JP3112503B2 - Screen processing method using charged beam and charged beam microscope apparatus - Google Patents

Screen processing method using charged beam and charged beam microscope apparatus

Info

Publication number
JP3112503B2
JP3112503B2 JP03140789A JP14078991A JP3112503B2 JP 3112503 B2 JP3112503 B2 JP 3112503B2 JP 03140789 A JP03140789 A JP 03140789A JP 14078991 A JP14078991 A JP 14078991A JP 3112503 B2 JP3112503 B2 JP 3112503B2
Authority
JP
Japan
Prior art keywords
function
fourier transform
image
image signal
blur
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03140789A
Other languages
Japanese (ja)
Other versions
JPH04341741A (en
Inventor
史子 矢野
節生 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03140789A priority Critical patent/JP3112503B2/en
Publication of JPH04341741A publication Critical patent/JPH04341741A/en
Application granted granted Critical
Publication of JP3112503B2 publication Critical patent/JP3112503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は電子、イオン又はX線等
のビーム走査によって試料の走査像を表示するマイクロ
プローブ装置に係り、特に、1次ビームの大きさや画像
信号の発生領域の大きさによるぼけを画像から取り除い
た高解像度の像を表示するに好適なマイクロプローブ装
置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microprobe apparatus for displaying a scanned image of a sample by scanning a beam of electrons, ions or X-rays, and more particularly to a size of a primary beam and a size of an image signal generating area. TECHNICAL FIELD The present invention relates to a microprobe apparatus suitable for displaying a high-resolution image in which blurring due to an image is removed from an image.

【0002】[0002]

【従来の技術】近年、半導体デバイスの加工寸法の微細
化傾向は著しく、荷電粒子ビームを利用した計測技術で
は高解像力が必要であり、レンズ系の改良を行ってより
小さなビーム系を実現して解像度をあげている。しかし
ながらレンズには収差が不可避であり、ビーム系を小さ
くすることによる解像度の向上は収差により限界に達し
つつある。また、画像信号となる粒子やX線、光は1次
ビームから広がった領域で発生することが多く、これも
解像度の限界を決める一因となっている。
2. Description of the Related Art In recent years, there has been a remarkable tendency to miniaturize the processing dimensions of semiconductor devices, and measurement technology using charged particle beams requires a high resolution. A smaller beam system has been realized by improving the lens system. The resolution has been raised. However, aberrations are inevitable in lenses, and the improvement in resolution by reducing the size of the beam system is reaching its limit due to aberrations. Further, particles, X-rays, and light serving as image signals are often generated in a region spread from the primary beam, which also contributes to the limitation of resolution.

【0003】特開平2−189848号公報で示されて
いるように走査型電子顕微鏡では1次電子ビームを試料
に走査し、そこから発生する電子を検出器で検出し、偏
向信号と同期させて表示することにより画像を得てい
た。
As disclosed in Japanese Patent Application Laid-Open No. 2-189848, a scanning electron microscope scans a sample with a primary electron beam, detects electrons generated therefrom by a detector, and synchronizes the electrons with a deflection signal. The image was obtained by displaying.

【0004】[0004]

【発明が解決しようとする課題】上記従来技術は1次ビ
ームの大きさや画像信号の発生領域の大きさによるぼけ
よる解像度の低下についてなんら配慮がなされておら
ず、本来の試料から得られる画像が正確に表示されてい
ないという問題があった。
In the above prior art, no consideration is given to a reduction in resolution due to blurring due to the size of the primary beam or the size of the image signal generation area, and an image obtained from the original sample cannot be obtained. There was a problem that it was not displayed correctly.

【0005】本発明の目的は1次ビームの大きさや画像
信号の発生領域の大きさによるぼけを画像より取り除
き、高解像度の画像を表示するマイクロプローブ装置を
提供することにある。
It is an object of the present invention to provide a microprobe apparatus which removes blurs from an image due to the size of a primary beam and the size of an image signal generation region and displays a high-resolution image.

