JPH04341741A - Image processing method and microprobe adopting it - Google Patents

Image processing method and microprobe adopting it

Info

Publication number
JPH04341741A
JPH04341741A JP3140789A JP14078991A JPH04341741A JP H04341741 A JPH04341741 A JP H04341741A JP 3140789 A JP3140789 A JP 3140789A JP 14078991 A JP14078991 A JP 14078991A JP H04341741 A JPH04341741 A JP H04341741A
Authority
JP
Japan
Prior art keywords
image
size
blur
microprobe
primary beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3140789A
Other languages
Japanese (ja)
Other versions
JP3112503B2 (en
Inventor
Fumiko Yano
史子 矢野
Sadao Nomura
野村 節生
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP03140789A priority Critical patent/JP3112503B2/en
Publication of JPH04341741A publication Critical patent/JPH04341741A/en
Application granted granted Critical
Publication of JP3112503B2 publication Critical patent/JP3112503B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To remove any blur in an image due to the size of a primary beam and the size of an image signal generation range from the image so as to provide a microprobe which can display a high-resolution image. CONSTITUTION:Secondary electrons generated from a sample by scanning of an electron beam 3 are converted into digital-signals so as to be subsequently stored into a memory 10 as image signals. Meanwhile, the size of a primary beam and the size of the image signal generation range are computed in advance as their blur functions on the basis of a device parameter and an image observing condition. A blur is de-convoluted from the image signal by means of a signal processing device 12, so that an image wherefrom the blur is removed may be obtained to be displayed on a display 13. This invension can considerably improve the resolution of an image so as to provide a microprobe by which the image can be analyzed without difficulty.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は電子、イオン又はX線等
のビーム走査によって試料の走査像を表示するマイクロ
プローブ装置に係り、特に、1次ビームの大きさや画像
信号の発生領域の大きさによるぼけを画像から取り除い
た高解像度の像を表示するに好適なマイクロプローブ装
置に関するものである。
[Field of Industrial Application] The present invention relates to a microprobe device that displays a scanned image of a sample by scanning beams such as electrons, ions, or The present invention relates to a microprobe device suitable for displaying a high-resolution image from which blur caused by image blurring is removed.

【0002】0002

【従来の技術】近年、半導体デバイスの加工寸法の微細
化傾向は著しく、荷電粒子ビームを利用した計測技術で
は高解像力が必要であり、レンズ系の改良を行ってより
小さなビーム系を実現して解像度をあげている。しかし
ながらレンズには収差が不可避であり、ビーム系を小さ
くすることによる解像度の向上は収差により限界に達し
つつある。また、画像信号となる粒子やX線、光は1次
ビームから広がった領域で発生することが多く、これも
解像度の限界を決める一因となっている。
[Prior Art] In recent years, there has been a remarkable trend towards miniaturization of the processing dimensions of semiconductor devices, and measurement technology using charged particle beams requires high resolution, and lens systems have been improved to realize smaller beam systems. It increases the resolution. However, lenses inevitably have aberrations, and improvements in resolution by making the beam system smaller are reaching their limits due to aberrations. Furthermore, particles, X-rays, and light that serve as image signals are often generated in a region that extends from the primary beam, which also contributes to determining the limits of resolution.

【0003】特開平2−189848号公報で示されて
いるように走査型電子顕微鏡では1次電子ビームを試料
に走査し、そこから発生する電子を検出器で検出し、偏
向信号と同期させて表示することにより画像を得ていた
[0003] As shown in Japanese Patent Application Laid-Open No. 2-189848, a scanning electron microscope scans a sample with a primary electron beam, detects the electrons generated from the beam with a detector, and synchronizes them with a deflection signal. Images were obtained by displaying.

【0004】0004

【発明が解決しようとする課題】上記従来技術は1次ビ
ームの大きさや画像信号の発生領域の大きさによるぼけ
よる解像度の低下についてなんら配慮がなされておらず
、本来の試料から得られる画像が正確に表示されていな
いという問題があった。
[Problems to be Solved by the Invention] The above-mentioned prior art does not take into account the reduction in resolution due to blurring due to the size of the primary beam or the size of the image signal generation area, and the image obtained from the original sample is There was a problem that it was not displayed accurately.

