JPS6146658B2 - - Google Patents

Info

Publication number
JPS6146658B2
JPS6146658B2 JP644878A JP644878A JPS6146658B2 JP S6146658 B2 JPS6146658 B2 JP S6146658B2 JP 644878 A JP644878 A JP 644878A JP 644878 A JP644878 A JP 644878A JP S6146658 B2 JPS6146658 B2 JP S6146658B2
Authority
JP
Japan
Prior art keywords
fuel
negative pressure
throttle
chamber
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP644878A
Other languages
Japanese (ja)
Other versions
JPS5499833A (en
Inventor
Hibiki Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP644878A priority Critical patent/JPS5499833A/en
Publication of JPS5499833A publication Critical patent/JPS5499833A/en
Publication of JPS6146658B2 publication Critical patent/JPS6146658B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)

Description

【発明の詳細な説明】 本発明は、フロート室に蓄えられた燃料を吸気
通路に供給する燃料通路を備えた気化器に係り、
特に3元触媒を使用した排気ガス浄化対策型自動
車用エンジンに用いる好適な、加・減速時におけ
る過渡的空燃比変動の少ない気化器に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a carburetor equipped with a fuel passage that supplies fuel stored in a float chamber to an intake passage.
In particular, the present invention relates to a carburetor which is suitable for use in an exhaust gas purifying automobile engine using a three-way catalyst and which exhibits less transient air-fuel ratio fluctuations during acceleration and deceleration.

従来の自動車用エンジンに一般に用いられてい
る気化器の一例を第1図に示す。図において、1
0は、フロート12が浮かべられたフロート室、
14は、小ベンチユリ16、大ベンチユリ18及
び絞り弁20が配設された吸気通路、22は、小
ベンチユリ16内の主ノズル24にフロート室1
0内の燃料を供給するための主系統、25は、絞
り弁20の直近上部に形成された低速ポート26
及び同じく絞り弁20の直近下部に形成されたア
イドル調整ねじ28を有するアイドルポート30
に、フロート室10内の燃料を供給するための低
速系統である。
An example of a carburetor commonly used in conventional automobile engines is shown in FIG. In the figure, 1
0 is a float chamber in which the float 12 is floated;
14 is an intake passage in which a small bench lily 16, a large bench lily 18 and a throttle valve 20 are arranged; 22 is a main nozzle 24 in the small bench lily 16 that connects the float chamber 1
The main system 25 for supplying fuel within the range 0 is a low speed port 26 formed immediately above the throttle valve 20.
and an idle port 30 having an idle adjustment screw 28 also formed immediately below the throttle valve 20.
This is a low-speed system for supplying fuel in the float chamber 10.

前記主系統22は、フロート室10の側壁に付
設された、燃料流量を規制するための主ジエツト
32と、該主ジエツト32で計量された燃料を前
記主ノズル24に供給するための主燃料通路34
と、該主燃料通路34内に空気をブリードするた
めの空気ジエツト36とを有する。
The main system 22 includes a main jet 32 attached to the side wall of the float chamber 10 for regulating the fuel flow rate, and a main fuel passage for supplying the fuel metered by the main jet 32 to the main nozzle 24. 34
and an air jet 36 for bleeding air into the main fuel passage 34.

又、前記低速系統25は、前記主燃料通路34
から分岐された低速燃料通路40の途中に配設さ
れた、低速系統に流れる燃料の流量を規制する低
速ジエツト38と、低速燃料通路40中にブリー
ドされる空気を規制する低速空気ジエツト42と
を有する。
Further, the low speed system 25 is connected to the main fuel passage 34.
A low-speed jet 38 that regulates the flow rate of fuel flowing into the low-speed system and a low-speed air jet 42 that regulates air bled into the low-speed fuel passage 40 are arranged in the middle of the low-speed fuel passage 40 branched from the low-speed fuel passage 40. have

