JP2556984B2 - Endoscope - Google Patents

Endoscope

Info

Publication number
JP2556984B2
JP2556984B2 JP63023963A JP2396388A JP2556984B2 JP 2556984 B2 JP2556984 B2 JP 2556984B2 JP 63023963 A JP63023963 A JP 63023963A JP 2396388 A JP2396388 A JP 2396388A JP 2556984 B2 JP2556984 B2 JP 2556984B2
Authority
JP
Japan
Prior art keywords
group
endoscope
lens
solid
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63023963A
Other languages
Japanese (ja)
Other versions
JPH01200316A (en
Inventor
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP63023963A priority Critical patent/JP2556984B2/en
Priority to US07/272,991 priority patent/US4986642A/en
Publication of JPH01200316A publication Critical patent/JPH01200316A/en
Application granted granted Critical
Publication of JP2556984B2 publication Critical patent/JP2556984B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、内視鏡に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an endoscope.

[従来の技術] 内視鏡対物レンズとして第27図に示す特開昭49−1215
47号に記載されたもののようなレトロフォーカスタイプ
のものが知られている。この内視鏡対物レンズは、イメ
ージガイド1の入射面に垂直に入射するようにレンズ系
が構成されている。そのために、歪曲収差が大きく、レ
ンズの外径が像の径に比べて大きい等の欠点を有してい
る。
[Prior Art] JP-A-49-1215 shown in FIG. 27 as an endoscope objective lens.
A retrofocus type such as the one described in No. 47 is known. In this endoscope objective lens, a lens system is configured so as to be incident vertically on the incident surface of the image guide 1. Therefore, there are drawbacks such as large distortion and a large outer diameter of the lens as compared with the diameter of the image.

一方近年イメージガイドの代りに固体撮像素子を用い
た電子内視鏡においては、第28図に示すように主光線が
固体撮像素子に対して斜めに入射してもイメージファイ
バーを用いた時のような欠点を生ずることなしに画像は
伝送される。そのため対物レンズを特開昭61−35414号
に示されているような構成にして歪曲収差が小さく,レ
ンズ系の全長が短く,外径が小さく,広角で,周辺光量
を十分得られるようにしたものが知られている。
On the other hand, in recent years, in an electronic endoscope that uses a solid-state image sensor instead of an image guide, as in the case of using an image fiber even when the chief ray is obliquely incident on the solid-state image sensor as shown in FIG. The image is transmitted without causing any drawbacks. Therefore, the objective lens is constructed as shown in Japanese Patent Laid-Open No. 61-35414 so that the distortion is small, the total length of the lens system is short, the outer diameter is small, the wide angle is wide, and the peripheral light quantity is sufficiently obtained. Things are known.

これら特開昭49−121547号,特開昭61−35414号の内
視鏡対物レンズは、いずれも像距離(最終レンズから結
像点までの距離)が短い。
In each of the endoscope objective lenses disclosed in JP-A-49-121547 and JP-A-61-35414, the image distance (the distance from the final lens to the image forming point) is short.

これら従来例で、前者はイメージガイドを用いている
ために、イメージガイドの長手方向とスコープの長手方
向とが一致しており、光学系の光軸もそれらに一致させ
る必要があるために、内視鏡の先端部をコンパクトにす
るためには像距離が短いほうが望ましい。
In these conventional examples, since the former uses an image guide, the longitudinal direction of the image guide coincides with the longitudinal direction of the scope, and the optical axis of the optical system needs to coincide with them. It is desirable that the image distance be short in order to make the tip portion of the endoscope compact.

また後者の対物レンズのように固体撮像素子を用いた
内視鏡に使用されるものも像距離が短い方がコンパクト
化にとって望ましい。しかし現在用いられている固体撮
像素子は、撮像部に比べてパッケージの大きさが非常に
大きく内視鏡に組込んだ状態では内視鏡の太さが太くな
りすぎて実用的ではない。またフレームトランスファー
型の固体撮影素子(電荷結合素子)では、撮像部のとな
りに蓋積部が配置され固体撮像素子の大きさが撮像部の
2倍になり同様に内視鏡の径を補足するのには適してい
ない。
Further, in the latter objective lens used in an endoscope using a solid-state image pickup element, it is desirable that the image distance is short for compactness. However, the solid-state image sensor currently used is not practical because the size of the package is much larger than that of the image pickup section and the thickness of the endoscope becomes too thick when incorporated in the endoscope. In the frame transfer type solid-state imaging device (charge-coupled device), the lid stacking part is arranged next to the imaging part, and the size of the solid-state imaging device is twice as large as that of the imaging part. Not suitable for.

このような欠点を解決するために特開昭60−26981号
のようにレトロフォーカスタイプの対物レンズを用いそ
の後方にプリズムを配置して光路を曲げ、固体撮像素子
をその長手方向が内視鏡の中心軸に平行になるよう配置
したものが知られている。第29図はその一例を示す図で
あって内視鏡の先端部内に設けられたレトロフォーカス
タイプの対物レンズの後方のプリズムが配置されこのプ
リズムの射出側において固体撮像素子が内視鏡の中心軸
上にその長手方向を軸方向に平行に配置したものであ
る。このように構成したことによって固体撮像素子のた
めに内視鏡の先端部の径が太くなるのを避けることがで
きる。
In order to solve such a drawback, as in JP-A-60-26981, a retrofocus type objective lens is used, a prism is arranged behind the objective lens and the optical path is bent, and the solid-state image pickup device has an endoscope whose longitudinal direction is an endoscope. It is known that they are arranged so as to be parallel to the central axis of. FIG. 29 is a diagram showing an example thereof, in which a prism behind the retrofocus type objective lens provided in the tip portion of the endoscope is arranged, and the solid-state image pickup element is at the center of the endoscope on the exit side of this prism. The longitudinal direction is arranged on the shaft in parallel with the axial direction. With this configuration, it is possible to prevent the diameter of the distal end portion of the endoscope from increasing due to the solid-state image sensor.

しかし対物レンズがレトロフォーカスタイプであるた
めにレンズの径を細くすることが困難である。また第30
図に示すように主光線が光軸にほぼ平行であり、対物レ
ンズの後方にプリズムを配置しているために像距離が長
くなっており、固体撮像素子の前のプリズムの入射位置
で光線高が高くなりプリズムを小型に出来ずコンパクト
にすることが困難になる。また固体撮像素子の長手方向
が内視鏡の中心軸線に沿うために内視鏡先端から固体撮
像素子の後端までの距離が長くなり屈曲部分へ内視鏡を
挿入することが困難になる等の問題が生ずる。
However, since the objective lens is a retrofocus type, it is difficult to reduce the diameter of the lens. Also 30th
As shown in the figure, the principal ray is almost parallel to the optical axis, and the image distance is long because the prism is placed behind the objective lens, and the ray height is higher at the incident position of the prism in front of the solid-state image sensor. Becomes high, and it becomes difficult to make the prism compact and compact. Further, since the longitudinal direction of the solid-state image sensor is along the central axis of the endoscope, the distance from the tip of the endoscope to the rear end of the solid-state image sensor becomes long, which makes it difficult to insert the endoscope into a bent portion. The problem of occurs.

[発明が解決しようとする課題] 本発明は、固体撮像素子と先端光学系を含み、レンズ
系を細かくすると共に固体撮像素子の収納も含めて先端
部を細かくコンパクトにした内視鏡を提供するものであ
る。
[Problems to be Solved by the Invention] The present invention provides an endoscope including a solid-state imaging device and a tip optical system, a lens system that is fine, and a tip portion that is small and compact including a housing of the solid-state imaging device. It is a thing.

[課題を解決するための手段] 本発明は、固体撮像素子と対物レンズを含み、固体撮
像素子の前面にプリズムを配置し固体撮像素子の長手方
向を内視鏡の軸方向に対し斜めに傾斜させるか或は軸方
向に平行に配置したもので、対物レンズのレンズ構成
は、物体側より順に負の屈折力を持つ最前群と、全体と
して正の屈折力を持つ中間群と、空気面に接する凹面を
有するレンズを含む負の屈折力を有する最終群と、中間
群の最も物体側の面から最も像側の面の間に絞りを配置
したレンズ系で次の条件(1),(2),(3)を満足
するものである。
[Means for Solving the Problems] The present invention includes a solid-state image sensor and an objective lens, a prism is arranged in front of the solid-state image sensor, and the longitudinal direction of the solid-state image sensor is obliquely inclined with respect to the axial direction of the endoscope. The objective lens is composed of a front lens group having a negative refracting power in order from the object side, an intermediate lens group having a positive refracting power as a whole, and an air surface. The following conditions (1) and (2) are used in a lens system in which a final lens unit having a negative refractive power including a lens having a concave surface in contact with it and a diaphragm disposed between the most object side surface and the most image side surface of the intermediate group. ) And (3) are satisfied.