【0005】本発明の目的は1次ビームの大きさや画像
信号の発生領域の大きさによるぼけを画像より取り除き
、高解像度の画像を表示するマイクロプローブ装置を提
供することにある。
An object of the present invention is to provide a microprobe device that displays a high-resolution image by removing blur caused by the size of the primary beam or the size of the image signal generation area from the image.

【0006】[0006]

【課題を解決するための手段】本発明では、ぼけの要因
として、1次ビームの大きさや画像信号の発生領域の大
きさを前提としている。検出器で検出された後、A/D
変換を経て一度格納された信号から構成された画像から
、あらかじめ求めておいた1次ビームの大きさや画像信
号の発生領域の大きさによるぼけをデコンボリューショ
ンにより除去するためのメモリと演算処理装置を備え、
フーリエ変換と逆フーリエ変換により演算する。
[Means for Solving the Problems] The present invention assumes that the size of the primary beam and the size of the image signal generation area are factors that cause blur. After being detected by the detector, the A/D
Memory and arithmetic processing equipment are used to remove blurring caused by the size of the primary beam and the size of the image signal generation area, determined in advance, from an image composed of signals that have been converted and stored once, by deconvolution. Prepare,
Calculations are performed using Fourier transform and inverse Fourier transform.

【0007】[0007]

【作用】あらかじめぼけの関数として求めておいた1次
ビームの大きさや画像信号の発生領域の大きさをフーリ
エ変換した値を数式1で示す分母の値として代入する。 さらに試料からのアナログ信号を検出器で検出し、A/
D変換した後フーリエ変換した値を分子として代入し、
逆フーリエ変換してぼけのない像を得ることができる。
[Operation] The value obtained by Fourier transforming the size of the primary beam and the size of the image signal generation area, which have been determined in advance as a function of blur, is substituted as the value of the denominator shown in Equation 1. Furthermore, the analog signal from the sample is detected by a detector, and the
After D-transforming, substitute the Fourier-transformed value as the numerator,
An unblurred image can be obtained by inverse Fourier transformation.

【0008】[0008]

【数1】[Math 1]

【0009】ただしここでΨはA/D変換後の試料から
の信号の位置に対する関数を示し、Iは1次ビームの大
きさや画像信号の発生領域の大きさから求めたぼけの関
数を、Ψ0はデコンボリューション後のぼけのない像を
、またFはフーリエ演算子を示す。
However, here, Ψ represents a function with respect to the position of the signal from the sample after A/D conversion, and I represents the blur function determined from the size of the primary beam and the size of the image signal generation area. indicates the unblurred image after deconvolution, and F indicates the Fourier operator.

【0010】この数式1の意味することを以下に説明す
る。
The meaning of Equation 1 will be explained below.

【0011】そもそも画像は本来の試料が持つ情報と1
次ビームの大きさや画像信号の発生領域の大きさによる
ぼけを含んでいる。この画像情報を関数で示すと数式2
のようにぼけの関数が本来の試料が持つ情報にコンボリ
ューション(畳み込み積分)の形で加わったもので示さ
れる。Parsevalの定理よりこの畳み込み積分は
各項のフーリエ変換の積の形で表わすことができる(数
式3)。 したがってぼけの関数と画像情報の関数が既知であれば
数式1で示すデコンボリューションにより本来の試料の
情報を得ることができる。
[0011] In the first place, an image is based on the information possessed by the original sample.
This includes blur due to the size of the secondary beam and the size of the image signal generation area. Expressing this image information as a function, formula 2
The blur function is shown by adding the information of the original sample in the form of a convolution (convolution integral). According to Parseval's theorem, this convolution integral can be expressed as a product of Fourier transforms of each term (Equation 3). Therefore, if the blur function and the image information function are known, the original sample information can be obtained by deconvolution shown in Equation 1.