このような従来の気化器における定常運転状態
においては、十分な性能を得ることができるが、
加・減速時に次のような問題があつた。即ち、加
速時においては、第2図に実線Aで示すごとく絞
り弁開度が急激に大とされた場合、吸入空気量の
瞬間的増大に燃料吐出量が追従できず、特に、低
速系統から主系統へ燃料吐出が切換わるような軽
負荷加速では、低速系統から主系統間の圧力バラ
ンスの関係もあつて、第2図に実線Bで示すごと
く、加速後数秒乃至10数秒の間にわたり吸気空燃
比が一時的に希薄となり、自動車においてはいき
つき、もたつき等を生ずる。又、加速時に燃料吐
出量が増大しても、吸気流速の一時的低下、吸気
負圧の低下等により、吸気管内に液体燃料として
滞留する量が増加するため、このことによつて
も、前記希薄化現象が助長される。
Although sufficient performance can be obtained under steady operating conditions in such conventional vaporizers,
The following problem occurred during acceleration/deceleration. That is, during acceleration, if the throttle valve opening is suddenly increased as shown by the solid line A in Figure 2, the fuel discharge amount cannot follow the instantaneous increase in the amount of intake air, especially from the low-speed system. During light load acceleration where fuel discharge is switched to the main system, due to the pressure balance between the low speed system and the main system, as shown by solid line B in Fig. The air-fuel ratio becomes lean temporarily, causing stiffness, sluggishness, etc. in a car. Furthermore, even if the fuel discharge amount increases during acceleration, the amount of liquid fuel retained in the intake pipe increases due to a temporary decrease in intake flow velocity, a decrease in intake negative pressure, etc. The dilution phenomenon is promoted.

一方減速時には、第3図に実線Cで示すごと
く、絞り弁開度が急に小とされた場合、吸気負圧
が上昇するため、それ迄吸気管内壁に付着して流
れていた液体燃料が一時的に気化し、第3図に実
線Dで示すごとく絞り弁急閉から数秒乃至10数秒
間にわたり、吸気空燃比が一時的に過濃となる。
この現象は、加速後減速した場合が特に著しく、
失火したりアフターバーンを生じることがある。
On the other hand, during deceleration, as shown by solid line C in Figure 3, if the throttle valve opening is suddenly reduced, the intake negative pressure increases, causing the liquid fuel that had been flowing and adhering to the inner wall of the intake pipe to It vaporizes temporarily, and the intake air-fuel ratio temporarily becomes excessively rich for several seconds to ten-odd seconds after the throttle valve is suddenly closed, as shown by the solid line D in FIG.
This phenomenon is especially noticeable when decelerating after acceleration.
May cause misfire or afterburn.

前記のような加・減速時における希薄化及び過
濃化現象は、排気対策上も好ましくなく、特に、
排気系の空燃比を狭い一定範囲内に保つ必要があ
る3元触媒を用いた排気ガス浄化対策型エンジン
においては、その排気浄化率が大幅に低下すると
いう問題があつた。
The above-mentioned dilution and overconcentration phenomena during acceleration and deceleration are unfavorable in terms of exhaust gas countermeasures, and in particular,
In exhaust gas purification engines using three-way catalysts that require the air-fuel ratio in the exhaust system to be kept within a narrow fixed range, there has been a problem in that the exhaust gas purification rate is significantly reduced.

これらの問題を解決する方法として、加・減速
時すなわち絞り弁急開閉時に、吸気負圧に応じて
燃料吐出量を増減して空燃比補償制御をするとと
もに、その空燃比補償をエンジン特性に応じて調
整するため、吸気負圧検出管路に絞り手段を設け
たものが提案されている(実開昭51−156318号公
報)。
As a way to solve these problems, the air-fuel ratio compensation control is performed by increasing or decreasing the fuel discharge amount according to the intake negative pressure during acceleration and deceleration, that is, when the throttle valve suddenly opens and closes.The air-fuel ratio compensation is also controlled according to the engine characteristics. In order to adjust the intake pressure, it has been proposed that a constriction means is provided in the intake negative pressure detection line (Japanese Utility Model Publication No. 156318/1983).

