JPS6146944B2 - - Google Patents
Info
- Publication number
- JPS6146944B2 JPS6146944B2 JP55039291A JP3929180A JPS6146944B2 JP S6146944 B2 JPS6146944 B2 JP S6146944B2 JP 55039291 A JP55039291 A JP 55039291A JP 3929180 A JP3929180 A JP 3929180A JP S6146944 B2 JPS6146944 B2 JP S6146944B2
- Authority
- JP
- Japan
- Prior art keywords
- sealing body
- thin
- resin
- battery
- battery sealing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000007789 sealing Methods 0.000 claims description 40
- 229920005989 resin Polymers 0.000 claims description 25
- 239000011347 resin Substances 0.000 claims description 25
- 238000003466 welding Methods 0.000 claims description 13
- -1 polyethylene Polymers 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 6
- 239000004698 Polyethylene Substances 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 4
- 229920000573 polyethylene Polymers 0.000 claims description 4
- 229920005992 thermoplastic resin Polymers 0.000 claims description 4
- 239000004743 Polypropylene Substances 0.000 claims description 3
- 229920001155 polypropylene Polymers 0.000 claims description 3
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 229920002492 poly(sulfone) Polymers 0.000 claims description 2
- 239000004952 Polyamide Substances 0.000 claims 1
- 229920002647 polyamide Polymers 0.000 claims 1
- 238000010248 power generation Methods 0.000 claims 1
- 238000001746 injection moulding Methods 0.000 description 7
- 238000004880 explosion Methods 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000004677 Nylon Substances 0.000 description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 229910052725 zinc Inorganic materials 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000003566 sealing material Substances 0.000 description 1
- 229910000679 solder Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/10—Primary casings; Jackets or wrappings
- H01M50/147—Lids or covers
- H01M50/148—Lids or covers characterised by their shape
- H01M50/154—Lid or cover comprising an axial bore for receiving a central current collector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Sealing Battery Cases Or Jackets (AREA)
Description
本発明は密閉型のアルカリ電池、中性塩電池に
おいて、正常時には密閉作用をなし、電池の内部
圧力が異常に高まつたときには、封口体が部分的
に破れてガス圧を電池外め放出せしめる防爆型電
池のための封口体の製造法に関するものである。
従来、薄肉部を有する封口体としては、すでに
知られているように、封口体の一部に極めて薄い
薄肉部を形成することによつて、エージング期間
中において、電池内に生成したガスを薄肉部のガ
ス拡散作用により逃がし、過度のガス発生時には
電池が爆発する圧力よりも低い圧力で薄肉部が破
れてガスが外部へ逸散する構成となつている。
しかしながら、実際上上記した封口体はポリエ
チレン、ポリプロピレン、ナイロンといつた熱可
塑性樹脂の射出成形によつて作る関係上、薄肉部
といつても、安定で均質な薄膜を量産するために
は、その厚さは0.2〜0.3mm程度が限界であり、そ
れ以下においては樹脂流れが悪くなり、生産性が
極端に低下してしまう欠点があつた。したがつて
薄肉部の耐久圧力も大となり70〜80Kg/cm2以上と
なるのもあつて、電池強度の弱いものは薄肉部の
破壊以前に電池が破裂するという現象があり、防
爆予防の効果に欠けるところがあつた。
そこで、本発明では射出成形の技術上該薄肉部
の厚さが0.2〜0.3mmの限度であつたとしても20〜
40Kg/cm2程度の圧力、すなわち電池破壊力4約70
Kg/cm2以上で封口条件により異る)よりも小さい
圧力で確実に該薄肉部に破壊させることができる
ように封口体を改良することを目的としたもので
ある。
元来、射出成形によつて得られる樹脂体は、そ
の成形時に溶融樹脂が樹脂流入ゲートより拡散し
て該ゲートの対称方向に収束していくが、その結
果として該ゲートの対称方向に樹脂溶接面が生成
する。この面は熱溶融状態の樹脂がもつとも冷却
される方向で会合しているので、強度的には一番
弱い部分となり易い。
本発明者らはこの点に着目して従来の薄肉部に
上記溶接面を形成することにより、薄肉部の耐圧
強度をさらに低下させることができることを見い
出した。
すなわち、封口体の射出成形時において、金型
の樹脂流入ゲートを封口体中心部からみて、円形
又は方形の形状をもつ薄肉部のほゞ反対側方向に
配置させることにより、該薄肉部上に樹脂溶接面
を形成させることができる。樹脂の溶接部は他の
部分より一番低い熱溶融により接着しているの
で、強度的には前述したように他の部分より弱
く、ある一定以上のガス圧下においては、該溶接
面に沿つてひゞ割れが生じ易くなる。
たとえば、封口体材質がポリエチレンで0.2mm
の薄肉部を有するものにおいては、薄肉部の破壊
強度が70〜100Kg/cm2であつたものが、該薄肉部上
に樹脂溶接面を形成したことにより、それが30〜
40Kg/cm2にまで低下した。
このようなことから、薄肉部に溶接面を形成す
ることは、電池防爆上非常に有利となる。
もちろん、現状の薄肉部を有する封口体におい
ては、薄肉部上に溶接面を形成させたものはな
く、本発明においてはじめて実施されたものであ
る。
以下、本発明の実施例によつて説明する。
まず第1図に、本発明における封口体射出成形
用金型のモデル図を示し、第2図には第1図のA
―B線に沿つて成形型のうち下型の成形部の上面
図を示した。この両図において、1は成形型の上
型、2は成形型の下型、3は樹脂流入ゲート、4
は成形部、5は円形の薄肉成形部である。この図
の様な射出成形用金型を造り、ゲート3の位置を
第2図に示すように薄肉部と型中心とを結ぶ線
()とは対称的の()線上とした。()の線
上にゲート3が配置されれば、矢印の方向に溶融
樹脂が流れ、ほゞ()の線上に樹脂溶接面が形
成される。
この金型によりポリエチレン樹脂で成形した封
口体の断面図を第3図に、又その上面図を第4図
に示した。さらに第5図には上記封口体を用いて
造つたアルカリマンガン電池の断面図を示した。
図中、11は正極合剤、12は負極亜鉛、13は
セパレータ、14は内ケース、15は集電子、1