(1) |θ1|>|θ2/3| (2) |fB/f|>1.4 (3) |h1/f1|>1.15・|h4/f4| ただし、θは最大画角における軸外主光線と光軸と
のなす角、θは最大画角における軸外主光線と絞り周
辺を通った軸外光線とのなす角、fBは光学系のバックフ
ォーカス、f1は最前群の焦点距離、f4は最終群の焦点距
離、h1は最大画角における軸外主光線が通過する最前群
の各レンズ面での光線高の平均値、h4は最大画角におけ
る軸外主光線が通過する最終群の各レンズ面での光線高
の平均値、fは全系の焦点距離である。
(1) | θ 1 |> | θ 2/3 | (2) | f B /f|>1.4 (3) | h 1 / f 1 |> 1.15 · | h 4 / f 4 | However, θ 1 is The angle between the off-axis chief ray and the optical axis at the maximum angle of view, θ 2 is the angle between the off-axis chief ray at the maximum angle of view and the off-axis ray passing through the aperture periphery, f B is the back focus of the optical system, f 1 is the focal length of the front group, f 4 is the focal length of the final group, h 1 is the average ray height at each lens surface of the front group through which the off-axis chief ray passes at the maximum angle of view, h 4 is the maximum The average value of the ray heights at each lens surface of the final group through which the off-axis chief ray at the angle of view passes, and f is the focal length of the entire system.

本発明は内視鏡対物レンズは射出側の主光線が光軸に
対して平行ではなく発散光線になるようにいわば主光線
に対し発散系になるようにしたもので、これによってプ
リズムの入射面での光束径を小に出来プリズムを小型に
し得ると同時にレンズの外径を小にしレンズ系および固
体撮像素子の収納スペースを細くなし得て径の細い内視
鏡を実現し得るようにした。
In the present invention, the objective lens of the endoscope is such that the principal ray on the exit side is not parallel to the optical axis but is a divergent ray, so to speak, it is a divergent system for the principal ray. It is possible to reduce the luminous flux diameter in the above, and to make the prism small in size, and at the same time, to make the outer diameter of the lens small so that the storage space for the lens system and the solid-state image pickup device can be made small, thereby realizing an endoscope having a small diameter.

又本発明の光学系で、固体撮像素子を斜めに配置した
方が光軸に平行に配置したものよりも内視鏡の径を細く
し得ると共に先端から固体撮像素子の最終面までの距離
を短くすることが出来、よりコンパクトな内視鏡になし
得る。
Further, in the optical system of the present invention, when the solid-state image sensor is arranged obliquely, the diameter of the endoscope can be made smaller than that when it is arranged parallel to the optical axis, and the distance from the tip to the final surface of the solid-state image sensor is reduced. It can be shortened and can be made into a more compact endoscope.

前述のように又第1図に示すように主光線が光軸に平
行ではなく発散系となるようにした方がプリズムの前面
での光束径を小さく出来、プリズムを小型化出来る。こ
のように発散系とするためには、最大画角における軸外
主光線と光軸とのなす角をθ、最大画角における軸外
主光線と絞り周辺を通った軸外光線とのなす角をθ
するとき前記条件つまり次の関係を満足することが望ま
しい。
As described above, and as shown in FIG. 1, when the principal ray is not parallel to the optical axis but is a divergent system, the light beam diameter at the front surface of the prism can be made smaller, and the prism can be made smaller. In order to form a divergent system in this way, the angle formed by the off-axis chief ray at the maximum angle of view and the optical axis is θ 1 , and the off-axis chief ray at the maximum angle of view and the off-axis ray passing through the periphery of the diaphragm are formed. When the angle is θ 2 , it is desirable to satisfy the above condition, that is, the following relationship.

(1) |θ1|>|θ2/3| この条件を満足しないと十分に光束を小になし得ずし
たがってプリズムが大型になり、撮像素子を斜めにした
効果が得られない。
(1) | θ 1 |> | θ 2/3 | is not satisfied this condition sufficiently without obtained without a light beam to a small therefore the prism becomes large, no effect of the image sensor diagonally to obtain.

次に第2図,第3図に示すように像距離を十分に長く
する必要がある。それは撮像素子を光軸に斜め又は平行
に置くためにレンズ系の後方にプリズムを配置する必要
があることと、光学的ローパスフィルター(水晶)、赤
外カットフィルター、固体撮像素子保護用カバーガラス
を配置する必要があるためである。
Next, it is necessary to make the image distance sufficiently long as shown in FIGS. That is, it is necessary to place a prism behind the lens system in order to place the image sensor diagonally or parallel to the optical axis, as well as an optical low-pass filter (crystal), an infrared cut filter, and a cover glass for protecting the solid-state image sensor. This is because it needs to be placed.

固体撮像素子は、一般に赤外光に対しても感度があ
り、したがってこれをカットするために赤外カットフィ
ルターが必要である。
Solid-state imaging devices are generally sensitive to infrared light as well, and thus an infrared cut filter is required to cut them.

又固体撮像素子としてモザイクフィルターアレーを用
いたカラー化方式の場合、モアレを除去するために光学
的ローパスフィルターが必要である。
Further, in the case of a colorization system using a mosaic filter array as a solid-state image sensor, an optical low pass filter is required to remove moire.

更に撮像素子へのゴミの付着等を防止するために撮像
素子保護用カバーガラスが必要となる。
Further, a cover glass for protecting the image sensor is required to prevent dust from adhering to the image sensor.

以上の理由によりレンズ系の撮像素子の間にプリズ
ム,赤外カットフィルター,光学的ローパスフィルタ
ー,撮像素子保護用カバーガラスを配置する必要があ
り、そのため像距離を十分長くしなければならない。
For the above reasons, it is necessary to dispose the prism, the infrared cut filter, the optical low pass filter, and the cover glass for protecting the image sensor between the image sensors of the lens system, and therefore the image distance must be sufficiently long.

ここで像距離は物体距離によって変化するのでこれを
物体距離が無限大の時の像距離であるバッスフォーカス
fBにて規定すると全系の焦点距離をfにて表わせば次に
示す前記条件(2)を満足する必要がある。
Since the image distance changes depending on the object distance, this is the bass focus which is the image distance when the object distance is infinite.
When the focal length of the entire system is represented by f when it is defined by f B, it is necessary to satisfy the following condition (2).

(2) |fB/f|>1.4 上記条件(2)より外れるとバックフォーカスfBが小
になり、つまり像距離が短くなって前記のフィルター等
の配置が困難になる等の問題が生ずる。
(2) | f B /f|>1.4 If the condition (2) is not satisfied, the back focus f B becomes small, that is, the image distance becomes short, and it becomes difficult to arrange the filters and the like. .

更に条件(3)は収差補正上重要な条件である。つま
り最大画角における軸外主光線が通過する最前群の各レ
ンズ面での光線高の平均値h1とパワーの積と、凹面
を含む最大画角における軸外主光線が通過する最終群の
各レンズ面での光線高の平均値h4とパワーの積とを比
較した時、次の条件を満足することが重要になる。
Further, the condition (3) is an important condition for aberration correction. That the product of the average value h 1 and power 1 of the ray height at the lens surfaces of the foremost group of off-axis principal ray passes at a maximum field angle, the final group of off-axis principal ray passes at a maximum angle of view including a concave surface When comparing the average value h 4 of the ray heights at the respective lens surfaces and the product of the power, it is important to satisfy the following conditions.

|h11|>1.15・|h44| 例えば第28図に示すように固体撮像素子3を用いた電
子内視鏡においては、この図に示すように主光線4が固
定撮像素子3に対して斜めに入射してもイメージファイ
バーを用いた時のような欠点はなく、画像は伝送され
る。
| h 1 · 1 |> 1.15 · | h 4 · 4 | For example, in an electronic endoscope using a solid-state image sensor 3 as shown in Fig. 28, the chief ray 4 is a fixed image sensor as shown in this figure. Even if the light beam is incident on 3 at an angle, there is no defect as in the case of using the image fiber, and the image is transmitted.

本発明は、像面の前に物体側に凹面を有するレンズを
含む最終群を配置することによって、従来のレトロフォ
ーカスタイプの内視鏡対物レンズの欠点であった歪曲収
差が大きく、レンズの外径が大きい点を解決したもので
ある。
According to the present invention, by disposing the final group including a lens having a concave surface on the object side in front of the image surface, the distortion aberration, which is a drawback of the conventional retrofocus type endoscope objective lens, is large, and This is a solution to the problem of large diameter.

また本発明の対物レンズは、明るさ絞りSを中間群の
前面から後面の間に配置したもので、これによって歪曲
収差の補正等を可能にした。つまり前記の個所に明るさ
絞りを配置すれば、通常のテレセントリックタイプのレ
トロフォーカス型内視鏡対物レンズに比較して絞りが後
方に下がる分だけ像面への主光線の入射角を大きく出
来、歪曲収差の補正にとって有効である。また絞りを前
記の位置に配置すれば、レトロフォーカス型の発散群と
収斂群の間に絞りを置いた場合のレンズ系の著しい非対
称性(絞りの前は負の群だけで絞りの後の正の群だけで
構成されている)が、正の屈折力の一部が絞りよりも前
に来ることによって緩和され、これによってコマ収差の
補正にとっても有利である。
Further, in the objective lens of the present invention, the aperture stop S is arranged between the front surface and the rear surface of the intermediate group, which makes it possible to correct distortion and the like. That is, if the aperture stop is arranged at the above-mentioned location, the incident angle of the chief ray to the image plane can be increased by the amount that the aperture is lowered backward as compared with the usual telecentric type retrofocus endoscope objective lens, It is effective for correcting distortion. In addition, if the diaphragm is placed at the above position, the asymmetry of the lens system when the diaphragm is placed between the retrofocus type divergent group and the converging group (before the diaphragm, only the negative group is positive after the diaphragm) However, it is also advantageous for the correction of coma aberration.