しかし、上記公報に示されたものによれば、吸
気負圧検出系に設けた絞り手段の絞り面積を適宜
選定することにより、エンジンの通常状態(暖機
後)における空燃比補償を適切に行なわせること
ができるが、絞り面積を暖機後の条件に合わせて
小さく選定すると、エンジンが不安定な暖機時に
おいては燃料吐出量調整の応答が遅れてしまうと
いう問題があつた。
However, according to what is disclosed in the above publication, by appropriately selecting the throttle area of the throttle means provided in the intake negative pressure detection system, the air-fuel ratio can be appropriately compensated in the normal state of the engine (after warm-up). However, if the orifice area is selected to be small according to the conditions after warm-up, there is a problem that the response of the fuel discharge amount adjustment is delayed when the engine is unstable during warm-up.

本発明は、上記従来の欠点を解消すべくなされ
たもので、エンジン特性によつて異なる加減速時
の空燃比変動を燃料吐出量の調整によつて防止す
るとともに、その調整を暖機条件に応じて行わせ
る気化器を提供することを目的とする。本発明の
気化器は、フロート室と主ノズルとを結ぶ主燃料
通路の途中に連通され、一定量の燃料を加速時に
吐出し、一方減速時に吸引して前記主ノズルから
の燃料吐出量を調整するポンプ室と絞り弁下流側
の吸気通路に連通される負圧室とを可動部材で仕
切り、前記負圧室に吸気負圧を導入して前記可動
部材を変位させてポンプ作用を行なうポンプ手段
を設け、前記負圧室に負圧を導入する管路に、エ
ンジン温度に応じて、低温時絞り面積大、高温時
絞り面積小となるように制御される絞り手段を設
けたものである。
The present invention has been made in order to eliminate the above-mentioned conventional drawbacks.The present invention prevents air-fuel ratio fluctuations during acceleration and deceleration, which vary depending on engine characteristics, by adjusting the fuel discharge amount, and also allows the adjustment to be applied to warm-up conditions. The purpose of the present invention is to provide a vaporizer that can be used accordingly. The carburetor of the present invention is connected midway through a main fuel passage connecting the float chamber and the main nozzle, and discharges a certain amount of fuel during acceleration, and sucks it during deceleration to adjust the amount of fuel discharged from the main nozzle. A pumping means that partitions a pump chamber that is operated by a movable member into a negative pressure chamber that communicates with an intake passage downstream of a throttle valve, and performs a pumping action by introducing negative intake pressure into the negative pressure chamber and displacing the movable member. A conduit for introducing negative pressure into the negative pressure chamber is provided with a throttle means that is controlled to have a large throttle area when the temperature is low and a small throttle area when the temperature is high, depending on the engine temperature.

上記の構成によると、エンジン特性に応じて過
渡時の空燃比が絞り手段の絞り経を変えることに
よつて調整することができる。すなわち、絞り手
段の絞り径を変えると、吸気負圧に応じてポンプ
手段のポンプ特性が変化し、燃料吐出量を増減さ
せることができるから、過渡時の空燃比変動を抑
えることができる。
According to the above configuration, the air-fuel ratio during a transient period can be adjusted according to the engine characteristics by changing the aperture diameter of the throttle means. That is, by changing the aperture diameter of the throttle means, the pump characteristics of the pump means change in accordance with the intake negative pressure, and the amount of fuel discharged can be increased or decreased, so that air-fuel ratio fluctuations during transient times can be suppressed.