6は封口体、17は底板、18は底板にあけたガ
ス排出孔、19はキヤツプ、20は絶縁リング、
21は外装缶、22は封口体16に設けた円形の
薄肉部、23は射出成形時のゲート跡、24は中
央部穴、25は樹脂溶接面である。
今、第3図の22で示す円形薄肉部の大きさが
直径3mmで厚さがそれぞれ0.15mm、0.20mm及び
0.25mmとなるように、金型の薄肉成形部5の間隔
を適当に調整して射出成形した封口体を用いて第
5図に示す構造の電池をそれぞれ10個づつ構成し
た。これらをA―1,A―2,A―3とする。ま
た比較例として、樹脂溶接面26が第4図に示す
薄肉部22上に形成されないように、ゲート位置
3を第2図に示す()―()を結ぶ線とは直
角方向である3―1上とした封口体を上記と同様
に10個づつつくり、それぞれを電池として組立て
た。これをB―1,B―2,B―3とする。これ
らについて、1Aの定電流で充電することによつ
て電池内に強制的にガスを発生させ、破壊試験を
行うと同時にそれぞれについて封口体薄肉部の破
壊圧力を測定した。これらの結果を次表に示し
た。
The present invention provides a sealed alkaline battery or a neutral salt battery that has a sealing effect under normal conditions, and when the internal pressure of the battery rises abnormally, the sealing body partially ruptures and gas pressure is released to the outside of the battery. The present invention relates to a method for manufacturing a sealing body for an explosion-proof battery. Conventionally, as is already known, as a sealing body having a thin-walled portion, by forming an extremely thin thin-walled portion in a part of the sealing body, gas generated within the battery is removed during the aging period. When excessive gas is generated, the thin wall part ruptures at a pressure lower than the pressure at which the battery explodes and the gas escapes to the outside. However, in practice, the above-mentioned sealing bodies are made by injection molding of thermoplastic resins such as polyethylene, polypropylene, and nylon. The limit for the thickness is about 0.2 to 0.3 mm, and if it is less than that, the resin will not flow easily, resulting in an extremely low productivity. Therefore, the withstand pressure of the thin wall part is also large, reaching 70 to 80 kg/cm 2 or more, and if the battery strength is weak, the battery may explode before the thin wall part breaks, so the effectiveness of explosion prevention prevention is reduced. There was something lacking in it. Therefore, in the present invention, even if the thickness of the thin part is limited to 0.2 to 0.3 mm due to injection molding technology,
Pressure of about 40Kg/cm2, that is, battery breaking force 4 about 70
The purpose of the present invention is to improve the sealing body so that the thin-walled portion can be reliably destroyed with a pressure lower than Kg/cm 2 (which varies depending on the sealing conditions). Originally, in a resin body obtained by injection molding, during molding, molten resin diffuses through a resin inflow gate and converges in the symmetrical direction of the gate, but as a result, resin welding occurs in the symmetrical direction of the gate. A surface is generated. This surface tends to be the weakest part in terms of strength because the resin in the hot molten state meets in the direction of cooling. The present inventors have focused on this point and have found that by forming the above-mentioned welding surface on a conventional thin-walled portion, the pressure resistance strength of the thin-walled portion can be further reduced. That is, during injection molding of the sealing body, by arranging the resin inflow gate of the mold in the direction substantially opposite to the thin walled portion having a circular or rectangular shape when viewed from the center of the sealing body, the resin can be injected onto the thin walled portion. A resin welding surface can be formed. The resin welded part is bonded with the lowest thermal melting temperature compared to other parts, so its strength is weaker than other parts as mentioned above, and under gas pressure above a certain level, it will not adhere along the welded surface. Cracks are more likely to occur. For example, if the sealing material is polyethylene and it is 0.2mm
The breaking strength of the thin wall part used to be 70 to 100 kg/ cm2 , but by forming a resin welding surface on the thin wall part, the breaking strength of the thin wall part was 30 to 30 kg/cm2.