また本発明のレンズ系に類似する光学系として第29図
に示す特公昭42−23896号の光学系がある。この光学系
は、最終群による主光線の屈折力|h4/f4|が強すぎるた
めに、画角が大になればなるほど主光線が像面に対して
大きな角度で入射するでcos4乗則による周辺光量の低下
が著しい。
Further, as an optical system similar to the lens system of the present invention, there is an optical system of Japanese Patent Publication No. 42-23896 shown in FIG. In this optical system, the refracting power | h 4 / f 4 | of the chief ray due to the final group is too strong, so the greater the angle of view, the greater the incidence of the chief ray on the image plane. The amount of peripheral light is significantly reduced by the law.

この点に鑑み、本発明の好適実施例では最前群による
主光線の屈折力|h1/f1|を最終群による主光線の屈折力|
h4/f4|より強くし、これによって最前群でレンズを広角
化し、最終群では主光線を適度に曲げて周辺光量があま
り低下しない範囲で歪曲収差を除去し、また全長(第一
面から像面までの長さ)を短くし、レンズ外径を小さく
している。そのためには最前群の焦点距離f1および最終
群の焦点距離f4を条件(3)を満足するように定める必
要がある。したがって前記の条件(3)より外れると歪
曲収差が補正できずまたレンズ系が大きくなる。
In view of this point, in the preferred embodiment of the present invention, the refracting power of the chief ray | h 1 / f 1 |
h 4 / f 4 | Stronger, which widens the lens angle in the front group, and in the final group moderately bends the chief ray to eliminate distortion in the range where peripheral light intensity does not decrease significantly. To the image surface) to reduce the lens outer diameter. For that purpose, it is necessary to determine the focal length f 1 of the front group and the focal length f 4 of the last group so as to satisfy the condition (3). Therefore, if the condition (3) is not satisfied, the distortion cannot be corrected and the lens system becomes large.

以上述べたようにレンズ構成としては物体側より順に
負の屈折力のレンズ群(最前群)と、正の屈折力のレン
ズ群(中間群)と、強い凹面を含んでいるレンズ群(最
終群)とよりなり、正の屈折力のレンズ群の最も物体側
の面から最も像側の面の間に絞が来るようにする必要が
ある。
As described above, in terms of the lens configuration, a lens group having a negative refractive power (front group), a lens group having a positive refractive power (intermediate group), and a lens group including a strong concave surface (final group) in order from the object side. ), It is necessary to make the diaphragm come between the most object side surface and the most image side surface of the lens unit having a positive refractive power.

このような構成において前述のような長いバックフォ
ーカスを持ち、主光線に対し適度な発散系となるように
するためには更に次のようにすることが望ましい。
In order to have a long back focus as described above and an appropriate divergence system with respect to the chief ray in such a configuration, it is desirable to do the following.

まず最前群でる負の屈折力のレンズ群と、それ以外の
レンズ群とのパワー配分が重要である。最も像側に負の
屈折旅の群を配置したことから一般的にはバックフォー
カスは短くなる。そのためバックフォーカスを十分とる
ためには、最前群にバックフォーカスを長くする作用を
もたせる必要がある。
First, it is important to distribute the power between the lens unit having a negative refractive power, which is the frontmost lens unit, and the other lens units. Since the negative refraction travel group is arranged closest to the image side, the back focus is generally short. Therefore, in order to obtain sufficient back focus, it is necessary to give the front group a function of lengthening the back focus.

最前群の焦点距離をf1,全系の焦点距離をf,後群(中
間群と最終群の合成の系)の倍率をβとすると次の関係
が成り立つ。
If the focal length of the front group is f 1 , the focal length of the entire system is f, and the magnification of the rear group (composite system of the intermediate group and the final group) is β, the following relationship holds.

f=f1×β 上の関係から、又第4図を参照にして、|f1|を短くす
ることによりβを大にすればfBを大きくすることが可能
であることがわかる。またβの値が同じ場合には後群
(最前群より後方の系)の焦点距離が大きければfBを大
にすることが出来る。しかしこの場合は、コンパクト化
に逆行することになるため後群の焦点距離には適宜な範
囲があり上限がある。又同じβの値で後群の焦点距離が
小さくなるとfBを伸ばすことが出来ず、下限がある。
From the relationship of f = f 1 × β, and referring to FIG. 4, it is understood that f B can be increased by increasing β by shortening | f 1 |. If the value of β is the same, f B can be increased if the focal length of the rear group (the system behind the front group) is large. However, in this case, the focal length of the rear lens group has an appropriate range and there is an upper limit because it goes against compactness. Also, if the focal length of the rear group becomes small with the same value of β, f B cannot be extended and there is a lower limit.

以上のことから最前群の焦点距離f1と中間群と最終群
の合成の系の焦点距離f234は次の条件(4),(5)の
範囲内に定めることが望ましい。
From the above, it is desirable that the focal length f 1 of the foremost lens group and the focal length f 234 of the combined system of the intermediate lens group and the last lens group be set within the ranges of the following conditions (4) and (5).

(4) |f1/f|<1 (5) 0.4<|f234|/f<2 |f1/f|>1になるとfBが十分得られなくなる。同様に
|f234|/fが0.4より小になってもfBが十分得られなくな
る。更に|f234|/fが2より大になるとコンパクトになし
得なくなる。
(4) | f 1 / f | <1 (5) When 0.4 <| f 234 | / f <2 | f 1 / f |> 1, f B cannot be obtained sufficiently. As well
Even if | f 234 | / f becomes smaller than 0.4, f B cannot be obtained sufficiently. Furthermore, if | f 234 | / f becomes larger than 2, it cannot be made compact.

更に本発明は前述のように最前群と最終群の屈折力の
バランスを定めたが、更に最前群の凹面の曲率半径R1
最終群の凹面の曲率半径R4を適切に定めることが望まし
く下記の条件(6),(7)を満足するのがよい。
Further, the present invention has defined the balance of the refractive power of the foremost group and the last group as described above, but it is further desirable to appropriately set the radius of curvature R 1 of the concave surface of the foremost group and the curvature radius R 4 of the concave surface of the final group. It is preferable to satisfy the following conditions (6) and (7).

(6) 0.2<|R1|/f<10 (7) 0.2<|R4|/f<10 これら条件の下限を越えるとコマ収差を良好に補正し
にくくなり、いわゆるコマ収差の平坦性がなくなり曲が
りを生ずることになる。また条件の上限を越えるといず
れも最前群,最終群のレンズの径が小に出来なくなり又
射出瞳を発散系とし最終群のレンズ径およびその後に配
置するプリズム等の光学素子を小さくすることが出来な
くなる。
(6) 0.2 <| R 1 | / f <10 (7) 0.2 <| R 4 | / f <10 Beyond the lower limits of these conditions, it becomes difficult to correct coma aberration well, and so-called coma aberration flatness is reduced. It will disappear and a bend will occur. If the upper limits of the conditions are exceeded, the lens diameters of the front lens group and the last lens group cannot be made small, and the exit pupil is made to be a diverging system, and the lens diameter of the last lens group and the optical elements such as prisms arranged thereafter can be made small. I can't.

[実施例] 次に本発明の内視鏡対物レンズの各実施例を示す。EXAMPLES Next, examples of the endoscope objective lens of the present invention will be described.