【0012】0012

【数2】[Math 2]

【0013】[0013]

【数3】[Math 3]

【0014】本発明の特徴は、1次ビームの大きさや画
像信号の発生領域の大きさがぼけの原因であると仮定し
、それを画像よりデコンボリューションを用いて取り除
き、ぼけのない映像を求めることにある。
The feature of the present invention is to assume that the size of the primary beam or the size of the image signal generation area is the cause of blur, and to remove this from the image using deconvolution to obtain a blur-free image. There is a particular thing.

【0015】[0015]

【実施例】以下、本発明の実施例を用いて詳細に説明す
る。
EXAMPLES The present invention will be explained in detail below using examples.

【0016】図1は、本発明を走査型電子顕微鏡を例と
して示した構成ブロック図である。電子銃2から照射さ
れた電子ビーム3は電子レンズ系4で細く集束され、偏
向器5により試料7上を二次元走査される。試料より発
生する2次電子、反射電子等の画像信号は検出器8で検
出される。該画像信号はA/D変換器9でデジタル信号
に変換された後メモリ10に格納される。
FIG. 1 is a block diagram illustrating the present invention using a scanning electron microscope as an example. An electron beam 3 irradiated from an electron gun 2 is narrowly focused by an electron lens system 4 and scanned two-dimensionally over a sample 7 by a deflector 5. Image signals such as secondary electrons and reflected electrons generated from the sample are detected by a detector 8. The image signal is converted into a digital signal by an A/D converter 9 and then stored in a memory 10.

【0017】一方、装置パラメータ(球面収差係数、色
収差係数等)や画像観察条件(アパーチャサイズ、加速
電圧等)を操作部11より入力し、信号処理装置12で
1次ビームの大きさや画像信号の発生領域の大きさをぼ
けの関数としてあらかじめ求めておき、メモリ10に格
納しておく。
On the other hand, device parameters (spherical aberration coefficient, chromatic aberration coefficient, etc.) and image observation conditions (aperture size, accelerating voltage, etc.) are input from the operation unit 11, and the signal processing device 12 inputs the size of the primary beam and the image signal. The size of the occurrence area is determined in advance as a function of blur and stored in the memory 10.

【0018】メモリ10に格納された画像信号とぼけの
関数を適宜呼び出し、信号処理装置12で画像信号のフ
ーリエ変換、ぼけの関数のフーリエ変換を行い、割算の
後逆フーリエ変換を行い、ぼけが取り除かれた像、すな
わちデコンボリューション像を求めてディスプレイ13
に表示する。以上が本発明の原理と全体構成である。図
2(a)(b)は実施例によるデコンボリューションの
一例である。同図(a)は検出器8からの画像信号をそ
のまま表示した通常のSEM(Scanning  E
lectron Microscope)像で、同図(
b)はあらかじめ計算により求めた1次電子ビームの大
きさをデコンボリューションにより取り除いた像である
The image signal and blur function stored in the memory 10 are appropriately called, and the signal processing device 12 performs Fourier transform of the image signal, Fourier transform of the blur function, and after division, inverse Fourier transform is performed to remove the blur. Display 13 for the removed image, that is, the deconvoluted image.
to be displayed. The above is the principle and overall configuration of the present invention. FIGS. 2(a) and 2(b) are examples of deconvolution according to the embodiment. Figure (a) shows a normal SEM (Scanning E) displaying the image signal from the detector 8 as it is.
Electron Microscope) image in the same figure (
b) is an image obtained by removing the size of the primary electron beam calculated in advance by deconvolution.

【0019】解像度は同図(b)で明らかに改善されて
おり同図(a)では見えない粒子が確認される。
The resolution is clearly improved in Figure (b), and particles that are not visible in Figure (a) can be confirmed.

【0020】図3を用いてぼけの関数を実験的に求める
場合の実施例について説明する。
An example in which a blur function is experimentally determined will be described with reference to FIG.