It decreased to 40Kg/cm 2 . For this reason, forming a welding surface on the thin wall portion is very advantageous in terms of battery explosion protection. Of course, in the current sealing body having a thin wall portion, there is no one in which a welding surface is formed on the thin wall portion, and this is implemented for the first time in the present invention. The present invention will be explained below using examples. First, FIG. 1 shows a model diagram of a mold for injection molding a sealing body according to the present invention, and FIG.
- A top view of the molding part of the lower mold of the mold is shown along line B. In both figures, 1 is the upper mold of the mold, 2 is the lower mold of the mold, 3 is the resin inflow gate, and 4 is the lower mold of the mold.
5 is a molded part, and 5 is a circular thin-walled molded part. An injection mold as shown in this figure was made, and the gate 3 was positioned on a line ( ) symmetrical to the line ( ) connecting the thin wall portion and the center of the mold, as shown in FIG. 2 . If the gate 3 is placed on the line (), the molten resin will flow in the direction of the arrow, and a resin welding surface will be formed approximately on the line (). A cross-sectional view of a sealing body molded from polyethylene resin using this mold is shown in FIG. 3, and a top view thereof is shown in FIG. Furthermore, FIG. 5 shows a sectional view of an alkaline manganese battery manufactured using the above sealing body.
In the figure, 11 is a positive electrode mixture, 12 is a negative electrode zinc, 13 is a separator, 14 is an inner case, 15 is a current collector, 1
6 is a sealing body, 17 is a bottom plate, 18 is a gas discharge hole drilled in the bottom plate, 19 is a cap, 20 is an insulating ring,
21 is an outer can, 22 is a circular thin wall portion provided on the sealing body 16, 23 is a gate mark during injection molding, 24 is a hole in the center, and 25 is a resin welding surface. Now, the size of the circular thin part indicated by 22 in Fig. 3 is 3 mm in diameter, and the thickness is 0.15 mm, 0.20 mm, and 0.20 mm, respectively.
Ten batteries each having the structure shown in FIG. 5 were constructed using injection-molded sealing bodies by appropriately adjusting the spacing between the thin molded parts 5 of the mold so that the spacing was 0.25 mm. Let these be A-1, A-2, and A-3. Further, as a comparative example, in order to prevent the resin welding surface 26 from being formed on the thin wall portion 22 shown in FIG. 10 sealing bodies were made in the same manner as above, and each was assembled as a battery. These are designated as B-1, B-2, and B-3. These batteries were charged with a constant current of 1 A to forcibly generate gas inside the battery, and a destructive test was conducted. At the same time, the burst pressure of the thin walled portion of the sealing member was measured for each battery. These results are shown in the table below.
