JPS6146810B2 - - Google Patents
Info
- Publication number
- JPS6146810B2 JPS6146810B2 JP50072256A JP7225675A JPS6146810B2 JP S6146810 B2 JPS6146810 B2 JP S6146810B2 JP 50072256 A JP50072256 A JP 50072256A JP 7225675 A JP7225675 A JP 7225675A JP S6146810 B2 JPS6146810 B2 JP S6146810B2
- Authority
- JP
- Japan
- Prior art keywords
- mirror
- reflecting
- glass
- dust
- convex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011521 glass Substances 0.000 claims description 38
- 230000003287 optical effect Effects 0.000 claims description 9
- 230000004075 alteration Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- 239000006059 cover glass Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 201000009310 astigmatism Diseases 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/02—Objectives
- G02B21/04—Objectives involving mirrors
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Description
【発明の詳細な説明】
本発明は顕微鏡反射対物鏡に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a microscope reflecting objective.
従来公知の顕微鏡反射対物鏡において、充分な
作動距離を有すると共に試料面から反射対物鏡胴
付までの中にレンズ系を配置することによつて高
倍の反射対物レンズと同一の共役距離を有するよ
うにした低倍でしかも有効率の低下を極力少なく
したものとしては例えば第1図に示すようなもの
がある。そしてこのような反射対物鏡は一般には
対物レンズ中に塵などが入るのを防止するため
に、第1図に点線にて示すように防塵用ガラス板
P1,P2を設けてある。そのうち物体側に配置した
防塵用ガラス板P1は曲率半径が対物鏡の焦点距離
をfとするとf〜2f程度の物体に対し凹面を向け
たほぼ同心球状のものとした方が、カバーガラス
により発生する球面収差を補正する役割をもたせ
ることが出来るために好ましい。しかしながらこ
のような防塵用ガラス板P1,P2を配置した場合、
これがフレアー、ゴースト等の原因となり好まし
くない。 Conventionally known microscope reflective objectives have a sufficient working distance, and by arranging the lens system from the sample surface to the reflective objective barrel, it is possible to have the same conjugate distance as a high-magnification reflective objective lens. For example, there is a device as shown in FIG. 1 that has a low magnification and minimizes the drop in effectiveness. In order to prevent dust from entering the objective lens, such reflective objectives generally have a dust-proof glass plate as shown by the dotted line in Figure 1.
P 1 and P 2 are provided. It would be better to make the dust-proof glass plate P1 placed on the object side into an almost concentric sphere with a radius of curvature of f~2f, where f is the focal length of the objective mirror, with the concave surface facing the object. This is preferable because it can serve to correct the spherical aberration that occurs. However, when such dustproof glass plates P 1 and P 2 are arranged,
This is undesirable as it causes flare, ghost, etc.
即ち、防塵用ガラスP1としてf〜2f程度の曲率
半径を持つ同心球面よりなるものをその、凹面を
物体側に向けて配置すると、物体面より発した光
束が防塵用ガラスP1の入射面で反射して物体面に
戻り標本上のカバーガラスで再反射して反射対物
鏡に戻り像面に達してフレアー、ゴーストとな
る。又反射対物鏡を出る光束は、通常ゆるい収斂
光束である。そのため防塵用ガラスP2を光軸に垂
直に配置した場合、上記の光束が防塵用ガラスP2
の入射面で反射されて反射対物鏡内の凸面反射鏡
の凸面で反射されて像面に達しフレアー、ゴース
トとなる。 In other words, if the dust-proof glass P 1 is made of concentric spherical surfaces with a radius of curvature of about f to 2f and is placed with its concave surface facing the object side, the light beam emitted from the object surface will be directed to the incident surface of the dust-proof glass P 1 . It is reflected back to the object plane, then re-reflected by the cover glass above the specimen, returns to the reflecting objective mirror, and reaches the image plane, where it becomes flare and ghost. Also, the beam exiting the reflecting objective is usually a loosely convergent beam. Therefore, if the dustproof glass P 2 is placed perpendicular to the optical axis, the above luminous flux will be reflected from the dustproof glass P 2
It is reflected by the incident surface of the mirror, and is reflected by the convex surface of the convex reflecting mirror in the reflecting objective mirror, reaching the image plane, resulting in flare and ghost.