【0006】[0006]

【課題を解決するための手段】本発明では、ぼけの要因
として、1次ビームの大きさや画像信号の発生領域の大
きさを前提としている。検出器で検出された後、A/D
変換を経て一度格納された信号から構成された画像か
ら、あらかじめ求めておいた1次ビームの大きさや画像
信号の発生領域の大きさによるぼけをデコンボリューシ
ョンにより除去するためのメモリと演算処理装置を備
え、フーリエ変換と逆フーリエ変換により演算する。
In the present invention, the size of the primary beam and the size of the image signal generation area are assumed as factors of the blur. After being detected by the detector, A / D
A memory and an arithmetic processing unit for removing, by deconvolution, blurs due to the size of the primary beam and the size of the image signal generation region, which have been obtained in advance, from the image composed of the signal once stored after the conversion. Calculate by Fourier transform and inverse Fourier transform.

【0007】[0007]

【作用】あらかじめぼけの関数として求めておいた1次
ビームの大きさや画像信号の発生領域の大きさをフーリ
エ変換した値を数式1で示す分母の値として代入する。
さらに試料からのアナログ信号を検出器で検出し、A/
D変換した後フーリエ変換した値を分子として代入し、
逆フーリエ変換してぼけのない像を得ることができる。
A Fourier-transformed value of the size of the primary beam or the size of the image signal generation region, which is obtained in advance as a function of blur, is substituted as the value of the denominator represented by Formula 1.
Further, an analog signal from the sample is detected by a detector, and A / A
After the D conversion, the Fourier transformed value is substituted as a numerator,
An image without blur can be obtained by performing an inverse Fourier transform.

【0008】[0008]

【数1】 (Equation 1)

【0009】ただしここでΨはA/D変換後の試料から
の信号の位置に対する関数を示し、Iは1次ビームの大
きさや画像信号の発生領域の大きさから求めたぼけの関
数を、Ψ0はデコンボリューション後のぼけのない像
を、またFはフーリエ演算子を示す。
Here, Ψ represents a function with respect to the position of the signal from the sample after A / D conversion, I represents a function of blur obtained from the size of the primary beam and the size of the image signal generation area, and Ψ represents 0 indicates a blur-free image after deconvolution, and F indicates a Fourier operator.

【0010】この数式1の意味することを以下に説明す
る。
The meaning of Equation 1 will be described below.

【0011】そもそも画像は本来の試料が持つ情報と1
次ビームの大きさや画像信号の発生領域の大きさによる
ぼけを含んでいる。この画像情報を関数で示すと数式2
のようにぼけの関数が本来の試料が持つ情報にコンボリ
ューション(畳み込み積分)の形で加わったもので示さ
れる。Parsevalの定理よりこの畳み込み積分は各項のフ
ーリエ変換の積の形で表わすことができる(数式3)。
したがってぼけの関数と画像情報の関数が既知であれば
数式1で示すデコンボリューションにより本来の試料の
情報を得ることができる。
[0011] In the first place, the image is composed of the information of the original sample and 1
It includes blur due to the size of the next beam and the size of the image signal generation area. When this image information is represented by a function, Equation 2
The blur function is shown by adding the information of the original sample in the form of convolution (convolution integration). According to Parseval's theorem, this convolution integral can be expressed in the form of a product of Fourier transform of each term (Equation 3).
Therefore, if the blurring function and the image information function are known, the original information of the sample can be obtained by deconvolution represented by Expression 1.

【0012】[0012]

【数2】 (Equation 2)

【0013】[0013]

【数3】 (Equation 3)

【0014】本発明の特徴は、1次ビームの大きさや画
像信号の発生領域の大きさがぼけの原因であると仮定
し、それを画像よりデコンボリューションを用いて取り
除き、ぼけのない映像を求めることにある。
A feature of the present invention is that it is assumed that the size of the primary beam or the size of the image signal generation area is the cause of the blur, and the blur is removed from the image by deconvolution to obtain a blur-free image. It is in.