【0021】試料台14上の試料7を観察する前又は後
にナイフエッジ状のシャープな界面を持つ標準試料15
を試料観察と同一条件の電子ビームで一次元走査し、信
号を検出器8で検出し、A/D変換の後メモリ10に格
納する。信号処理装置10に標準試料の一次元走査信号
を呼び出し、その形状より、ぼけの関数を実験的に求め
、メモリ8に格納する。これによると振動等関数型が明
らかでないぼけの要因についてもぼけの関数に組み込む
ことができる。
Before or after observing the sample 7 on the sample stage 14, a standard sample 15 having a knife-edge-like sharp interface is
is one-dimensionally scanned with an electron beam under the same conditions as for sample observation, a signal is detected by a detector 8, and stored in a memory 10 after A/D conversion. The one-dimensional scanning signal of the standard sample is called into the signal processing device 10, and the blur function is experimentally determined from its shape and stored in the memory 8. According to this, it is possible to incorporate into the blur function even blur factors whose vibrational function type is not clear.

【0022】以上、実施例として走査型電子顕微鏡につ
いて述べたが、一次ビーム、画像信号としては電子に限
ることなく、一般の電子、イオン又はX線等のビーム走
査によって試料から発生する電子、イオン又はX線等の
走査像を表示するマイクロプローブ装置(SIMS、A
ES、EPMA等)に適用できることはいうまでもない
Although the scanning electron microscope has been described above as an example, the primary beam and image signal are not limited to electrons, but can also be general electrons, ions, or electrons and ions generated from a sample by scanning an X-ray beam. Or a microprobe device (SIMS, A
Needless to say, it can be applied to ES, EPMA, etc.).

【0023】さらに、本発明の効果は、独立した画像処
理装置16としても得られるものである。すなわち、通
常の装置で観察された画像についても、画像取り込み装
置により取り込んだ画像信号(例えば、テレビカメラよ
り取り込みデジタル化された画像信号や、検出された後
A/D変換され、フロッピー等に書き込まれた画像信号
等)を信号処理装置12に供給し、一方、装置パラメー
タや画像観察条件を操作部11より入力し、ぼけの関数
を求め、デコンボリューションによりぼけが取り除かれ
た像を求めることができる。
Furthermore, the effects of the present invention can also be obtained as an independent image processing device 16. In other words, even for images observed with a normal device, image signals captured by an image capturing device (for example, image signals captured from a television camera and digitized, detected, A/D converted, and written to a floppy disk, etc.) (image signals, etc.) are supplied to the signal processing device 12, and on the other hand, device parameters and image observation conditions are inputted from the operation unit 11, a blur function is obtained, and an image with the blur removed by deconvolution is obtained. can.

【0024】[0024]

【発明の効果】以上述べたように、本発明により画像の
分解能が著しく向上するため、像解釈が容易なマイクロ
プローブ装置を提供することができる。
As described above, since the present invention significantly improves the resolution of images, it is possible to provide a microprobe device with easy image interpretation.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一実施例を示すブロック図。FIG. 1 is a block diagram showing one embodiment of the present invention.

【図2】本発明によるデコンボリューションの一例。FIG. 2 is an example of deconvolution according to the present invention.

【図3】本発明の試料台部の別の構成図である。FIG. 3 is another configuration diagram of the sample stage section of the present invention.

【符号の説明】[Explanation of symbols]