本発明は以上の点に鑑みなされたもので、上記
の防塵用ガラスのうち物体側に配置されたものの
物体側の面を物体に対し緩い凸面とすると共に像
側に配置された防塵用ガラスを光軸に対して僅か
に傾斜させて配置した顕微鏡反射対物鏡を提供す
るものである。 The present invention has been made in view of the above points, and the object-side surface of the dust-proof glass placed on the object side is made a gentle convex surface with respect to the object, and the dust-proof glass placed on the image side is A microscope reflecting objective is provided which is arranged at a slight inclination with respect to the optical axis.
以下、本発明の顕微鏡反射対物鏡の詳細な内容
を説明すると、第2図に示すように物体側より順
に、いずれも表面反射鏡から成る凹面鏡M1、凸
面鏡M2および平面反射鏡M3を各々光軸を一致さ
せて配置し、物体よりの光が平面反射鏡M3,凹
面反射鏡M1,平面反射鏡M3,凸面鏡M2にて順次
反射された後像点に至るように構成された対物系
でこれらは第1図に示す従来例と基本的には同一
の構成のものである。そして更に上述のレンズ系
の物体側に物体に対し凸面を向けた第1の防塵用
ガラスP1を凹面鏡M1、凸面鏡M2および平面反射
鏡M3の夫々と同軸に配置するとともに、この光
軸に対して僅かに傾斜させて配置した第2の防塵
用ガラスP2とを備えたものである。そして更に、
第1の防塵用ガラスP1の物体側の面の曲率半径を
r1,第2の防塵用ガラスP2の光軸と垂直な面との
なす角をθ,全系の焦点距離をfとする時、次に
示すような各条件を満足するようにしたものであ
る。 The details of the microscope reflecting objective mirror of the present invention will be explained below. As shown in FIG . They are arranged so that their optical axes coincide with each other, and the light from the object is sequentially reflected by the plane reflecting mirror M 3 , the concave reflecting mirror M 1 , the plane reflecting mirror M 3 , and the convex mirror M 2 before reaching the image point. These objective systems have basically the same construction as the conventional example shown in FIG. Further, a first dustproof glass P 1 having a convex surface facing the object is placed on the object side of the lens system described above, coaxially with each of the concave mirror M 1 , the convex mirror M 2 and the flat reflecting mirror M 3 , and this light It is equipped with a second dustproof glass P 2 disposed at a slight inclination with respect to the axis. And furthermore,
The radius of curvature of the object side surface of the first dustproof glass P1 is
r 1 , the angle between the optical axis of the second dustproof glass P 2 and the perpendicular surface is θ, and the focal length of the entire system is f, the following conditions are satisfied: It is.
(1) 4f<r1
(2) 5゜<θ<30゜
次に両防塵ガラスP1,P2を上述のような形状や
配置した理由および上記各条件の意味について説
明する。本発明の顕微鏡反射対物鏡において第1
の防塵用ガラスP1を物体側に凸面を向けたものと
したのは、この凸面で反射した物体面からの光を
視野外に導びくためのものである。つまり凸面に
することによりこの面で反射されて標本面上のカ
バーガラスで再反射した光が反射対物鏡に戻らな
いようにし、又仮りに反射対物鏡に戻つたとして
も視野内に入らないようにした。(1) 4f<r 1 (2) 5°<θ<30° Next, the reason why the two dustproof glasses P 1 and P 2 are shaped and arranged as described above and the meaning of each of the above conditions will be explained. In the microscope reflecting objective of the present invention, the first
The reason why the dustproof glass P 1 has a convex surface facing the object is to guide light from the object surface reflected by this convex surface out of the field of view. In other words, by making the surface convex, the light reflected from this surface and re-reflected by the cover glass on the specimen surface will not return to the reflecting objective, and even if it does return to the reflecting objective, it will not enter the field of view. I made it.
今、この第1の防塵用ガラスが平面板であると
仮定する。第6図は後に示す本発明の実施例にも
とづいて画いた図で、この図より明らかなように
標本Sより発して平行平面板P′1(凸面を物体側
に向けた第1の防塵用ガラスの代りに配置した)
の表面にて反射された光は、標本面に戻つたとき
全て視野外のS′の位置に当たる。したがつて標本
面で再反射された光は、仮りに反射対物鏡内に入
射したとしても結像面の視野中に達することはな
くフレアーやゴーストとはならない。 Now, assume that this first dustproof glass is a flat plate. FIG. 6 is a diagram drawn based on the embodiment of the present invention to be shown later. As is clear from this diagram, a parallel plane plate P' 1 (the first dustproof plate with the convex surface facing the object side) is attached to the specimen S. (placed in place of glass)
When the light reflected from the surface of the specimen returns to the specimen surface, it all hits the position S' outside the field of view. Therefore, even if the light that is re-reflected from the specimen surface enters the reflecting objective mirror, it will not reach the field of view of the imaging plane and will not cause flare or ghost.