【0015】[0015]

【実施例】以下、本発明の実施例を用いて詳細に説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, the present invention will be described in detail with reference to embodiments.

【0016】図1は、本発明を走査型電子顕微鏡を例と
して示した構成ブロック図である。鏡筒部1において、
電子銃2から放射された電子ビーム3は、電子レンズ系
4で細く集束され、偏向器5により試料7上二次元走
査される。試料より発生する2次電子、反射電子等の
画像信号は検出器8で検出される。検出された画像信号
A/D変換器9でデジタル信号に変換された後、
像処理装置16内のメモリ10に格納される。なお、
子レンズ系4および偏向器5は、制御部6により制御さ
れる。
FIG. 1 is a structural block diagram showing the present invention by taking a scanning electron microscope as an example. In the lens barrel 1,
The electron beam 3 emitted from the electron gun 2 is narrowly focused by an electron lens system 4 and is two-dimensionally scanned on a sample 7 by a deflector 5. Image signals such as secondary electrons and reflected electrons generated from the sample 7 are detected by the detector 8. The detected image signal is converted into a digital signal by the A / D converter 9, image
It is stored in the memory 10 in the image processing device 16 . In addition, electricity
The sub lens system 4 and the deflector 5 are controlled by the control unit 6.
It is.

【0017】一方、装置パラメータ(球面収差係数、色
収差係数等)や画像観察条件(アパーチャサイズ、加速
電圧等)を制御部11より入力し、信号処理装置12で
1次ビームの大きさや画像信号の発生領域の大きさをぼ
けの関数としてあらかじめ求めておき、メモリ10に格
納しておく。
On the other hand, device parameters (spherical aberration coefficient, chromatic aberration coefficient, etc.) and image observation conditions (aperture size, acceleration voltage, etc.) are input from the control unit 11, and the size of the primary beam and the image signal The size of the generation area is obtained in advance as a blur function and stored in the memory 10.

【0018】メモリ10に格納された画像信号とぼけの
関数を適宜呼び出し、信号処理装置12で画像信号のフ
ーリエ変換、ぼけの関数のフーリエ変換を行い、割算の
後逆フーリエ変換を行い、ぼけが取り除かれた像、すな
わちデコンボリューション像を求めてディスプレイ13
に表示する。以上が本発明の原理と全体構成である。図
2(a)(b)は実施例によるデコンボリューションの
一例である。同図(a)は検出器8からの画像信号をそ
のまま表示した通常のSEM(Scanning Electron Mic
roscope)像で、同図(b)はあらかじめ計算により求め
た1次電子ビームの大きさをデコンボリューションによ
り取り除いた像である。
The image signal and the blur function stored in the memory 10 are appropriately called, a Fourier transform of the image signal and a Fourier transform of the blur function are performed by the signal processing device 12, and an inverse Fourier transform is performed after the division to obtain the blur. The display 13 is searched for a removed image, that is, a deconvolution image.
To be displayed. The above is the principle and overall configuration of the present invention. FIGS. 2A and 2B are examples of deconvolution according to the embodiment. FIG. 3A shows a normal SEM (Scanning Electron Mic) displaying the image signal from the detector 8 as it is.
FIG. 4B is an image obtained by removing the size of the primary electron beam obtained by calculation in advance by deconvolution.

【0019】解像度は同図(b)で明らかに改善されて
おり同図(a)では見えない粒子が確認される。
The resolution is clearly improved in FIG. 4B, and particles that cannot be seen in FIG. 4A are confirmed.

【0020】図3を用いてぼけの関数を実験的に求める
場合の実施例について説明する。
An embodiment in which a blur function is experimentally obtained will be described with reference to FIG.