実施例1 f=1,F/8.7,IH=0.821 2ω=78.8゜ r1=∞ d1=0.1138 n1=1.88300 ν=40.78 r2=0.4116 d2=0.1434 r3=0.7405 d3=0.3301 n2=1.72825 ν=28.46 r4=−0.5552 d4=0.0911 n3=1.72916 ν=54.68 r5=1.5126 d5=0.0455 r6=∞ d6=0.3415 n4=1.51633 ν=64.15 r7=∞(絞り) d7=0.0455 r8=∞ d8=0.1707 n5=1.51633 ν=64.15 r9=−0.6941 d9=0.1480 r10=1.4316 d10=0.2504 n6=1.51633 ν=64.15 r11=−0.7847 d11=0.1366 r12=−0.6779 d12=0.0911 n7=1.84666 ν=23.88 r13=−1.4783 d13=0.1480 r14=∞ d14=0.7967 n8=1.54869 ν=45.55 r15=∞ d15=1.4466 n9=1.68893 ν=31.08 r16=∞ d16=0.0046 r17=∞ d17=0.5566 n10=1.68893 ν10=31.08 r18=∞ |θ1|−|θ2/3|=|−17.5゜|−|13.28゜/3|>0 fB/f=1.76,|h1/f1|/|h4/f4|=4.65 |f1|/f=0.466,|f234|/f=0.843 実施例2 f=1,F/12,IH=0.839 2ω=79.9゜ r1=∞ d1=0.1301 n1=1.88300 ν=40.78 r2=0.5568 d2=0.6251 r3=9.0785 d3=0.7785 n2=1.60342 ν=38.01 r4=−1.0737 d4=0.1162 r5=∞ d5=0.7460 n3=1.51633 ν=64.15 r6=∞(絞り) d6=0.1162 r7=1.4999 d7=0.5461 n4=1.51633 ν=64.15 r8=−0.9017 d8=0.2324 r9=−0.6921 d9=0.1487 n5=1.84666 ν=23.78 r10=∞ d10=0.1859 n6=1.88300 ν=40.78 r11=−1.7704 d11=0.1162 r12=∞ d12=0.8134 n7=1.54869 ν=45.55 r13=∞ d13=1.7936 n8=1.68893 ν=31.08 r14=∞ d14=0.0005 r15=∞ d15=0.2515 n9=1.68893 ν=31.08 r16=∞ d16=0.0004 r17=∞ d17=0.1162 n10=1.51633 ν10=64.15 r18=∞ |θ1|−|θ2/3|=|−17.0゜|−|2.4゜/3|>0 fB/f=1.74>1.4 |h1/f1|/|h4/f4|=4.80>1.15 |f1|/f=0.631<1,|f234|/f=1.204 実施例3 f=1,F/12,IH=0.843 2ω=80.3゜ r1=∞ d1=0.1307 n1=1.88300 ν=40.78 r2=0.5594 d2=0.2802 r3=∞ d3=0.8872 n2=1.88300 ν=40.78 r4=∞ d4=0.0934 r5=10.8137 d5=0.4179 n3=1.60342 ν=38.01 r6=−1.0834 d6=0.1167 r7=∞ d7=0.7495 n4=1.51633 ν=64.15 r8=∞(絞り) d8=0.1167 r9=1.5069 d9=0.5487 n5=1.51633 ν=64.15 r10=−0.9059 d10=0.2335 r11=−0.6953 d11=0.1494 n6=1.84666 ν=23.78 r12=∞ d12=0.1868 n7=1.88300 ν=40.78 r13=−1.7787 d12=0.1167 r14=∞ d14=0.8172 n8=1.54869 ν=45.55 r15=∞ d15=1.8020 n9=1.68893 ν=31.08 r16=∞ d16=0.0005 r17=∞ d17=0.2526 n10=1.68893 ν10=31.08 r18=∞ d18=0.0004 r19=∞ d19=0.1167 n11=1.51633 ν11=64.15 r20=∞ |θ1|−|θ2/3|=|−17.0゜|−|2.4゜/3|>0 fB/f=1.75>1.4 |h1/f1|/|h4/f4|=4.78>1.15 |f1|/f=0.634<1,|f234|/f=1.204 実施例4 f=1,F/8,IH=0.811 2ω=78.1゜ r1=∞ d1=0.1124 n1=1.88300 ν=40.78 r2=0.3826 d2=0.1566 r3=0.7213 d3=0.3147 n2=1.72825 ν=28.46 r4=−0.5618 d4=0.0899 n3=1.72916 ν=54.68 r5=1.7290 d5=0.2885 r6=∞(絞り) d6=0.0225 r7=1.9806 d7=0.1798 n4=1.51633 ν=64.15 r8=−0.6210 d8=0.0225 r9=1.4344 d9=0.2247 n5=1.51633 ν=64.15 r10=−0.8141 d10=0.0718 r11=−0.5977 d11=0.1124 n6=1.84666 ν=23.78 r12=−2.1423 d12=0.2247 r13=∞ d13=0.6742 n7=1.51633 ν=64.15 r14=∞ d14=1.9101 n8=1.68893 ν=31.08 r15=∞ d15=0.1348 n9=1.51633 ν=64.15 r16=∞ |θ1|−|θ2/3|=|−20.0゜|−|3.6゜/3|>0 fB/f=1.73>1.4 |h1/f1|/|h4/f4|=4.81>1.15 |f1|/f=0.433<1,|f234|/f=0.741 実施例5 f=1,F/8.0,IH=0.714 2ω=71.1゜ r1=∞ d1=0.0990 n1=1.88300 ν=40.78 r2=0.3364 d2=0.1384 r3=0.7525 d3=0.2178 n2=1.72825 ν=28.46 r4=−0.5937 d4=0.0792 n3=1.72916 ν=54.68 r5=−6.6363 d5=0.2001 r6=∞(絞り) d6=0.0198 r7=8.9097 d7=0.1584 n4=1.51633 ν=64.15 r8=−0.5278 d8=0.0198 r9=1.4245 d9=0.1979 n9=1.51633 ν=64.15 r10=−0.7237 d10=0.0771 r11=−0.5271 d11=0.0990 n6=1.84666 ν=23.78 r12=−2.0374 d12=0.0792 r13=∞ d13=0.5937 n7=1.51633 ν=64.15 r14=∞ d14=1.6822 n8=1.68893 ν=31.08 r15=∞ d15=0.2969 n9=1.51633 ν=64.15 r16=∞ |θ1|−|θ2/3|=|−20゜|−|3.6゜/3|>0 fB/f=1.48>1.4 |h1/f1|/|h4/f4|=3.54>1.15 |f1|/f=0.381<1,|f234|/f=0.568 実施例6 f=1,F/7.6,IH=0.829 2ω=79.3゜ r1=∞ d1=0.1149 n1=1.51633 ν=64.15 r2=0.4898 d2=0.9699 r3=∞ d3=0.1149 n2=1.54869 ν=45.55 r4=∞ d4=0.1126 n3=1.78590 ν=44.18 r5=−1.5407 d5=0.0689 r6=∞(絞り) d6=0.2297 n4=1.51633 ν=64.15 r7=∞ d7=0.1149 r8=1.6505 d8=0.2527 n5=1.56384 ν=60.69 r9=−0.6492 d9=0.1122 r10=−0.5428 d10=0.1149 n6=1.72825 ν=28.46 r11=9.0796 d11=0.1149 n7=1.72916 ν=54.68 r12=−1.5806 d12=0.1654 r13=∞ d13=0.6892 n8=1.54869 ν=45.55 r14=∞ d14=2.0216 n9=1.68893 ν=31.08 r15=∞ d15=0.1263 n10=1.51633 ν10=64.15 r16=∞ |θ1|−|θ2/3|=|−18.0゜|−|3.8゜/3|>0 fB/f=1.76>1.40 |h1/f1|/|h4/f4|=2.94>1.15 |f1|/f=0.949,|f234|/f=1.133 実施例7 f=1,F/7.3,IH=0.708 2ω=70.6゜ r1=∞ d1=0.0982 n1=1.88300 ν=40.78 r2=0.4371 d2=0.0983 r3=∞ d3=0.0982 n2=1.51633 ν=64.15 r4=∞ d4=0.0196 r5=1.3851 d5=0.1570 n3=1.84666 ν=23.78 r6=−1.9631 d6=0.0982 n4=1.51633 ν=64.15 r7=63.9503 d7=0.4464 r8=∞(絞り) d8=0.0020 r9=1.6143 d9=0.0982 n5=1.51633 ν=64.15 r10=−0.5780 d10=0.0981 n6=1.68893 ν=31.08 r11=−0.7627 d11=0.0196 r12=1.5267 d12=0.1576 n7=1.51633 ν=64.15 r13=−0.7404 d13=0.1178 r14=−0.5354 d14=0.1178 n8=1.84666 ν=23.78 r15=−2.5284 d15=0.0785 r16=∞ d16=0.5889 n9=1.51633 ν=64.15 r17=∞ d17=1.6686 n10=1.68893 ν10=31.08 r18=∞ d18=0.2945 n11=1.51633 ν11=64.15 r19=∞ |θ1|−|θ2/3|=|−20゜|−|3.9゜/3|>0 fB/f=1.47>1.40 |h1/f1|/|h4/f4|=3.61>1.15 |f1|/f=0.495<1,|f234|/f=0.723 実施例8 f=1,F/6.8,IH=0.714 2ω=71.1゜ r1=∞ d1=0.0989 n1=1.88300 ν=40.78 r2=0.3189 d2=0.1369 r3=0.7682 d3=0.0989 n2=1.72825 ν=28.46 r4=11.9171 d4=0.0198 r5=∞ d5=0.0989 n2=1.72825 ν=28.46 r6=−0.5935 d6=0.0989 n4=1.72916 ν=54.68 r7=∞ d7=0.1697 r8=∞(絞り) d8=0.0198 r9=0.7310 d9=0.1978 n5=1.51633 ν=64.15 r10=−0.6141 d10=0.0198 r11=2.6598 d11=0.1385 n6=1.51633 ν=64.15 r12=−0.6012 d12=0.0893 r13=−0.3604 d13=0.1187 n7=1.84666 ν=23.78 r14=−1.1869 d14=0.0791 r15=∞ d15=0.5935 n8=1.68893 ν=31.08 r16=∞ d16=1.6815 n9=1.68893 ν=31.08 r17=∞ d17=0.2967 n10=1.51633 ν10=64.15 r18=∞ |θ1|−|θ2/3|=|−20゜|−|4.2゜/3|>0 fB/f=1.48>1.40 |h1/f1|/|h4/f4|=2.80>1.14 |f1|/f=0.361<1,|f234|/f=0.541 実施例9 f=1,F/6.6,IH=0.694 2ω=69.5゜ r1=∞ d1=0.0961 n1=1.88300 ν=40.78 r2=0.5274 d2=0.3228 r3=−19.2890 d3=0.2947 n2=1.88300 ν=40.78 r4=−68.9735 d4=0.0258 r5=1.2365 d5=0.2500 n3=1.64769 ν=33.80 r6=8.7930 d6=0.3015 r7=2.3531(絞り) d7=0.3077 n4=1.51633 ν=64.15 r8=−0.9412 d8=0.1154 n5=1.84666 ν=23.78 r9=−1.1878 d9=0.0192 r10=2.7473 d10=0.2966 n6=1.51633 ν=64.15 r11=−1.1497 d11=0.2049 r12=−0.6852 d12=0.2324 n7=1.88300 ν=40.78 r13=−1.1725 d13=0.1291 r14=∞ d14=2.8846 n8=1.51633 ν=64.15 r15=∞ |θ1|−|θ2/3|=|−13.3゜|−|4.3゜/3|>0 fB/f=1.85>1.40 |h1/f1|/|h4/f4|=5.69>1.14 |f1|/f=0.597<1,|f234|/f=1.041 実施例10 f=1,F/6.7,IH=0.845 