以上のことはNA,視野の大きさ,作動距離の
関係によつて多少変動するが、第1の防塵用ガラ
スP1の入射面を凸面にすればフレアー光を一層視
野外へ向けることができるので、通常の反射対物
鏡であれば凸面の曲率を適宜定めることによつて
フレアーやゴーストを除去できる。 The above will vary somewhat depending on the relationship between NA, field of view size, and working distance, but if the entrance surface of the first dustproof glass P1 is made convex, the flare light can be directed further out of the field of view. Therefore, in the case of a normal reflective objective mirror, flare and ghost can be removed by appropriately determining the curvature of the convex surface.
この場合第1の防塵ガラスP1の凸面の曲率が大
きい程効果は大である。しかし作動距離および収
差の面を考慮すると、この凸面の曲率があまり大
になると第1の防塵用ガラスP1のレンズ作用が強
くなり好ましくない。つまりレンズ作用が強くな
ると作動距離が小になり収差が悪くなる。この収
差の悪化は、すべての収差について言えるが特に
色収差においてその影響が大である。 In this case, the greater the curvature of the convex surface of the first dustproof glass P1 , the greater the effect. However, in consideration of the working distance and aberrations, if the curvature of this convex surface becomes too large, the lens action of the first dustproof glass P 1 will become strong, which is not preferable. In other words, the stronger the lens action, the smaller the working distance and the worse aberrations. This deterioration of aberrations can be said for all aberrations, but it has a particularly large effect on chromatic aberrations.
反射対物鏡は、表面反射鏡のみからなつている
ので、色収差を補正する手段を全くもつていな
い。したがつて第1の防塵用ガラスP1で色収差が
大きく発生した場合、これを補正することができ
ない。そのためにこの凸面の曲率をあまり強くす
ることが出来ず、条件(1)に示すようにr1>4fとす
る必要がある。この条件(1)を満足しないと特に色
収差が悪化する。 Since the reflecting objective mirror consists only of surface reflecting mirrors, it does not have any means for correcting chromatic aberration. Therefore, if a large amount of chromatic aberration occurs in the first dustproof glass P1 , it cannot be corrected. Therefore, the curvature of this convex surface cannot be made very strong, and it is necessary to set r 1 >4f as shown in condition (1). If this condition (1) is not satisfied, chromatic aberration in particular worsens.
例えば第1の防塵用ガラスP1の材質として通常
好ましいとされている石英を用い、r1=4fとし、
その他の数値が後に示す実施例1で表わされる反
射対物鏡の色収差を求めると、d−cで約0.01で
ある。したがつて10xの対物鏡で拡大された像面
では0.01×100=1mm程度となる。この程度の値
が色収差の限界である。即ち、r1が条件(1)を越え
ると色収差が悪化し好ましくない。 For example, using quartz, which is usually considered preferable as the material of the first dustproof glass P 1 , and setting r 1 = 4f,
The chromatic aberration of the reflective objective mirror shown in Example 1, other numerical values of which will be shown later, is approximately 0.01 in d−c. Therefore, the image plane magnified by a 10x objective mirror is about 0.01 x 100 = 1 mm. This value is the limit of chromatic aberration. That is, if r 1 exceeds condition (1), chromatic aberration worsens, which is not preferable.
次に第2の防塵用ガラスP2を傾けて配置したの
は、この防塵用ガラスP2の入射面で反射し更に凸
面鏡M2の凸面で反射した光が像面から外れるよ
うにするためである。この場合その傾斜角θが条
件(2)を満足するようにすることが好ましい。この
角θがあまり小さくて下限を越えるとフレアー、
ゴーストの防止効果がなく、又上限を越えるとこ
の防塵用ガラスP2を通る光の光路長が大となり収
差補正上好ましくない。 Next, the second dustproof glass P 2 is tilted so that the light reflected by the incident surface of the dustproof glass P 2 and further reflected by the convex surface of the convex mirror M 2 will be removed from the image plane. be. In this case, it is preferable that the inclination angle θ satisfies condition (2). If this angle θ is too small and exceeds the lower limit, flare occurs.
There is no effect of preventing ghosts, and if the upper limit is exceeded, the optical path length of light passing through this dustproof glass P 2 becomes large, which is unfavorable in terms of aberration correction.