【0021】試料台14上の試料7を観察する前又は後
にナイフエッジ状のシャープな界面を持つ標準試料15
を試料観察と同一条件の電子ビームで一次元走査し、信
号を検出器8で検出し、A/D変換の後メモリ10に格
納する。信号処理装置12に標準試料の一次元走査信号
を呼び出し、その形状より、ぼけの関数を実験的に求
め、メモリ10内に格納する。これによると振動等関数
型が明らかでないぼけの要因についてもぼけの関数に組
み込むことができる。
Before or after observing the sample 7 on the sample stage 14, a standard sample 15 having a sharp knife-edge interface
Is one-dimensionally scanned with an electron beam under the same conditions as the sample observation, a signal is detected by the detector 8, and the signal is stored in the memory 10 after A / D conversion. The one-dimensional scanning signal of the standard sample is called to the signal processing device 12 , a blur function is experimentally obtained from the shape thereof , and stored in the memory 10 . According to this, it is possible to incorporate into the blurring function a blurring factor whose vibrational function type is not clear.

【0022】以上、実施例として走査型電子顕微鏡につ
いて述べたが、一次ビーム、画像信号としては電子に限
ることなく、一般の電子、イオン又はX線等のビーム走
査によって試料から発生する電子、イオン又はX線等の
走査像を表示するマイクロプローブ装置(SIMS、A
ES、EPMA等)に適用できることはいうまでもな
い。
As described above, the scanning electron microscope has been described as an embodiment. However, the primary beam and the image signal are not limited to electrons, but electrons and ions generated from a sample by beam scanning of general electrons, ions or X-rays. Or a microprobe device (SIMS, A
Needless to say, it can be applied to ES, EPMA, etc.).

【0023】さらに、本発明の効果は、独立した画像処
理装置16としても得られるものである。すなわち、通
常の装置で観察された画像についても、画像取り込み装
置により取り込んだ画像信号(例えば、テレビカメラよ
り取り込みデジタル化された画像信号や、検出された後
A/D変換され、フロッピー等に書き込まれた画像信号
等)を信号処理装置12に供給し、一方、装置パラメー
タや画像観察条件を制御部11より入力し、ぼけの関数
を求め、デコンボリューションによりぼけが取り除かれ
た像を求めることができる。
Further, the effect of the present invention can be obtained as an independent image processing device 16. That is, an image observed by a normal device is also converted into an image signal captured by an image capturing device (for example, an image signal captured and digitized by a television camera, or A / D converted after detection, and written to a floppy or the like). Supplied to the signal processing device 12, while inputting device parameters and image observation conditions from the control unit 11, obtaining a blur function, and obtaining an image from which the blur has been removed by deconvolution. it can.

【0024】[0024]

【発明の効果】以上述べたように、本発明により画像の
分解能が著しく向上するため、像解釈が容易なマイクロ
プローブ装置を提供することができる。
As described above, since the resolution of an image is remarkably improved by the present invention, it is possible to provide a microprobe apparatus which can easily interpret an image.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示すブロック図。FIG. 1 is a block diagram showing one embodiment of the present invention.

【図2】本発明によるデコンボリューションの一例。FIG. 2 shows an example of deconvolution according to the present invention.

【図3】本発明の試料台部の別の構成図である。FIG. 3 is another configuration diagram of the sample stage of the present invention.

【符号の説明】[Explanation of symbols]

1…鏡筒部、2…電子銃、3…電子ビーム、4…電子レ
ンズ系、5…偏向器、6…制御部、7…試料、8…検出
器、9…A/D変換器、10…メモリ、11…制御部、
12…信号処理装置、13…ディスプレイ、14…試料
台、15…標準試料、16…画像処理装置
DESCRIPTION OF SYMBOLS 1 ... barrel part, 2 ... electron gun, 3 ... electron beam, 4 ... electron lens system, 5 ... deflector, 6 ... control part, 7 ... sample, 8 ... detector, 9 ... A / D converter, 10 ... memory, 11 ... control unit,
12 signal processing device, 13 display, 14 sample stage, 15 standard sample, 16 image processing device