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】電子、イオン又はX線のビーム走査によっ
て試料表面の走査像を表示するマイクロプローブ装置に
おいて、1次ビームの大きさや画像信号となる粒子やX
線、光の発生領域の大きさを実験的に又は計算により求
める手段を設けたことを特徴とするマイクロプローブ装
置。
Claim 1: In a microprobe device that displays a scanned image of a sample surface by beam scanning of electrons, ions, or X-rays, the size of the primary beam and particles and
1. A microprobe device comprising means for determining the size of a line or light generation area experimentally or by calculation.
【請求項2】請求項1記載のマイクロプローブ装置にお
いて、前記1次ビームの大きさや画像信号の発生領域の
大きさによるぼけを画像から取り除く手段と、ぼけが取
り除かれた画像を表示する手段を設けたことを特徴とす
るマイクロプローブ装置。
2. The microprobe device according to claim 1, further comprising means for removing from the image blur caused by the size of the primary beam and the size of the image signal generation area, and means for displaying the image from which the blur has been removed. A microprobe device characterized by:
【請求項3】あらかじめ求めておいた1次ビームの大き
さや画像信号の発生領域の大きさをフーリエ変換した値
を数式1で示す分母の値として代入し、さらに試料から
のアナログ信号を検出器で検出し、A/D変換した後フ
ーリエ変換した値を分子として代入し、逆フーリエ変換
してぼけのない像を得る方法。
3. Substitute the Fourier-transformed value of the size of the primary beam and the size of the image signal generation area obtained in advance as the denominator value shown in Equation 1, and further convert the analog signal from the sample to the detector. A method to obtain a blur-free image by performing A/D conversion, substituting the Fourier-transformed value as the numerator, and performing inverse Fourier transform.
JP03140789A 1991-05-17 1991-05-17 Screen processing method using charged beam and charged beam microscope apparatus Expired - Lifetime JP3112503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03140789A JP3112503B2 (en) 1991-05-17 1991-05-17 Screen processing method using charged beam and charged beam microscope apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03140789A JP3112503B2 (en) 1991-05-17 1991-05-17 Screen processing method using charged beam and charged beam microscope apparatus

Publications (2)

Publication Number Publication Date
JPH04341741A true JPH04341741A (en) 1992-11-27
JP3112503B2 JP3112503B2 (en) 2000-11-27

Family

ID=15276782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03140789A Expired - Lifetime JP3112503B2 (en) 1991-05-17 1991-05-17 Screen processing method using charged beam and charged beam microscope apparatus

Country Status (1)

Country Link
JP (1) JP3112503B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521801A (en) * 2000-01-26 2003-07-15 ツェーエーオーエス コレクテッド エレクトロン オプチカル システムズ ゲーエムベーハー How to determine geometrical optical aberrations
JP2005037166A (en) * 2003-07-16 2005-02-10 Semiconductor Leading Edge Technologies Inc Apparatus for detecting mask defect and method for inspecting mask defect
JP2010085376A (en) * 2008-10-02 2010-04-15 Dainippon Printing Co Ltd Method for measuring pattern using scanning electron microscope
WO2011102496A1 (en) * 2010-02-17 2011-08-25 Canon Kabushiki Kaisha Image processing method for mass spectrum image, program, and apparatus
JP2011210712A (en) * 2010-03-11 2011-10-20 Canon Inc Image processing method
JP2012142299A (en) * 2012-03-19 2012-07-26 Hitachi High-Technologies Corp Scanning charged particle microscope device, and processing method of image taken by scanning charged particle microscope device
JP2014038034A (en) * 2012-08-16 2014-02-27 Horiba Ltd X-ray analyzing apparatus
JP2014075365A (en) * 2014-01-27 2014-04-24 Hitachi High-Technologies Corp Charged particle beam device, sample image acquisition method, and program recording medium
JP2014116207A (en) * 2012-12-10 2014-06-26 Hitachi High-Technologies Corp Charged particle beam device
JP2016146362A (en) * 2016-05-16 2016-08-12 株式会社日立ハイテクノロジーズ Charged particle beam device, sample image acquisition method, and program recording medium
KR20190108476A (en) 2018-03-14 2019-09-24 가부시끼가이샤 히다치 세이사꾸쇼 Electron beam apparatus and sample inspection method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003521801A (en) * 2000-01-26 2003-07-15 ツェーエーオーエス コレクテッド エレクトロン オプチカル システムズ ゲーエムベーハー How to determine geometrical optical aberrations
JP2005037166A (en) * 2003-07-16 2005-02-10 Semiconductor Leading Edge Technologies Inc Apparatus for detecting mask defect and method for inspecting mask defect
JP2010085376A (en) * 2008-10-02 2010-04-15 Dainippon Printing Co Ltd Method for measuring pattern using scanning electron microscope
US8913841B2 (en) 2010-02-17 2014-12-16 Canon Kabushiki Kaisha Image processing method for mass spectrum image, program, and apparatus
WO2011102496A1 (en) * 2010-02-17 2011-08-25 Canon Kabushiki Kaisha Image processing method for mass spectrum image, program, and apparatus
JP2011171050A (en) * 2010-02-17 2011-09-01 Canon Inc Image processing method for mass microscope image, program thereof, and apparatus with the program
JP2011210712A (en) * 2010-03-11 2011-10-20 Canon Inc Image processing method
JP2012142299A (en) * 2012-03-19 2012-07-26 Hitachi High-Technologies Corp Scanning charged particle microscope device, and processing method of image taken by scanning charged particle microscope device
JP2014038034A (en) * 2012-08-16 2014-02-27 Horiba Ltd X-ray analyzing apparatus
JP2014116207A (en) * 2012-12-10 2014-06-26 Hitachi High-Technologies Corp Charged particle beam device
JP2014075365A (en) * 2014-01-27 2014-04-24 Hitachi High-Technologies Corp Charged particle beam device, sample image acquisition method, and program recording medium
WO2015111307A1 (en) * 2014-01-27 2015-07-30 株式会社 日立ハイテクノロジーズ Charged-particle-beam device, specimen-image acquisition method, and program recording medium
CN105874558A (en) * 2014-01-27 2016-08-17 株式会社日立高新技术 Charged-particle-beam device, specimen-image acquisition method, and program recording medium
US9741530B2 (en) 2014-01-27 2017-08-22 Hitachi High-Technologies Corporation Charged-particle-beam device, specimen-image acquisition method, and program recording medium
CN105874558B (en) * 2014-01-27 2017-08-25 株式会社日立高新技术 Charged particle beam apparatus, sample image adquisitiones and program recorded medium
JP2016146362A (en) * 2016-05-16 2016-08-12 株式会社日立ハイテクノロジーズ Charged particle beam device, sample image acquisition method, and program recording medium
KR20190108476A (en) 2018-03-14 2019-09-24 가부시끼가이샤 히다치 세이사꾸쇼 Electron beam apparatus and sample inspection method
US10629405B2 (en) 2018-03-14 2020-04-21 Hitachi, Ltd. Electron beam device and sample inspection method