まず減速時には絞り弁下流側の高い吸気負圧が
絞り手段を介してポンプ手段の負圧室に徐々に伝
えられ、可動部材を変位させる。すると、主燃料
通路内の一定量の燃料がポンプ室に吸引されるた
め、主燃料通路内の燃料圧力が一時的に低下し、
燃料吐出量が減少する。これによつて、空燃比が
一時的に希薄となり、減速時における一時的過濃
現象が補償される。
First, during deceleration, high intake negative pressure on the downstream side of the throttle valve is gradually transmitted to the negative pressure chamber of the pump means via the throttle means, displacing the movable member. Then, a certain amount of fuel in the main fuel passage is sucked into the pump chamber, so the fuel pressure in the main fuel passage temporarily decreases.
Fuel discharge amount decreases. As a result, the air-fuel ratio temporarily becomes lean, and the temporary richness phenomenon during deceleration is compensated for.

一方加速時には、絞り弁下流側の低い吸気負圧
が絞り手段を介して負圧室に徐々に伝えられ、可
動部材を減速時とは逆向きに変位させる。する
と、主燃料通路内に一定量の燃料がポンプ室から
供給されるため、主燃料通路内の燃料圧力が一時
的に上昇し、燃料吐出量が増加する。これによつ
て、空燃比が一時的に過濃となり、加速時におけ
る一時的希薄現象が補償される。
On the other hand, during acceleration, the low intake negative pressure on the downstream side of the throttle valve is gradually transmitted to the negative pressure chamber via the throttle means, displacing the movable member in the opposite direction to that during deceleration. Then, since a certain amount of fuel is supplied from the pump chamber into the main fuel passage, the fuel pressure in the main fuel passage temporarily increases, and the amount of fuel discharged increases. As a result, the air-fuel ratio temporarily becomes too rich, and the temporary lean phenomenon during acceleration is compensated for.

また、絞り手段の絞り面積を可変とし、エンジ
ン温度に応じて、低温時絞り面積大、高温時絞り
面積小となるように制御されることから、暖機後
においては上記作用となるが、暖機時においては
絞り面積が大となるため、吸気負圧の変化に速や
かに応動して燃料吐出量の調整がなされ、エンジ
ンの安定性が保持される。
In addition, since the throttle area of the throttle means is variable and controlled according to the engine temperature so that the throttle area is large at low temperatures and small at high temperatures, the above effect will occur after warm-up. Since the throttle area becomes large during engine operation, the fuel discharge amount is adjusted quickly in response to changes in the intake negative pressure, and the stability of the engine is maintained.

以下図面を参照して、本発明の実施例を詳細に
説明する。本発明の実施例は、第4図に示すごと
く、主燃料通路34内の燃料を、エンジン加速時
には一時的に加圧し、減速時には一時的に減圧す
るダイヤフラムポンプ50が配設されている。こ
のダイヤフラムポンプ50は、ダイヤフラム52
で区画されたポンプ室54と負圧室56とを有
し、ポンプ室54は、燃料通路58によつて主燃
料通路34に接続されており、負圧室56は、絞
り手段100が途中に配設された負圧通路62に
より吸気通路14の絞り弁20下流側に接続され
ている。絞り手段100は、エンジン温度に応じ
て、低温時絞り面積大に、高温時絞り面積小とな
るように形成されている。たとえば、第5図に示
すごとく、エンジン温度が所定温度以下のときに
開かれる閉止弁72が直列接続された絞り46
を、絞り60に並列接続した構成とすることがで
きる。前記ダイヤフラム52は、負圧室56内に
装入された圧縮ばね64によりポンプ室54側に
付勢されている。66は、圧縮ばね64の圧力を
調整するための圧力調整ねじである。
Embodiments of the present invention will be described in detail below with reference to the drawings. As shown in FIG. 4, the embodiment of the present invention is provided with a diaphragm pump 50 that temporarily pressurizes the fuel in the main fuel passage 34 when the engine is accelerating and temporarily reduces the pressure when the engine is decelerating. This diaphragm pump 50 has a diaphragm 52
The pump chamber 54 is connected to the main fuel passage 34 by a fuel passage 58, and the negative pressure chamber 56 has a throttle means 100 in the middle thereof. The intake passage 14 is connected to the downstream side of the throttle valve 20 by a negative pressure passage 62 provided therein. The throttle means 100 is formed to have a large throttle area when the temperature is low and a small throttle area when the temperature is high, depending on the engine temperature. For example, as shown in FIG. 5, a throttle 46 is connected in series with a shutoff valve 72 that is opened when the engine temperature is below a predetermined temperature.
can be connected in parallel to the diaphragm 60. The diaphragm 52 is urged toward the pump chamber 54 by a compression spring 64 inserted into the negative pressure chamber 56 . 66 is a pressure adjustment screw for adjusting the pressure of the compression spring 64.