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01J 37/22 G01N 23/04 H01J 37/256 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01J 37/22 G01N 23/04 H01J 37/256

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 荷電1次ビームを走査によって上記試料
表面からのアナログ画像信号を検出する工程と、前記検
出しされた信号をA/D変換して得たデジタル画像信号
を得る工程と、前記画像信号の画素位置Xに対する関数
Ψ(X)を求める第1の演算工程と、前記関数Ψ(X)をフ
ーリエ変換する工程と、予め一次ビームの大きさを計算
により求めた値に基づいてボケ関数を求める第2の演算
工程と、前記第2の演算工程で求めた関数I(X)をフー
リエ変換する工程と、前記フーリェ変換により求めたF
{I(X)}で除した値F{Ψ(X)}/F{I(X)}を逆フーリ
エ変換する工程と、前記逆フーリエ変換した関数により
上記試料表面の走査像を表示することを特徴と荷電ビー
ムを用いた画像処理方法。
A step of detecting an analog image signal from the surface of the sample by scanning a charged primary beam; a step of obtaining a digital image signal obtained by A / D converting the detected signal; A first operation step of obtaining a function Ψ (X) for a pixel position X of an image signal, a step of performing a Fourier transform of the function Ψ (X), and a blur based on a value obtained by previously calculating a size of a primary beam. A second operation step of obtaining a function, a step of performing a Fourier transform on the function I (X) obtained in the second operation step, and an F value obtained by the Fourier transform.
A step of performing an inverse Fourier transform of a value F {Ψ (X)} / F {I (X)} divided by {I (X)}, and displaying a scan image of the sample surface by the inverse Fourier transformed function The features and image processing method using charged beam.
【請求項2】 前記第2の演算工程として球面収差や色
収差又は加速電圧を加味してたボケ関数により演算する
ことを特徴する請求項1記載の荷電ビームを用いた画像
処理方法。
2. The image processing method using a charged beam according to claim 1, wherein the calculation is performed by a blur function taking into account spherical aberration, chromatic aberration, or acceleration voltage as the second calculation step.
【請求項3】 荷電1次ビームを走査によって上記試料
表面からのアナログ画像信号を検出する検出器と、前記
検出器で検出した信号をA/D変換して得たデジタル画
像信号を得る手段と、前記画像信号の画素位置Xに対す
る関数Ψ(X)を求める第1の演算手段と、前記関数Ψ
(X)をフーリエ変換する手段と、予め一次ビームの大き
さを計算により求めた値に基づいてボケ関数を求める第
2の演算手段と、前記第2の演算手段で求めた関数I
(X)をフーリエ変換し、前記フーリェ変換により求めた
F{I(X)}で除した値F{Ψ(X)}/F{I(X)}を逆フー
リエ変換する手段と、前記逆フーリエ変換した関数によ
り上記試料表面の走査像を表示する表示器を有すること
を特徴と荷電ビーム顕微鏡装置。
3. A detector for detecting an analog image signal from the sample surface by scanning a charged primary beam, and means for obtaining a digital image signal obtained by A / D converting a signal detected by the detector. First calculating means for calculating a function Ψ (X) for a pixel position X of the image signal;
Means for performing a Fourier transform on (X), second calculating means for obtaining a blur function based on a value obtained in advance by calculating the size of the primary beam, and function I obtained by the second calculating means.
Means for performing a Fourier transform on (X), and performing an inverse Fourier transform on a value F {) (X)} / F {I (X)} obtained by dividing by F {I (X)} obtained by the Fourier transform; A charged beam microscope apparatus comprising a display for displaying a scanned image of the sample surface by a Fourier-transformed function.
JP03140789A 1991-05-17 1991-05-17 Screen processing method using charged beam and charged beam microscope apparatus Expired - Lifetime JP3112503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03140789A JP3112503B2 (en) 1991-05-17 1991-05-17 Screen processing method using charged beam and charged beam microscope apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03140789A JP3112503B2 (en) 1991-05-17 1991-05-17 Screen processing method using charged beam and charged beam microscope apparatus