【表】
なお、電池の破壊強度は、充電により電池用に
強制的にガスを発生させると、封口体16、正極
合剤11、負極亜鉛12との間の空隙部の圧力が
上昇し、この圧力がやがて外装缶21の端部のか
しめ圧力を上回り封口体16、底板17及び集電
子15が外装缶21より外れて吹き飛んでしまう
際の圧力をいい、電池の一部に細孔を設け、ここ
に圧力ゲージをつないで測定したところ、この場
合の圧力は約70〜80Kg/cm2に分布するものであ
る。
上表の結果から明らかなように本発明の電池A
―1〜A―3によれば、封口体の一部に薄肉部2
2を設け、この薄肉部22が電池よりも先に破壊
するようにしたので、電池の破壊はまつたくな
く、しかも20〜41Kg/cm2の低圧で薄肉部が破れ、
外観上なんの変化もなくきわめて安全である。ま
た、試験後、本発明による封口体を観察したとこ
ろ、封口体薄肉部の樹脂溶接面に沿つてひゞ割れ
を生じていた。これは樹脂溶接面が丁度半田溶接
のような状態となつて、他の部分よりも弱くなつ
ているからであるが電池ケースの封口等に何ら影
響を与えない。
逆に、従来のものにおいては、電池が破裂した
ものがあり、分解による観察でも薄肉部が破れて
いなかつた。
以上のことから、本発明は電池防爆上きわめて
有効であることが明らかである。また、この場合
には、ポリエチレン製封口体で説明したが、ナイ
ロン、ポリプロピレン、ポリスルフオンなどの熱
可塑性樹脂によつてもまつたく同等の効果があつ
た。さらに封口体薄肉部の形状をこの場合には円
形で均一厚さのものとしたが、必ずしもこの形状
にはこだわらず、長円、だ円形や四角形等の方形
とし、その一部に肉厚的に薄い部分があれば、同
様の防爆安全機能が期待できる。
以上により、本発明の製造法による封口体は従
来の薄肉部をもつそれとは本質的に異なるすぐれ
た電池防爆機能を有し、しかも量産性にすぐれた
ものである。[Table] Note that the breaking strength of a battery is determined by the fact that when gas is forcibly generated for the battery by charging, the pressure in the gap between the sealing body 16, the positive electrode mixture 11, and the negative electrode zinc 12 increases, and this This refers to the pressure when the pressure eventually exceeds the caulking pressure at the end of the outer can 21 and the sealing body 16, the bottom plate 17, and the current collector 15 are detached from the outer can 21 and blown away. When a pressure gauge was connected here, the pressure in this case was distributed in a range of approximately 70 to 80 kg/cm 2 . As is clear from the results in the above table, the battery A of the present invention
According to -1 to A-3, there is a thin wall part 2 in a part of the sealing body.
2, and the thin part 22 was made to break before the battery, so the battery was unlikely to be destroyed, and moreover, the thin part 22 could be torn at low pressures of 20 to 41 kg/cm 2 .
There is no change in appearance and it is extremely safe. Furthermore, when the sealing body according to the present invention was observed after the test, cracks were found along the resin welding surface of the thin walled portion of the sealing body. This is because the resin welded surface is in a state similar to solder welding and is weaker than other parts, but it does not affect the sealing of the battery case in any way. On the other hand, in some conventional batteries, the batteries ruptured, and even after disassembly and observation, the thin wall portion was not torn. From the above, it is clear that the present invention is extremely effective in preventing battery explosions. Further, in this case, although the polyethylene sealing body was explained, the same effect could be obtained by using a thermoplastic resin such as nylon, polypropylene, or polysulfone. Furthermore, in this case, the shape of the thin walled part of the sealing body is circular and has a uniform thickness, but it is not necessarily limited to this shape, and it may be rectangular such as an ellipse, an oval, or a square. If there is a thin part in the material, a similar explosion-proof safety function can be expected. As described above, the sealing body manufactured by the manufacturing method of the present invention has an excellent battery explosion-proofing function that is essentially different from that of conventional sealing bodies having thin-walled parts, and is also excellent in mass production.
第1図は本発明の実施例で用いた封口体成形型
の断面図、第2図は第1図A―B線に沿つた平面
図、第3図は封口体の断面図、第4図は同上面
図、第5図は同封口体を用いて封口したアルカリ
ヤンガン電池の断面図を示す。
1…成形型の上型、2…成形型の下型、3…樹
脂流入ゲート、4…成型空間、5…円形薄肉成形
部、22…円形の薄肉部、23…射出成形時のゲ
ート跡、25…樹脂溶接面。
Fig. 1 is a sectional view of the sealing body mold used in the embodiment of the present invention, Fig. 2 is a plan view taken along line A-B in Fig. 1, Fig. 3 is a sectional view of the sealing body, and Fig. 4 5 is a top view of the same, and FIG. 5 is a sectional view of an alkaline Yangan battery sealed using the same sealing body. 1... Upper die of the mold, 2... Lower die of the mold, 3... Resin inflow gate, 4... Molding space, 5... Circular thin molded part, 22... Circular thin part, 23... Gate trace during injection molding, 25...Resin welding surface.