物体からの光のうち第2の防塵用ガラスP2の入
射面で反射された凸面鏡M2で更に反射され最も
フレアー、ゴーストを発しやすい(像面から外れ
にくい)光線は、NAが最大のものである。 Among the light from the object, the light rays that are reflected from the incident surface of the second dustproof glass P2 and further reflected by the convex mirror M2 , and which are most likely to produce flare and ghost (hard to deviate from the image plane), have the largest NA. It is.
第7図は第2の防塵用ガラスP2の傾斜角θが5
゜のとき示したもので、NAが最大の光線lは図
示するように進みその像面における高さYは後に
示す実施例においてはY≒−18.5mmになる。反射
対物鏡の像高(視野数の半分)は10mmであるから
フレアー光は視野より8mm強外れた位置を通るこ
とになる。しかし軸外光や反射対物鏡内での乱反
射の可能性を考慮するとフレアー光は上記の値程
度外れるようにすることが必要である。したがつ
てθ>5゜とした。 Figure 7 shows that the inclination angle θ of the second dustproof glass P 2 is 5.
The light ray l with the maximum NA advances as shown in the figure, and its height Y on the image plane becomes Y≈−18.5 mm in the example shown later. Since the image height (half of the field of view) of the reflecting objective is 10 mm, the flare light passes through a position slightly more than 8 mm away from the field of view. However, considering the possibility of off-axis light and diffuse reflection within the reflecting objective mirror, it is necessary that the flare light deviates from the above value. Therefore, θ>5°.
フレアー,ゴーストを除去する目的からは角θ
はいくら大きくてもよい。しかし収差を考慮した
場合はθがあまり大きくなることは好ましくな
い。つまり光路中に厚いガラス板を挿入すると球
面収差、非点収差、歪曲収差等が発生する。これ
ら収差の発生を防ぐためには、硝路があまり長く
ならないようにする必要がある。実際上は30゜程
度であつてこれを越えると収差上好ましくない。
したがつて条件(2)のように上限を定めることが必
要である。 For the purpose of removing flare and ghost, the angle θ
can be as large as it is. However, when aberrations are taken into consideration, it is not preferable for θ to become too large. In other words, when a thick glass plate is inserted into the optical path, spherical aberration, astigmatism, distortion, etc. occur. In order to prevent the occurrence of these aberrations, it is necessary to prevent the optical path from becoming too long. In reality, the angle is about 30°, and anything larger than this is not desirable in terms of aberrations.
Therefore, it is necessary to set an upper limit as in condition (2).
尚上記条件の他第1の防塵ガラスP1の肉厚d1を
次の条件(3)のように定めれば一層好ましい。 In addition to the above conditions, it is more preferable to set the thickness d 1 of the first dustproof glass P 1 as in the following condition (3).
(3) d1<0.4f
この条件3を満足しないとこの防塵ガラスP1に
よつて球面収差が発生し、それを反射対物鏡によ
つて補正することがむづかしくなる。(3) d 1 <0.4f If condition 3 is not satisfied, spherical aberration will occur due to the dustproof glass P 1 and it will be difficult to correct it using the reflecting objective mirror.
次に以上述べた本発明反射対物鏡の各実施例を
示す。 Next, each embodiment of the reflective objective mirror of the present invention described above will be shown.
