeling pattern obtained by irradiating the electron beam by changing only the incident angle of the electron beam.
and (2).
JP16911684A 1984-08-13 1984-08-13 Method of analyzing crystalline tissue of sample Pending JPS6147047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16911684A JPS6147047A (en) 1984-08-13 1984-08-13 Method of analyzing crystalline tissue of sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16911684A JPS6147047A (en) 1984-08-13 1984-08-13 Method of analyzing crystalline tissue of sample

Publications (1)

Publication Number Publication Date
JPS6147047A true JPS6147047A (en) 1986-03-07

Family

ID=15880592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16911684A Pending JPS6147047A (en) 1984-08-13 1984-08-13 Method of analyzing crystalline tissue of sample

Country Status (1)

Country Link
JP (1) JPS6147047A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990036747A (en) * 1997-10-02 1999-05-25 가나이 쓰도무 Pattern defect inspection method and inspection device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620663A (en) * 1979-05-09 1981-02-26 Brueckner Apparatebau Gmbh Moisturing treatment apparatus of twisted wire like fabric material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5620663A (en) * 1979-05-09 1981-02-26 Brueckner Apparatebau Gmbh Moisturing treatment apparatus of twisted wire like fabric material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990036747A (en) * 1997-10-02 1999-05-25 가나이 쓰도무 Pattern defect inspection method and inspection device

Similar Documents

Publication Publication Date Title
US9536702B2 (en) Multi-beam particle microscope and method for operating same
KR100402064B1 (en) Scanning electron microscope
US7417227B2 (en) Scanning interference electron microscope
EP0513776B1 (en) Instrument and method for 3-dimensional atomic arrangement observation
JP2019145511A (en) Electron beam apparatus
JP4512471B2 (en) Scanning electron microscope and semiconductor inspection system
JP3112503B2 (en) Screen processing method using charged beam and charged beam microscope apparatus
EP3258477A1 (en) Electron microscope and image acquisition method
JPH06295694A (en) Scanning type probe work observing device
JP2956755B2 (en) Fine pattern inspection equipment
JPS6147047A (en) Method of analyzing crystalline tissue of sample
US20220317067A1 (en) Method and system to determine crystal structure
US3917946A (en) Electron-optical device for the recording of selected diffraction patterns
JP4129088B2 (en) Scanning transmission electron microscope
JP2003007244A (en) Display method of image in charged particle beam system, the charged particle beam system, display method of image in analyzer, and the analyzer
JPH053013A (en) Automatic focus adjustment system
EP3379557A1 (en) Scanning transmission electron microscope and method for high throughput acquisition of electron scattering angle distribution images
JP2004271270A (en) Pattern inspection method and pattern inspection device
JPH07282769A (en) Electron beam diffracting device
JP4275786B2 (en) electronic microscope
JP2775812B2 (en) Charged particle beam equipment
JPH1167138A (en) Micro-area observation device
JP4187544B2 (en) Scanning transmission electron microscope
JP2633861B2 (en) SEM type inspection equipment
JP2007242605A (en) Scanning electron microscope