2ω=80.4゜ r1=∞ d1=0.1173 n1=1.88300 ν=40.78 r2=0.5713 d2=0.4774 r3=1.4113 d3=0.4928 n2=1.51742 ν=52.41 r4=−1.0827 d4=0.0705 r5=∞(絞り) d5=0.6102 n3=1.51633 ν=64.15 r6=∞ d6=0.2323 r7=2.5203 d7=0.1619 64=1.72825 ν=28.46 r8=0.8214 d8=0.3755 n5=1.72916 ν=54.68 r9=−0.9814 d9=0.1643 r10=−0.7474 d10=0.1173 n6=1.78472 ν=25.71 r11=−1.9794 d11=0.0939 r12=∞ d12=0.8214 n7=1.56138 ν=45.18 r13=∞ d13=0.2347 n8=1.51633 ν=64.15 r14=∞ d14=1.2204 n9=1.51633 ν=64.15 r15=∞ |θ1|−|θ2/3|=|−9.2゜|−|4.3゜/3|>0 fB/f=1.43 |h1/f1|/|h4/f4|=2.19>1.14 |f1|/f=0.647<1,|f234|/f=1.043 実施例11 f=1,F/5,IH=0.952 2ω=87.2゜ r1=∞ d1=0.1846 n1=1.88300 ν=40.78 r2=0.7814 d2=1.1864 r3=10.8176 d3=0.3725 n2=1.78590 ν=44.18 r4=1.2548 d4=0.9228 n3=1.64769 ν=33.80 r5=−1.6224 d5=0.1318 r6=∞(絞り) d6=0.2636 n4=1.51633 ν=64.15 r7=∞ d7=0.3427 r8=4.0013 d8=0.3691 n5=1.53256 ν=45.91 r9=−0.9441 d9=0.1318 n6=1.84666 ν=23.78 r10=−1.5897 d10=0.0264 r11=1.8567 d11=0.4214 n7=1.72916 ν=54.68 r12=−1.5819 d12=0.1320 n8=1.72825 ν=28.46 r13=1.2837 d13=0.4746 r14=∞ d14=0.9228 n9=1.54869 ν=45.55 r15=∞ d15=2.0348 n10=1.69680 ν10=55.52 r16=∞ d16=0.0005 r17=∞ d17=0.2853 n11=1.69680 ν11=55.52 r18=∞ d18=0.0004 r19=∞ d19=0.1318 n12=1.51633 ν12=64.15 r20=∞ |θ1|−|θ2/3|=|−15.5゜|−|5.7゜/3|>0 fB/f=2.350>1.40 |h1/f1|/|h4/f4|=10.9>1.14 |f1|/f=0.885<1,|f234|/f=1.582 上記実施例のデーターで、r1,r2,…はレンズ各面の曲
率半径、d1,d2,…は各レンズの肉厚および空気間隔、
n1,n2,…は各レンズの屈折率、ν12,…は各レンズの
アッベ数、IHは像高、2ωは画角である。
Example 1 f = 1, F / 8.7, IH = 0.821 2ω = 78.8 ° r 1 = ∞ d 1 = 0.1138 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.4116 d 2 = 0.1434 r 3 = 0.7405 d 3 = 0.3301 n 2 = 1.72825 ν 2 = 28.46 r 4 = -0.5552 d 4 = 0.0911 n 3 = 1.72916 ν 3 = 54.68 r 5 = 1.5126 d 5 = 0.0455 r 6 = ∞ d 6 = 0.3415 n 4 = 1.51633 ν 4 = 64.15 r 7 = ∞ (stop) d 7 = 0.0455 r 8 = ∞ d 8 = 0.1707 n 5 = 1.51633 ν 5 = 64.15 r 9 = -0.6941 d 9 = 0.1480 r 10 = 1.4316 d 10 = 0.2504 n 6 = 1.51633 ν 6 = 64.15 r 11 = -0.7847 d 11 = 0.1366 r 12 = -0.6779 d 12 = 0.0911 n 7 = 1.84666 v 7 = 23.88 r 13 = -1.4783 d 13 = 0.1480 r 14 = ∞ d 14 = 0.7967 n 8 = 1.54869 v 8 = 45.55 r 15 = ∞ d 15 = 1.4466 n 9 = 1.68893 ν 9 = 31.08 r 16 = ∞ d 16 = 0.0046 r 17 = ∞ d 17 = 0.5566 n 10 = 1.68893 ν 10 = 31.08 r 18 = ∞ | θ 1 | − | Θ 2 /3|=|−17.5°|−|13.28°/3|>0 f B /f=1.76,|h 1 / f 1 | / | h 4 / f 4 | = 4.65 | f 1 | /f=0.466,|f 234 | /f=0.843 Example 2 f = 1, F / 12, IH = 0.839 2ω = 79.9 ° r 1 = ∞ d 1 = 0.1301 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.5568 d 2 = 0.6251 r 3 = 9.0785 d 3 = 0.7785 n 2 = 1.60342 ν 2 = 38.01 r 4 = -1.0737 d 4 = 0.1162 r 5 = ∞ d 5 = 0.7460 n 3 = 1.51633 ν 3 = 64.15 r 6 = ∞ (diaphragm) d 6 = 0.1162 r 7 = 1.4999 d 7 = 0.5461 n 4 = 1.51633 ν 4 = 64.15 r 8 = -0.9017 d 8 = 0.2324 r 9 = -0.6921 d 9 = 0.1487 n 5 = 1.84666 ν 5 = 23.78 r 10 = ∞ d 10 = 0.1859 n 6 = 1.88300 ν 6 = 40.78 r 11 = -1.7704 d 11 = 0.1162 r 12 = ∞ d 12 = 0.8134 n 7 = 1.54869 ν 7 = 45.55 r 13 = ∞ d 13 = 1.7936 n 8 = 1.68893 ν 8 = 31.08 r 14 = ∞ d 14 = 0.0005 r 15 = ∞ d 15 = 0.2515 n 9 = 1.68893 ν 9 = 31.08 r 16 = ∞ d 16 = 0.0004 r 17 = ∞ d 17 = 0.1162 n 10 = 1.51633 ν 10 = 64.15 r 18 = ∞ | θ 1 |-| θ 2 /3|=|-17.0°|-|2.4°/3|>0 f B /f=1.74>1.4 | h 1 / f 1 | / | h 4 / f 4 | = 4.80> 1.15 | f 1 | /f=0.631 <1, | f 234 | /f=1.204 Example 3 f = 1, F / 12, IH = 0.843 2ω = 80.3 ° r 1 = ∞ d 1 = 0.1307 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.5594 d 2 = 0.2802 r 3 = ∞ d 3 = 0.8872 n 2 = 1.88300 ν 2 = 40.78 r 4 = ∞ d 4 = 0.0934 r 5 = 10.8137 d 5 = 0.4179 n 3 = 1.60342 ν 3 = 38.01 r 6 = -1.0834 d 6 = 0.1167 r 7 = ∞ d 7 = 0.7495 n 4 = 1.51633 ν 4 = 64.15 r 8 = ∞ ( stop) d 8 = 0.1167 r 9 = 1.5069 d 9 = 0.5487 n 5 = 1.51633 ν 5 = 64.15 r 10 = -0.9059 d 10 = 0.2335 r 11 = -0.6953 d 11 = 0.1494 n 6 = 1.84666 ν 6 = 23.78 r 12 = ∞ d 12 = 0.1868 n 7 = 1.88300 ν 7 = 40.78 r 13 = -1.7787 d 12 = 0.1167 r 14 = ∞ d 14 = 0.8172 n 8 = 1.54869 ν 8 = 45.55 r 15 = ∞ d 15 = 1.8020 n 9 = 1.68893 ν 9 = 31.08 r 16 = ∞ d 16 = 0.0005 r 17 = ∞ d 17 = 0.2526 n 10 = 1.68893 ν 10 = 31.08 r 18 = ∞ d 18 = 0.0004 r 19 = ∞ d 19 = 0.1167 n 11 = 1.51633 ν 11 = 64.15 r 20 = ∞ | θ 1 | - | 2 /3|=|-17.0 ° | - | 2.4 ° / 3 |> 0 f B /f=1.75>1.4 | h 1 / f 1 | / | h 4 / f 4 | = 4.78> 1.15 | f 1 | /f=0.634<1,|f 234 | /f=1.204 example 4 f = 1, F / 8 , IH = 0.811 2ω = 78.1 ° r 1 = ∞ d 1 = 0.1124 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.3826 d 2 = 0.1566 r 3 = 0.7213 d 3 = 0.3147 n 2 = 1.72825 v 2 = 28.46 r 4 = -0.5618 d 4 = 0.0899 n 3 = 1.72916 v 3 = 54.68 r 5 = 1.7290 d 5 = 0.2885 r 6 = ∞ (stop) d 6 = 0.0225 r 7 = 1.9806 d 7 = 0.1798 n 4 = 1.51633 ν 4 = 64.15 r 8 = -0.6210 d 8 = 0.0225 r 9 = 1.4344 d 9 = 0.2247 n 5 = 1.51633 ν 5 = 64.15 r 10 = -0.8141 d 10 = 0.0718 r 11 = -0.5977 d 11 = 0.1124 n 6 = 1.84666 ν 6 = 23.78 r 12 = -2.1423 d 12 = 0.2247 r 13 = ∞ d 13 = 0.6742 n 7 = 1.51633 ν 7 = 64.15 r 14 = ∞ d 14 = 1.9101 n 8 = 1.68893 ν 8 = 31.08 r 15 = ∞ d 15 = 0.1348 n 9 = 1.51633 ν 9 = 64.15 r 16 = ∞ | θ 1 | - | θ 2/3 | = | -20.0 ° | - | 3.6 ° / 3 |> 0 f B / f 1.73> 1.4 | h 1 / f 1 | / | h 4 / f 4 | = 4.81> 1.15 | f 1 | /f=0.433 <1, | f 234 | /f=0.741 Example 5 f = 1, F / 8.0, IH = 0.714 2ω = 71.1 ° r 1 = ∞ d 1 = 0.0990 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.3364 d 2 = 0.1384 r 3 = 0.7525 d 3 = 0.2178 n 2 = 1.72825 ν 2 = 28.46 r 4 = -0.5937 d 4 = 0.0792 n 3 = 1.72916 ν 2 = 54.68 r 5 = -6.6363 d 5 = 0.2001 r 6 = ∞ ( stop) d 6 = 0.0198 r 7 = 8.9097 d 7 = 0.1584 n 4 = 1.51633 ν 4 = 64.15 r 8 = -0.5278 d 8 = 0.0198 r 9 = 1.4245 d 9 = 0.1979 n 9 = 1.51633 ν 5 = 64.15 r 10 = -0.7237 d 10 = 0.0771 r 11 = -0.5271 d 11 = 0.0990 n 6 = 1.84666 ν 6 = 23.78 r 12 = -2.0374 d 12 = 0.0792 r 13 = ∞ d 13 = 0.5937 n 7 = 1.51633 ν 7 = 64.15 r 14 = ∞ d 14 = 1.6822 n 8 = 1.68893 ν 8 = 31.08 r 15 = ∞ d 15 = 0.2969 n 9 = 1.51633 ν 9 = 64.15 r 16 = ∞ | θ 1 | − | θ 2 /3|=|-20°|−|3.6°/3|>0 f B /f=1.48>1.4 | h 1 / f 1 | / | h 