Publications (2)

Publication Number Publication Date
JPH04341741A JPH04341741A (en) 1992-11-27
JP3112503B2 true JP3112503B2 (en) 2000-11-27

Family

ID=15276782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03140789A Expired - Lifetime JP3112503B2 (en) 1991-05-17 1991-05-17 Screen processing method using charged beam and charged beam microscope apparatus

Country Status (1)

Country Link
JP (1) JP3112503B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10003127A1 (en) * 2000-01-26 2001-08-02 Ceos Gmbh Method for determining geometrically optical aberrations
JP2005037166A (en) * 2003-07-16 2005-02-10 Semiconductor Leading Edge Technologies Inc Apparatus for detecting mask defect and method for inspecting mask defect
JP2010085376A (en) * 2008-10-02 2010-04-15 Dainippon Printing Co Ltd Method for measuring pattern using scanning electron microscope
JP5584489B2 (en) * 2010-02-17 2014-09-03 キヤノン株式会社 Mass microscopic image processing method, program, and apparatus
JP5848506B2 (en) * 2010-03-11 2016-01-27 キヤノン株式会社 Image processing method
JP2012142299A (en) * 2012-03-19 2012-07-26 Hitachi High-Technologies Corp Scanning charged particle microscope device, and processing method of image taken by scanning charged particle microscope device
JP6185697B2 (en) * 2012-08-16 2017-08-23 株式会社堀場製作所 X-ray analyzer
JP6121704B2 (en) * 2012-12-10 2017-04-26 株式会社日立ハイテクノロジーズ Charged particle beam equipment
JP6047508B2 (en) * 2014-01-27 2016-12-21 株式会社日立ハイテクノロジーズ Charged particle beam apparatus, sample image acquisition method, and program recording medium
JP6097863B2 (en) * 2016-05-16 2017-03-15 株式会社日立ハイテクノロジーズ Charged particle beam apparatus, sample image acquisition method, and program recording medium
JP6858722B2 (en) 2018-03-14 2021-04-14 株式会社日立製作所 Electron beam device and sample inspection method

Also Published As

Publication number Publication date
JPH04341741A (en) 1992-11-27

Similar Documents

Publication Publication Date Title
EP2530699B1 (en) Charged particle beam microscope and method of measurement employing same
CN102376517B (en) Detector system for transmission electron microscope
US7834317B2 (en) Scanning electron microscope and system for inspecting semiconductor device
US6194718B1 (en) Method for reducing aliasing effects in scanning beam microscopy
US7526143B2 (en) Imaging method
JP3112503B2 (en) Screen processing method using charged beam and charged beam microscope apparatus
US5681112A (en) Image enhancement
JP3373585B2 (en) Scanning probe processing observation device
US10614998B2 (en) Charge reduction by digital image correlation
US8153967B2 (en) Method of generating particle beam images using a particle beam apparatus
JP6770482B2 (en) Charged particle beam device and scanning image distortion correction method
JP2549647B2 (en) SEM image restoration processing method
JP2000149848A (en) Transmission electron microscope image observation device
JPH09198498A (en) Method and device for processing video signal
JPH10162766A (en) Focusing ion beam work observing device
JP4275786B2 (en) electronic microscope
JP7453273B2 (en) Charged particle beam device and method for controlling charged particle beam device
JP3268445B2 (en) Electron microscope equipment
JPH09134695A (en) Scanning electron microscope
JP4841407B2 (en) electronic microscope
EP3979626A1 (en) Method and system for high speed signal processing
JPH11283545A (en) Electron image monitoring device
WO2024028233A1 (en) Method and device for correcting image errors when scanning a charged particle beam over a sample
Oho et al. Practical SEM system based on the montage technique applicable to ultralow-magnification observation, while maintaining original functions
JP2023181757A (en) Charged particle beam device and image acquisition method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11