実施例 1
焦点距離 15.367
共役距離 18.925
最大N.A 0.25
最小N.A 0.138
倍率 1 10倍
有効率 46.8%
作動距離 21.724
r1=403.62
d1=2
r2=∞
d2=12.92
r3=∞
d3=−12.58
r4=35.583
d4=12.58
r5=∞
d5=−6.42
r6=−18.515
d6=1.4
r7=∞
d7=1.24
r8=∞
実施例 2
焦点距離 15.254
共役距離 182.992
最大N.A 0.25
最小N.A 0.138
倍率 10.0
有効率 46.8%
作動距離 22.107
r1=1280.749
d1=1.97
r2=∞
d2=13.15
r3=∞
d3=−12.58
r4=34.93
d4=12.58
r5=∞
d5=−6.07
r6=−17.409
d6=14
r7=∞
d7=1.24
r8=∞
実施例 3
焦点距離 15.371
共役距離 182.984
最大N.A 0.25
最小N.A 0.138
倍率 10.0
有効率 46.8%
作動距離 21.79
r1=435.148
d1=1.79
r2=∞
d2=12.99
r3=∞
d3=−12.58
r4=35.472
d4=12.58
r5=∞
d5=−6.34
r6=−18.418
d6=14
r7=∞
d7=0.99
r8=∞
上記各実施例において、r1,r2…は光の進路の
順に示した各面の曲率半径、d1,d2…は同様に各
面間の距離である。したがつて平面反射鏡M3は
二度反射するのでr3およびr5にて示してある。又
dの値は光が物体側に向かつた時を負の符号にて
示してある。更に防塵用ガラス板P1,P2は分光分
折用にも用い得るように石英を使用した方が紫外
線にても利用し得るために好ましい。Example 1 Focal length 15.367 Conjugate distance 18.925 Maximum NA 0.25 Minimum NA 0.138 Magnification 1 10x effective rate 46.8% Working distance 21.724 r 1 = 403.62 d 1 = 2 r 2 = ∞ d 2 = 12.92 r 3 = ∞ d 3 = - 12.58 R 4 = 35.583 D 4 = 12.58 R 5 = ∞ D 5 = -6.42 R 6 = -18.515 D 6 = 1.4 R 7 = 1.24 R 8 = 1.24 R 8 = 1.24 R 8 = 1.24 R 8 = 1.24 R 8 = 1.24 R 8 = 0.25 Minimum NA 0.138 Magnification 10.0 Effectiveness 46.8% Working distance 22.107 r 1 = 1280.749 d 1 = 1.97 r 2 = ∞ d 2 = 13.15 r 3 = ∞ d 3 = −12.58 r 4 = 34.93 d 4 = 12.58 r 5 = ∞ d 5 = -6.07 r 6 = -17.409 d 6 = 14 r 7 = ∞ d 7 = 1.24 r 8 = ∞ Example 3 Focal length 15.371 Conjugate distance 182.984 Maximum NA 0.25 Minimum NA 0.138 Magnification 10.0 Effectiveness rate 46.8% Working distance 21. 79 r 1 = 435.148 d 1 = 1.79 r 2 = ∞ d 2 = 12.99 r 3 = ∞ d 3 = −12.58 r 4 = 35.472 d 4 = 12.58 r 5 = ∞ d 5 = −6.34 r 6 = −18.418 d 6 = 14 r 7 = ∞ d 7 = 0.99 r 8 = ∞ In each of the above examples, r 1 , r 2 ... are the curvature radii of each surface shown in the order of the light path, and d 1 , d 2 ... are the curvature radius of each surface in the same way. is the distance between. Therefore, plane reflector M 3 reflects twice, which is indicated by r 3 and r 5 . Further, the value of d is indicated by a negative sign when the light is directed toward the object side. Furthermore, it is preferable to use quartz as the dust-proof glass plates P 1 and P 2 so that they can also be used for spectroscopic analysis, since they can also be used for ultraviolet light.
第1図は従来の反射対物鏡の断面図、第2図は
本発明の反射対物鏡の断面図、第3図乃至第5図
は本発明の各実施例の収差曲線図、第6図は第1
の防塵用ガラスとして平行平面板を用いた場合の
フレアー光の状態を示す図、第7図は、第2の防
塵ガラスP2を5゜傾けて配置した時のフレアー光
の状態を示す図である。
FIG. 1 is a sectional view of a conventional reflective objective mirror, FIG. 2 is a sectional diagram of a reflective objective mirror of the present invention, FIGS. 3 to 5 are aberration curve diagrams of each embodiment of the present invention, and FIG. 6 is a sectional diagram of a conventional reflective objective mirror. 1st
Fig. 7 is a diagram showing the state of flare light when a parallel plane plate is used as the dust-proof glass for the second dust-proof glass P2 . be.