Also Published As

Publication number Publication date
JP3112503B2 (en) 2000-11-27

Similar Documents

Publication Publication Date Title
JP5004659B2 (en) Charged particle beam equipment
CN102376517B (en) Detector system for transmission electron microscope
JP5164754B2 (en) Scanning charged particle microscope apparatus and processing method of image acquired by scanning charged particle microscope apparatus
US6194718B1 (en) Method for reducing aliasing effects in scanning beam microscopy
JPH04341741A (en) Image processing method and microprobe adopting it
US10971347B2 (en) Charged particle beam apparatus
JP4512471B2 (en) Scanning electron microscope and semiconductor inspection system
US5681112A (en) Image enhancement
JPH03194839A (en) Focus control method and astigmatism correction in electron microscope
JP6770482B2 (en) Charged particle beam device and scanning image distortion correction method
WO2002049066A1 (en) Charged particle beam microscope, charged particle beam application device, charged particle beam microscopic method, charged particle beam inspecting method, and electron microscope
JP2008226616A (en) Charged particle beam device
JP6302785B2 (en) Image quality improvement method and apparatus for scanning charged particle microscope image
JP2549647B2 (en) SEM image restoration processing method
JP3118559B2 (en) Electron microscope apparatus and sample image reproducing method using electron microscope
JP3268445B2 (en) Electron microscope equipment
EP3091505B1 (en) Image processor, electron microscope, and image processing method
US9396906B2 (en) Transmission electron microscope and method of displaying TEM images
JP7077260B2 (en) Electron beam device and image processing method
JPH09198498A (en) Method and device for processing video signal
KR101497105B1 (en) Electron microscope and method for processing image using the sem
EP3979626A1 (en) Method and system for high speed signal processing
WO2022092077A1 (en) Charged particle beam device and sample observation method
WO2024028233A1 (en) Method and device for correcting image errors when scanning a charged particle beam over a sample
JP4841407B2 (en) electronic microscope

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070922

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080922

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090922

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100922

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110922

Year of fee payment: 11