以下動作を説明する。まず減速時においては、
絞り弁20が閉とされると吸気通路14内の絞り
弁20下流側の吸気負圧が上昇するため、該高負
圧が絞り手段100を介して、ダイヤフラムポン
プ50の負圧室56に徐々に伝えられ、該負圧室
56内の圧力が徐々に低下する。すると、圧縮ば
ね64に抗してダイヤフラム52が図の右方に吸
引され、主燃料通路34内の燃料が一定時間だけ
ダイヤフラムポンプ50のポンプ室54内に吸引
される。すると、主燃料通路34内の燃料圧力が
一時的に低下し、燃料吐出量が減少するため、主
ノズル24より吸気通路14に噴出される燃料吐
出量が減少し、空燃比が従来より一時的に希薄と
なる。従つて、従来のような一時的過濃現象が補
償される。
The operation will be explained below. First, during deceleration,
When the throttle valve 20 is closed, the intake negative pressure downstream of the throttle valve 20 in the intake passage 14 increases, so that the high negative pressure gradually enters the negative pressure chamber 56 of the diaphragm pump 50 via the throttle means 100. The pressure inside the negative pressure chamber 56 gradually decreases. Then, the diaphragm 52 is sucked to the right in the figure against the compression spring 64, and the fuel in the main fuel passage 34 is sucked into the pump chamber 54 of the diaphragm pump 50 for a certain period of time. Then, the fuel pressure in the main fuel passage 34 temporarily decreases and the amount of fuel discharged decreases, so the amount of fuel discharged from the main nozzle 24 into the intake passage 14 decreases, and the air-fuel ratio temporarily becomes lower than before. becomes diluted. Therefore, the temporary overconcentration phenomenon that occurs in the prior art is compensated for.

一方加速時においては、絞り弁20が開とされ
るため吸気通路14の絞り弁20下流側の吸気負
圧が低下し、これが、絞り手段100を介してダ
イヤフラムポンプ50の負圧室56に伝えられる
ため、該負圧室56内の圧力が徐々に上昇する。
すると圧縮ばね64の作用によりダイヤフラム5
2が図の左方に押出され、ポンプ室54内の燃料
が主燃料通路34に吐出される。すると主燃料通
路34内の圧力が上昇し、主ノズル24より吸気
通路14内に吐出される燃料の量が増加するた
め、一定時間だけ空燃比が従来より過濃となる。
従つて、従来の加速時における空燃比希薄化現象
が補償される。
On the other hand, during acceleration, since the throttle valve 20 is opened, the intake negative pressure on the downstream side of the throttle valve 20 in the intake passage 14 decreases, and this is transmitted to the negative pressure chamber 56 of the diaphragm pump 50 via the throttle means 100. As a result, the pressure inside the negative pressure chamber 56 gradually increases.
Then, due to the action of the compression spring 64, the diaphragm 5
2 is pushed out to the left in the figure, and the fuel in the pump chamber 54 is discharged into the main fuel passage 34. Then, the pressure inside the main fuel passage 34 increases, and the amount of fuel discharged from the main nozzle 24 into the intake passage 14 increases, so that the air-fuel ratio becomes richer than before for a certain period of time.
Therefore, the conventional air-fuel ratio lean phenomenon during acceleration is compensated for.