Claims (1)
る凹面鏡、凸面鏡および平面反射鏡を各々光軸を
一致させて配置し、物体よりの光が順次平面反射
鏡、凹面鏡、平面反射鏡、凸面鏡にて反射した後
に結像するように構成した反射対物鏡において、
その入射側に物体側に凸面を何けた第1の防塵ガ
ラスを上記各反射鏡と同軸に配置すると共に、射
出側に上記光軸に対して傾斜させた第2の防塵ガ
ラスを配置し、上記両防塵ガラスを次に示す条件
を満足するような構成にしたことを特徴とする顕
微鏡反射対物鏡。 (1) 4f< r1 (2) 5゜< θ< 30゜ ただし、fは焦点距離、r1は第1の防塵ガラス
の物体側の面の曲率半径、θは第2の防塵ガラス
の光軸と垂直な面からの傾斜角である。[Claims] 1. A concave mirror, a convex mirror, and a flat reflecting mirror, all of which are surface reflecting mirrors, are arranged in order from the object side with their optical axes coinciding with each other, so that light from the object is sequentially directed to the flat reflecting mirror, the concave mirror, and the flat reflecting mirror. In a reflecting objective configured to form an image after being reflected by a reflecting mirror or a convex mirror,
A first dust-proof glass having a convex surface facing the object side is disposed coaxially with each of the reflecting mirrors on the incident side, and a second dust-proof glass inclined with respect to the optical axis is disposed on the exit side. A microscope reflecting objective mirror characterized in that both dust-proof glasses are configured to satisfy the following conditions. (1) 4f< r 1 (2) 5゜<θ< 30゜ Where, f is the focal length, r 1 is the radius of curvature of the object side surface of the first dustproof glass, and θ is the light intensity of the second dustproof glass. It is the angle of inclination from the plane perpendicular to the axis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50072256A JPS51148440A (en) | 1975-06-14 | 1975-06-14 | Microscopic reflecting oriective-lens |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP50072256A JPS51148440A (en) | 1975-06-14 | 1975-06-14 | Microscopic reflecting oriective-lens |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS51148440A JPS51148440A (en) | 1976-12-20 |
JPS6146810B2 true JPS6146810B2 (en) | 1986-10-16 |
Family
ID=13484021
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP50072256A Granted JPS51148440A (en) | 1975-06-14 | 1975-06-14 | Microscopic reflecting oriective-lens |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS51148440A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013536947A (en) * | 2010-09-01 | 2013-09-26 | ケーエルエー−テンカー コーポレイション | Condensing optical system |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5966227U (en) * | 1982-10-25 | 1984-05-02 | 富士通株式会社 | Laser recording device |
JPS6260921U (en) * | 1985-10-07 | 1987-04-15 | ||
US4630130A (en) * | 1985-10-21 | 1986-12-16 | Xerox Corporation | Scanning system for controlling stray beams caused by undesirable optical reflections |
JPS62273518A (en) * | 1986-05-21 | 1987-11-27 | Konika Corp | Picture forming device |
JPH043104A (en) * | 1990-04-20 | 1992-01-08 | Dainippon Screen Mfg Co Ltd | Objective lens for microscope |
DE4413920B4 (en) * | 1993-06-18 | 2004-07-15 | Carl Zeiss | Insert for viewing opening of a drape and drape with such an insert and surgical microscope with such drape and insert |
WO2008071275A1 (en) * | 2006-12-15 | 2008-06-19 | Carl Zeiss Sms Gmbh | Microscope objective having a tubular optical system |
-
1975
- 1975-06-14 JP JP50072256A patent/JPS51148440A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013536947A (en) * | 2010-09-01 | 2013-09-26 | ケーエルエー−テンカー コーポレイション | Condensing optical system |
Also Published As
Publication number | Publication date |
---|---|
JPS51148440A (en) | 1976-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5045429B2 (en) | Oblique projection optical system | |
US6268963B1 (en) | Optical system having a reflecting surface | |
US6181470B1 (en) | Optical element having a plurality of decentered reflecting curved surfaces, and optical instrument including the same | |
JP3495860B2 (en) | Eccentric optical system and projection device using the same | |
US7245443B2 (en) | Panoramic attachment optical system, and panoramic optical system | |
CN115657275A (en) | Ultra-short-focus projection lens and projection system | |
JP4060908B2 (en) | Fingerprint reading optical system | |
JP2556984B2 (en) | Endoscope | |
JPS6146810B2 (en) | ||
US5502597A (en) | Wide-angle photographic lens system and a photographic camera | |
JP2578481B2 (en) | Projection lens | |
US4109263A (en) | Compact prism camera | |
US8215778B2 (en) | Projector apparatus | |
US6351338B2 (en) | Image pickup optical system | |
US4098549A (en) | Eye bottom camera | |
JP3076098B2 (en) | Large aperture wide angle lens | |
US4740067A (en) | Projection lens system | |
JP2003110891A (en) | Imaging optical system | |
JP2008181094A (en) | Rear projector | |
JPH08179400A (en) | Finder optical system and reversal optical system thereof | |
US3191497A (en) | Catadioptric optical system of large relative aperture | |
JPH0392809A (en) | Reflection and refraction type optical system | |
JPH04333813A (en) | Microfilm projection lens system | |
JPS6123525B2 (en) | ||
JP3045610B2 (en) | Single-sided double-sided aspheric lens |