4 / f 4 | = 3.54 > 1.15 | f 1 | /f=0.381 <1, | f 234 | /f=0.568 Example 6 f = 1, F / 7.6, IH = 0.829 2ω = 79.3 ° r 1 = ∞ d 1 = 0.1149 n 1 = 1.51633 ν 1 = 64.15 r 2 = 0.4898 d 2 = 0.9699 r 3 = ∞ d 3 = 0.1149 n 2 = 1.54869 ν 2 = 45.55 r 4 = ∞ d 4 = 0.1126 n 3 = 1.78590 ν 3 = 44.18 r 5 = -1.5407 d 5 = 0.0689 r 6 = ∞ (aperture) d 6 = 0.2297 n 4 = 1.51633 ν 4 = 64.15 r 7 = ∞ d 7 = 0.1149 r 8 = 1.6505 d 8 = 0.2527 n 5 = 1.56384 ν 5 = 60.69 r 9 = -0.6492 d 9 = 0.1122 r 10 = -0.5428 d 10 = 0.1149 n 6 = 1.72825 v 6 = 28.46 r 11 = 9.0796 d 11 = 0.1149 n 7 = 1.72916 v 7 = 54.68 r 12 = -1.5806 d 12 = 0.1654 r 13 = ∞ d 13 = 0.6892 n 8 = 1.54869 ν 8 = 45.55 r 14 = ∞ d 14 = 2.0216 n 9 = 1.68893 ν 9 = 31.08 r 15 = ∞ d 15 = 0.1263 n 10 = 1.51633 ν 10 = 64.15 r 16 = ∞ | θ 1 | − | θ 2 /3|=|−18.0°|−|3.8°/3|>0 f B /f=1.76>1.40 | h 1 / f 1 | / | h 4 / f 4 | = 2.94> 1.15 | f 1 | /f=0.949, | f 234 | / f = 1.133 Example 7 f = 1, F / 7.3, IH = 0.708 2ω = 70.6 ° r 1 = ∞ d 1 = 0.0982 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.4371 d 2 = 0.0983 r 3 = ∞ d 3 = 0.0982 n 2 = 1.51633 ν 2 = 64.15 r 4 = ∞ d 4 = 0.0196 r 5 = 1.3851 d 5 = 0.1570 n 3 = 1.84666 ν 3 = 23.78 r 6 = −1.9631 d 6 = 0.0982 n 4 = 1.51633 ν 4 = 64.15 r 7 = 63.9503 d 7 = 0.4464 r 8 = ∞ (aperture) d 8 = 0.0020 r 9 = 1.6143 d 9 = 0.0982 n 5 = 1.51633 ν 5 = 64.15 r 10 = -0.5780 d 10 = 0.0981 n 6 = 1.68893 ν 6 = 31.08 r 11 = -0.7627 d 11 = 0.0196 r 12 = 1.5267 d 12 = 0.1576 n 7 = 1.51633 ν 7 = 64.15 r 13 = -0.7404 d 13 = 0.1178 r 14 = -0.5354 d 14 = 0.1178 n 8 = 1.84666 ν 8 = 23.78 r 15 = -2.5284 d 15 = 0.0785 r 16 = ∞ d 16 = 0.5889 n 9 = 1.51633 ν 9 = 64.15 r 17 = ∞ d 17 = 1.6686 n 10 = 1.68893 ν 10 = 31.08 r 18 = ∞ d 18 = 0.2945 n 11 = 1.51633 ν 11 = 64.15 r 19 = ∞ | θ 1 | - | θ 2/3 | = | -20 ° | - | 3.9 ° / 3 | 0 f B /f=1.47>1.40 | h 1 / f 1 | / | h 4 / f 4 | = 3.61> 1.15 | f 1 | /f=0.495 <1, | f 234 | /f=0.723 Example 8 f = 1, F / 6.8, IH = 0.714 2ω = 71.1 ° r 1 = ∞ d 1 = 0.0989 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.3189 d 2 = 0.1369 r 3 = 0.7682 d 3 = 0.0989 n 2 = 1.72825 ν 2 = 28.46 r 4 = 11.9171 d 4 = 0.0198 r 5 = ∞ d 5 = 0.0989 n 2 = 1.72825 ν 3 = 28.46 r 6 = -0.5935 d 6 = 0.0989 n 4 = 1.72916 ν 4 = 54.68 r 7 = ∞ d 7 = 0.1697 r 8 = ∞ ( stop) d 8 = 0.0198 r 9 = 0.7310 d 9 = 0.1978 n 5 = 1.51633 ν 5 = 64.15 r 10 = -0.6141 d 10 = 0.0198 r 11 = 2.6598 d 11 = 0.1385 n 6 = 1.51633 ν 6 = 64.15 r 12 = -0.6012 d 12 = 0.0893 r 13 = -0.3604 d 13 = 0.1187 n 7 = 1.84666 ν 7 = 23.78 r 14 = -1.1869 d 14 = 0.0791 r 15 = ∞ d 15 = 0.5935 n 8 = 1.68893 ν 8 = 31.08 r 16 = ∞ d 16 = 1.6815 n 9 = 1.68893 ν 9 = 31.08 r 17 = ∞ d 17 = 0.2967 n 10 = 1.51633 ν 10 = 64.15 r 18 = ∞ | θ 1 | - | θ 2 / 3 | = | -20 ° |-| 4.2 ° / 3 |> 0 f B /f=1.48>1.40 | h 1 / f 1 | / | h 4 / f 4 | = 2.80> 1.14 | f 1 | / f = 0.361 <1, | f 234 | /f=0.541 example 9 f = 1, F / 6.6 , IH = 0.694 2ω = 69.5 ° r 1 = ∞ d 1 = 0.0961 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.5274 d 2 = 0.3228 r 3 = -19.2890 d 3 = 0.2947 n 2 = 1.88300 ν 2 = 40.78 r 4 = -68.9735 d 4 = 0.0258 r 5 = 1.2365 d 5 = 0.2500 n 3 = 1.64769 ν 3 = 33.80 r 6 = 8.7930 d 6 = 0.3015 r 7 = 2.3531 ( stop) d 7 = 0.3077 n 4 = 1.51633 ν 4 = 64.15 r 8 = -0.9412 d 8 = 0.1154 n 5 = 1.84666 ν 6 = 23.78 r 9 = -1.1878 d 9 = 0.0192 r 10 = 2.7473 d 10 = 0.2966 n 6 = 1.51633 ν 6 = 64.15 r 11 = -1.1497 d 11 = 0.2049 r 12 = -0.6852 d 12 = 0.2324 n 7 = 1.88300 ν 7 = 40.78 r 13 = -1.1725 d 13 = 0.1291 r 14 = ∞ d 14 = 2.8846 n 8 = 1.51633 ν 8 = 64.15 r 15 = ∞ | θ 1 | − | θ 2 /3|=|−13.3°|−|4.3°/3|>0 f B / f = 1.85> 1.40 | h 1 / f 1 | / | h 4 / f 4 | = 5.69> 1 .14 | f 1 | /f=0.597 <1, | f 234 | /f=1.041 Example 10 f = 1, F / 6.7, IH = 0.845 2ω = 80.4 ° r 1 = ∞ d 1 = 0.1173 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.5713 d 2 = 0.4774 r 3 = 1.4113 d 3 = 0.4928 n 2 = 1.51742 ν 2 = 52.41 r 4 = -1.0827 d 4 = 0.0705 r 5 = ∞ (aperture) d 5 = 0.6102 n 3 = 1.51633 ν 3 = 64.15 r 6 = ∞ d 6 = 0.2323 r 7 = 2.5203 d 7 = 0.1619 6 4 = 1.72825 ν 4 = 28.46 r 8 = 0.8214 d 8 = 0.3755 n 5 = 1.72916 ν 5 = 54.68 r 9 = -0.9814 d 9 = 0.1643 r 10 = -0.7474 d 10 = 0.1173 n 6 = 1.78472 v 6 = 25.71 r 11 = -1.9794 d 11 = 0.0939 r 12 = ∞ d 12 = 0.8214 n 7 = 1.56138 v 7 = 45.18 r 13 = ∞ d 13 = 0.2347 n 8 = 1.51633 ν 8 = 64.15 r 14 = ∞ d 14 = 1.2204 n 9 = 1.51633 ν 9 = 64.15 r 15 = ∞ | θ 1 |-| θ 2 /3|=|-9.2° | − | 4.3 ° / 3 | > 0 f B /f=1.43 | h 1 / f 1 | / | h 4 / f 4 | = 2.19> 1.14 | f 1 | /f=0.647 < 1, | f 234 | /f=1.043 Example 11 f = 1, F / 5, IH = 0.952 2ω = 87.2 ° r 1 = ∞ d 1 = 0.1846 n 1 = 1.88300 ν 1 = 40.78 r 2 = 0.7814 d 2 = 1.1864 r 3 = 10.8176 d 3 = 0.3725 n 2 = 1.78590 ν 2 = 44.18 r 4 = 1.2548 d 4 = 0.9228 n 3 = 1.64769 ν 3 = 33.80 r 5 = -1.6224 d 5 = 0.1318 r 6 = ∞ (aperture) d 6 = 0.2636 n 4 = 1.51633 ν 4 = 64.15 r 7 = ∞ d 7 = 0.3427 r 8 = 4.00013 d 8 = 0.3691 n 5 = 1.53256 v 5 = 45.91 r 9 = -0.9441 d 9 = 0.1318 n 6 = 1.84666 v 6 = 23.78 r 10 = -1.5897 d 10 = 0.0264 r 11 = 1.8567 d 11 = 0.4214 n 7 = 1.72916 v 7 = 54.68 r 12 = -1.5819 d 12 = 0.1320 n 8 = 1.72825 ν 8 = 28.46 r 13 = 1.2837 d 13 = 0.4746 r 14 = ∞ d 14 = 0.9228 n 9 = 1.54869 ν 9 = 45.55 r 15 = ∞ d 15 = 2.0348 n 10 = 1.9680 ν 10 = 55.52 r 16 = ∞ d 16 = 0.0005 r 17 = ∞ d 17 = 0.2853 n 11 = 1.69680 ν 11 = 55.52 r 18 = ∞ d 18 = 0.0004 r 19 = ∞ d 19 = 0.1318 n 12 = 1.51633 ν 12 = 64.15 r 20 = ∞ | θ 1 | − | θ 2 /3|=|−15.5°|−|5.7°/3|>0 f B /f=2.350>1.40 | h 1 / f 1 | / | h 4 / f 4 | = 10.9> 1.14 | f 1 | /f=0.885 <1, | f 234 | /f=1.582 In the data of the above example , R 1 , r 2 , ... are the radii of curvature of each surface of the lens, d 1 , d 2 , ... are the wall thickness and air gap of each lens,
n 1 , n 2 , ... are the refractive indices of the respective lenses, ν 1 , ν 2 , ... are the Abbe numbers of the respective lenses, IH is the image height, and 2ω is the angle of view.