又、低速系統から主系統へのつなぎ域を横切る
ような軽負荷加速時においても、燃料通路への加
圧により、主燃料通路への燃料流れの切換えが滑
らかに行なわれるため、従来におけるような燃料
の引合いによる空燃比の一時的希薄化現象が防止
できる。
In addition, even during light load acceleration, such as when crossing the transition area from the low-speed system to the main system, pressurizing the fuel passage allows the fuel flow to be smoothly switched to the main fuel passage, which is different from conventional systems. Temporary dilution of the air-fuel ratio due to fuel tension can be prevented.

本実施例においては、ダイヤフラムポンプの圧
縮ばねに圧力調整ねじを設け、該圧力調整ねじに
より圧縮ばねの加圧力を調整できるようにしてい
るため、生産が容易である。
In this embodiment, a pressure adjustment screw is provided on the compression spring of the diaphragm pump, and the pressurizing force of the compression spring can be adjusted by the pressure adjustment screw, so that production is easy.

なお前記実施例においては、主燃料通路34内
の燃料圧力のみを加減するようにされていたが、
第4図に2点鎖線で示すごとく、ダイヤフラムポ
ンプ50のポンプ室54と、低速燃料通路40と
を燃料通路70により連通し、低速系統で運転し
ている状態における、加・減速時の空燃比変動を
減少させることも可能である。
Note that in the embodiment described above, only the fuel pressure within the main fuel passage 34 was adjusted; however,
As shown by the two-dot chain line in FIG. 4, the pump chamber 54 of the diaphragm pump 50 and the low-speed fuel passage 40 are connected through the fuel passage 70, and the air-fuel ratio during acceleration and deceleration is determined when operating in the low-speed system. It is also possible to reduce the fluctuations.

又、第4図に破線で示すごとく、燃料通路58
の途中に絞り72を配設しポンプ室54と主燃料
通路34間の圧力バランスをとることも勿論可能
である。
Also, as shown by the broken line in FIG. 4, the fuel passage 58
Of course, it is also possible to provide a throttle 72 in the middle of the pump chamber 54 and the main fuel passage 34 to balance the pressure between the pump chamber 54 and the main fuel passage 34.

更に、前記実施例においては、ポンプ手段とし
てダイヤフラムポンプが使用されていたが、ピス
トン式等他の方式のポンプを用いることもでき
る。
Further, in the embodiments described above, a diaphragm pump was used as the pump means, but other types of pumps such as a piston type may also be used.

次に、絞り手段100の動作を説明する。 Next, the operation of the aperture means 100 will be explained.

まず、暖機時においては、エンジン温度が低い
ので、閉止弁74は「開」となり、吸気負圧は絞
り60および絞り76の両絞りを介して伝えら
れ、絞り面積は大となる。これにより、吸気負圧
の変動はポンプ手段の負圧室へ迅速に伝達され
る。
First, during warm-up, the engine temperature is low, so the shutoff valve 74 is "open" and the intake negative pressure is transmitted through both the throttles 60 and 76, and the throttle area becomes large. As a result, fluctuations in the intake negative pressure are quickly transmitted to the negative pressure chamber of the pump means.

一方暖機後においては、エンジン温度が高く、
閉止弁74は「閉」となり、吸気負圧は絞り60
を介して伝えられ、絞り面積は小となるので、吸
気負圧の変動はポンプ手段の負圧室へ徐々に伝達
される。
On the other hand, after warming up, the engine temperature is high;
The shutoff valve 74 is "closed" and the intake negative pressure is reduced to the throttle 60.
Since the throttle area is small, fluctuations in the intake negative pressure are gradually transmitted to the negative pressure chamber of the pump means.