Claims (1)
口する一部に薄肉部を有した熱可塑性樹脂からな
る環状の電池用封口体の製造法であつて、この電
池用封口体はその側縁部が正極ケース及び負極集
電体を兼ねた底板によつて狭持され、中央部に負
極と前記底板を電気導通するための集電子が貫通
する穴を有し、側縁部と中央部との間の一部に設
けられた薄肉部の形状が円形又は方形であり、か
つ封口体の射出成形型がその樹脂流入ゲートを封
口体中心部からみて、前記薄肉部と対称の範囲内
に形成されていて、この樹脂流入ゲートより溶融
樹脂を流入して左右方向に樹脂を流通させ前記薄
肉部の中に溶融樹脂の会合面が生成するように
し、樹脂溶接面を薄肉部上に形成することを特徴
とした電池用封口体の製造法。 2 前記熱可塑性樹脂がポリエチレン、ポリアミ
ド、ポリプロピレン及びポリスルフオンからなる
群より選択したいずれかである特許請求の範囲第
1項に記載の電池封口体の製造法。[Scope of Claims] 1. A method for manufacturing an annular battery sealing body made of a thermoplastic resin having a thin-walled portion in a portion that seals an opening of a positive electrode case containing a power generation element, the battery sealing body comprising: The side edge of the body is sandwiched between a positive electrode case and a bottom plate that also serves as a negative electrode current collector, and has a hole in the center through which a current collector passes through for electrically conducting the negative electrode and the bottom plate. The shape of the thin-walled portion provided in a part between the center portion and the center portion is circular or rectangular, and the injection mold of the sealing body has a resin inflow gate that is symmetrical to the thin-walled portion when viewed from the center of the sealing body. The molten resin flows in from this resin inflow gate and flows in the left and right direction to create a meeting surface of the molten resin in the thin wall part, and the resin welding surface is connected to the thin wall part. A method for manufacturing a battery sealing body, characterized in that the sealing body is formed on the battery sealing body. 2. The method for manufacturing a battery sealing body according to claim 1, wherein the thermoplastic resin is one selected from the group consisting of polyethylene, polyamide, polypropylene, and polysulfone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3929180A JPS56136453A (en) | 1980-03-26 | 1980-03-26 | Production of sealing material for battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3929180A JPS56136453A (en) | 1980-03-26 | 1980-03-26 | Production of sealing material for battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56136453A JPS56136453A (en) | 1981-10-24 |
JPS6146944B2 true JPS6146944B2 (en) | 1986-10-16 |
Family
ID=12549043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3929180A Granted JPS56136453A (en) | 1980-03-26 | 1980-03-26 | Production of sealing material for battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56136453A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58121425A (en) * | 1982-01-14 | 1983-07-19 | Toshiba Corp | Stationary type reactive power compensating device for electric power |
JPS60218773A (en) * | 1984-04-12 | 1985-11-01 | Sanyo Electric Co Ltd | Sealed alkaline storage battery |
US6042967A (en) * | 1998-07-29 | 2000-03-28 | Duracell Inc | End cap seal assembly for an electrochemical cell |
-
1980
- 1980-03-26 JP JP3929180A patent/JPS56136453A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS56136453A (en) | 1981-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3477734A1 (en) | Composite explosion-proof valve, cover plate assembly, and battery | |
JP5011664B2 (en) | Sealed secondary battery | |
US7759001B2 (en) | Battery and method of manufacturing the battery | |
CN101170167B (en) | Explosion-proof covering board component | |
US5227261A (en) | Cylindrical electrochemical cells with a diaphragm seal | |
JPH07105933A (en) | Anti-explosive enclosed battery | |
CN101170168A (en) | Covering board component with explosion-proof function | |
US4758482A (en) | Enclosed type lead batteries and method for producing the same | |
JP2013187530A (en) | Explosion-proof valve for hermetic type electrochemical device | |
US4804593A (en) | Enclosed cell having safety valve mechanism and fabricating method of the same | |
KR102693187B1 (en) | Secondary Battery | |
CN101814589A (en) | Explosion-proof cap of micro-resistance cylindrical lithium ion battery | |
CN101170169B (en) | Covering board component | |
JP4339923B1 (en) | Sealed battery | |
JPH11260334A (en) | Explosion-proof sealing plate for sealed battery, manufacture thereof, and sealed battery using the same | |
JPS6146944B2 (en) | ||
EP0246590B1 (en) | Enclosed cell having safety valve mechanism and fabricating method of the same | |
CN201233919Y (en) | Lithium ionic cell covering cap device | |
KR102111203B1 (en) | Insulator and cap assembly of cylindrical secondary battery and manufacturing method thereof | |
CN2411578Y (en) | Explosion-proof cover for cylindrical lithium ion accumulator | |
JP5818004B2 (en) | Sealing plate for sealed electrochemical devices | |
CN112002861B (en) | Battery explosion-proof valve | |
JP2013143370A5 (en) | ||
CN207637927U (en) | A kind of cylindrical battery | |
CN201355616Y (en) | Protection device for cylindrical lithium batteries |