実施例1は第5図に示すレンズ構成で、レンズ系の後
方に固体撮像素子を斜めに配置しその中間に2回反射さ
せて正立像を形成させる2枚のプリズムP1,P2と光学的
ローパスフィルターが配置されている。
Example 1 has a lens configuration shown in FIG. 5, in which a solid-state image sensor is obliquely arranged behind the lens system, and two prisms P 1 and P 2 for forming an erect image by reflecting twice in the middle and an optical system are provided. A low pass filter is installed.

この実施例はfB/f=1.76であって、バックフォーカス
が非常に長く勿論条件を満足している。
In this embodiment, f B /f=1.76, and the back focus is very long, which of course satisfies the condition.

この条件で前方のレンズと共に後群のプリズム部分を
コンパクトにするためには、射出光の最大像高の主光線
が光軸に平行でなく発散系であることが好ましく、又前
方のレンズの径とプリズムの径とをバランスさせるため
には、レンズ系の中での主光線の傾きはなるべく小さい
ほうが良い。そのためには、プリズムP1の入射面の前方
近傍に強い凹面を設け、絞り位置をさらにその前方に配
置し、又入射側にも物体側に負のレンズ群を配置し、中
央部に正のレンズ群を配置した。更に後群を特にコンパ
クト化するために前記の各条件を満足するようにした。
Under these conditions, in order to make the prism part of the rear lens group compact together with the front lens, it is preferable that the chief ray of the maximum image height of the emitted light is not parallel to the optical axis but a divergent system. In order to balance the diameter of the prism with the diameter of the prism, the inclination of the chief ray in the lens system should be as small as possible. For that purpose, a strong concave surface is provided near the front of the entrance surface of the prism P 1 , the diaphragm position is further arranged in front of it, and a negative lens group is also arranged on the entrance side on the object side, and a positive lens is arranged on the center part. The lens group was arranged. Furthermore, in order to make the rear group particularly compact, the above-mentioned conditions are satisfied.

この実施例1の収差状況は第16図に示す通りである。 The aberration situation of the first embodiment is as shown in FIG.

実施例2乃至実施例11は、夫々第6図乃至第15図に示
す通りのレンズ構成である。これらの図においては、フ
ィルターやプリズムはすべてガラスブロックの形で示し
てある。
The second to eleventh embodiments have lens configurations as shown in FIGS. 6 to 15, respectively. In these figures, all filters and prisms are shown in the form of glass blocks.

これら実施例2乃至実施例11の収差状況は、夫々第17
図乃至第26図に示す通りである。
The aberration states of Examples 2 to 11 are 17th, respectively.
This is as shown in FIGS.

[発明の効果] 以上述べたように本発明の対物レンズは、バックフォ
ーカスを十分長くとることが出来、対物レンズの後方に
光学的ローパスフィルターや赤外線除去フィルターを配
置し得ると共に固体撮像素子を斜め又は横向きに置いて
先端部を径を細くししかもコンパクトになし得る。又レ
トロフォーカスタイプに比べ歪曲収差を小さくし得た。
[Advantages of the Invention] As described above, in the objective lens of the present invention, the back focus can be made sufficiently long, an optical low-pass filter or an infrared ray removing filter can be arranged behind the objective lens, and the solid-state imaging device can be slanted. Alternatively, the tip may be placed sideways to have a smaller diameter and be compact. Also, the distortion can be made smaller than that of the retro focus type.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明対物レンズの基本構成を示す図、第2
図,第3図は本発明におけるプリズム等の配置例を示す
図、第4図は後群倍率とバックフォーカスの関係を示す
図、第5図乃至第15図は夫々本発明の実施例1乃至実施
例11の断面図、第16図乃至第26図は夫々実施例1乃至実
施例11の収差曲線図、第27図乃至第30図はいずれも従来
の対物レンズの構成を示す図である。
FIG. 1 is a diagram showing the basic structure of an objective lens of the present invention, and FIG.
FIG. 3 and FIG. 3 are views showing examples of arrangement of prisms and the like in the present invention, FIG. 4 is a view showing a relationship between rear group magnification and back focus, and FIGS. 5 to 15 are Embodiments 1 to 5 of the present invention, respectively. 16 is a sectional view of Example 11, FIGS. 16 to 26 are aberration curve diagrams of Examples 1 to 11, respectively, and FIGS. 27 to 30 are diagrams showing the configuration of a conventional objective lens.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】固体撮像素子と、前記固体撮像素子の前面
に配置されたプリズムと、前記プリズムの前方に配置さ
れた内視鏡対物レンズとから構成され、前記固体撮像素
子は、その長手方向を内視鏡の軸方向に対して斜めに傾
斜させるか、あるいは軸方向に平行に配置したものであ
り、前記内視鏡対物レンズは、物体側より順に負の屈折
力を有する最前群と、全体で正の屈折力の中間の各群
と、空気に接する凹面を含む最終群とを有し、前記中間
各群の最も物体側の面と最も像側の面の間に絞り配置
し、以下の条件を満足する内視鏡。 (1) |θ1|>|θ2/3| (2) |fB/f|>1.4 (3) |h1/f1|>1.5・|h4/f4| ただし、θは最大画角における軸外主光線と光軸との
なす角、θは最大画角における軸外主光線と絞り周辺
を通った軸外光線とのなす角、fBは光学系のバックフォ
ーカス、f1は最前群の焦点距離、f4は最終群の焦点距
離、h1は最大画角における軸外主光線が通過する最前群
の各レンズ面での光線高の平均値、h4は最大画角におけ
る軸外主光線が通過する最終群の各レンズ面での光線高
の平均値、fは全系の焦点距離である。
1. A solid-state image sensor, a prism disposed in front of the solid-state image sensor, and an endoscope objective lens disposed in front of the prism, wherein the solid-state image sensor has a longitudinal direction. Is obliquely inclined with respect to the axial direction of the endoscope, or is arranged in parallel to the axial direction, the endoscope objective lens is a front group having a negative refractive power in order from the object side, It has each intermediate group of positive refracting power as a whole and a final group including a concave surface in contact with air, and is arranged between the most object side surface and the most image side surface of each intermediate group, and An endoscope that satisfies the conditions of. (1) | θ 1 |> | θ 2/3 | (2) | f B /f|>1.4 (3) | h 1 / f 1 |> 1.5 · | h 4 / f 4 | However, theta 1 is The angle between the off-axis chief ray and the optical axis at the maximum angle of view, θ 2 is the angle between the off-axis chief ray at the maximum angle of view and the off-axis ray passing through the aperture periphery, f B is the back focus of the optical system, f 1 is the focal length of the front group, f 4 is the focal length of the final group, h 1 is the average ray height at each lens surface of the front group through which the off-axis chief ray passes at the maximum angle of view, h 4 is the maximum The average value of the ray heights at each lens surface of the final group through which the off-axis chief ray at the angle of view passes, and f is the focal length of the entire system.
【請求項2】前記内視鏡が、以下の条件を満足する請求
項1の内視鏡。 (4) |f1/f|<1 (5) 0.4<|f234|/f<2 ただし、f234は中間群と最終群の合成の焦点距離であ
る。
2. The endoscope according to claim 1, wherein the endoscope satisfies the following conditions. (4) | f 1 / f | <1 (5) 0.4 <| f 234 | / f <2 where f 234 is the focal length of the composite of the intermediate group and the final group.
【請求項3】前記最終群が前記固体撮像素子側に凹面に
向けた負レンズを有すると共に、前記内視鏡が、以下の
条件を満足する請求項2の内視鏡。 (6) 0.2<|R1|/f<10 (7) 0.2<|R4|/f<10 ただし、R1は最前群の凹面の曲率半径、R4は最終群の凹
面の曲率半径である。
3. The endoscope according to claim 2, wherein the final group has a negative lens facing the solid-state image pickup element, and the endoscope satisfies the following condition. (6) 0.2 <| R 1 | / f <10 (7) 0.2 <| R 4 | / f <10 where R 1 is the radius of curvature of the concave surface of the front group and R 4 is the radius of curvature of the concave surface of the final group. is there.
JP63023963A 1987-11-20 1988-02-05 Endoscope Expired - Lifetime JP2556984B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63023963A JP2556984B2 (en) 1988-02-05 1988-02-05 Endoscope
US07/272,991 US4986642A (en) 1987-11-20 1988-11-18 Objective lens system for endoscopes and image pickup system equipped with said objective lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63023963A JP2556984B2 (en) 1988-02-05 1988-02-05 Endoscope

Publications (2)

Publication Number Publication Date
JPH01200316A JPH01200316A (en) 1989-08-11
JP2556984B2 true JP2556984B2 (en) 1996-11-27

Family

ID=12125204

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63023963A Expired - Lifetime JP2556984B2 (en) 1987-11-20 1988-02-05 Endoscope

Country Status (1)

Country Link
JP (1) JP2556984B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05150172A (en) * 1991-11-26 1993-06-18 Olympus Optical Co Ltd Objective for endoscope
JP3406684B2 (en) * 1993-07-06 2003-05-12 ペンタックス株式会社 Endoscope objective lens
JP3450544B2 (en) * 1995-09-01 2003-09-29 ペンタックス株式会社 Endoscope objective lens
JPH09222556A (en) * 1995-12-11 1997-08-26 Konica Corp Wide-angle lens
JP3723637B2 (en) * 1996-07-03 2005-12-07 ペンタックス株式会社 Shooting lens
JP4921841B2 (en) * 2006-04-25 2012-04-25 ペンタックスリコーイメージング株式会社 Wide-angle lens system
WO2011070930A1 (en) 2009-12-11 2011-06-16 オリンパスメディカルシステムズ株式会社 Objective optical system
JP5903932B2 (en) * 2012-02-28 2016-04-13 株式会社ニコン OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
JP5903937B2 (en) * 2012-03-07 2016-04-13 株式会社ニコン OPTICAL SYSTEM, OPTICAL DEVICE, AND OPTICAL SYSTEM MANUFACTURING METHOD
WO2013128882A1 (en) * 2012-02-28 2013-09-06 株式会社ニコン Optical system, optical device, and method for manufacturing optical system
WO2016067838A1 (en) * 2014-10-30 2016-05-06 オリンパス株式会社 Objective optical system for endoscope
CN106199922B (en) * 2016-07-13 2018-07-24 浙江舜宇光学有限公司 Seven chip wide-angle lens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0648327B2 (en) * 1984-07-28 1994-06-22 オリンパス光学工業株式会社 Endoscope objective lens
JP2628627B2 (en) * 1985-01-11 1997-07-09 オリンパス光学工業株式会社 Aspheric objective lens for endoscope

Also Published As

Publication number Publication date
JPH01200316A (en) 1989-08-11

Similar Documents

Publication Publication Date Title
JP2596810B2 (en) Optical system for endoscope
JPH0980304A (en) Objective lens
JP4274602B2 (en) Objective optical system
JPH0648327B2 (en) Endoscope objective lens
JPH07270684A (en) Rear focus zoom lens and image pickup system
JP2556984B2 (en) Endoscope
JP4981466B2 (en) Optical system and imaging apparatus having the same
JP2903479B2 (en) Zoom lens
JP3359092B2 (en) Endoscope objective lens
JPH1039207A (en) Image forming lens
JPH09230232A (en) Retrofocus lens
JP6584142B2 (en) Imaging optical system and imaging apparatus having the same
US11822096B2 (en) Optical system and optical apparatus
JP5588790B2 (en) Lens system, interchangeable lens device, and camera system
JP2582144B2 (en) Shooting lens
JP3574484B2 (en) Objective optical system for endoscope
JP2005181852A (en) Photographing lens system and photographing apparatus having the system
JP2572237B2 (en) Wide angle lens with long back focus
JP3714663B2 (en) Single focus lens
JPH08334688A (en) Objective lens for endoscope
JP3511392B2 (en) Imaging lens with three balls
JP2001133684A (en) Photographic lens
JPH1048514A (en) Objective lens of endoscope
JP3752025B2 (en) Large aperture ultra wide angle lens system
JPH09133859A (en) Photographic lens