以上説明した通り、本発明によれば、燃料通路
内の燃料を、エンジン加速時には一時的に加圧
し、減速時には一時的に減圧するポンプ手段を設
けたので、空燃比の加速後の一時的希薄化現象或
るいは減速後の一時的過濃度を、単一の簡単な装
置で補償でき、息付き、もたつきやアフターバー
ンを防止できると共に、3元触媒を使用した排気
ガスを浄化システムにおいては、排気浄化率を大
幅に向上することができる。また吸気負圧を負圧
室に導入する管路に絞り手段が設けられているか
ら、この絞り径を変えるだけでエンジン特性に応
じた空燃比補償を得ることができ、各種のエンジ
ンに適合させ易く、汎用性に優れている。しか
も、絞り手段の絞り面積をエンジン温度に応じて
可変としているので、暖機条件に応じた燃料吐出
量調整を行なうことができ、暖機時のエンジンの
安定性を保持できる。
As explained above, according to the present invention, a pump means is provided which temporarily pressurizes the fuel in the fuel passage when the engine accelerates and temporarily reduces the pressure when the engine decelerates, so that the air-fuel ratio is temporarily depleted after acceleration. Temporary overconcentration after deceleration or deceleration can be compensated for with a single simple device, and breathing, sluggishness and afterburn can be prevented. The exhaust purification rate can be significantly improved. In addition, since a throttle means is provided in the conduit that introduces the intake negative pressure into the negative pressure chamber, it is possible to obtain air-fuel ratio compensation according to engine characteristics by simply changing the diameter of this throttle, making it suitable for various engines. Easy to use and has excellent versatility. Furthermore, since the throttle area of the throttle means is made variable in accordance with the engine temperature, the fuel discharge amount can be adjusted in accordance with warm-up conditions, and the stability of the engine during warm-up can be maintained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の気化器を示す断面図、第2図
は、従来の気化器における加速時の空燃比変動状
態を示す線図、第3図は、同じく減速時の空燃比
変動状態を示す線図、第4図は、本発明に係る気
化器の実施例を示す一部管路図を含む断面図、第
5図は、絞り手段の一実施例を示す部分管路図で
ある。 10……フロート室、12……フロート、14
……吸気通路、20……絞り弁、22……主系
統、24……主ノズル、25……低速系統、34
……主燃料通路、40……低速燃料通路、50…
…ダイヤフラムポンプ、52……ダイヤフラム、
54……ポンプ室、56……負圧室、58……燃
料通路、62……負圧通路、64……圧縮ばね、
66……圧力調整ねじ、70……燃料通路、6
0,72,76……絞り、74……閉止弁、10
0……絞り手段。
Fig. 1 is a sectional view showing a conventional carburetor, Fig. 2 is a diagram showing air-fuel ratio fluctuations during acceleration in a conventional carburetor, and Fig. 3 is a diagram showing air-fuel ratio fluctuations during deceleration. FIG. 4 is a sectional view including a partial duct diagram showing an embodiment of the vaporizer according to the present invention, and FIG. 5 is a partial duct diagram showing an embodiment of the throttle means. 10...Float chamber, 12...Float, 14
... Intake passage, 20 ... Throttle valve, 22 ... Main system, 24 ... Main nozzle, 25 ... Low speed system, 34
...Main fuel passage, 40...Low speed fuel passage, 50...
...Diaphragm pump, 52...Diaphragm,
54... pump chamber, 56... negative pressure chamber, 58... fuel passage, 62... negative pressure passage, 64... compression spring,
66...Pressure adjustment screw, 70...Fuel passage, 6
0,72,76... Throttle, 74... Shutoff valve, 10
0... Squeezing means.

Claims (1)

【特許請求の範囲】[Claims] 1 フロート室と主ノズルとを結ぶ主燃料通路の
途中に連通され、一定量の燃料を加速時に吐出
し、一方減速時に吸引して前記主ノズルからの燃
料吐出量を調整するポンプ室と絞り弁下流側の吸
気通路に連通される負圧室とを可動部材で仕切
り、前記負圧室に吸気負圧を導入して前記可動部
材を変位させてポンプ作用を行なうポンプ手段を
設け、前記負圧室に負圧を導入する管路に、エン
ジン温度に応じて、低温時絞り面積大、高温時絞
り面積小となるように制御される絞り手段を設け
たことを特徴とする気化器。
1 A pump chamber and a throttle valve that are communicated in the middle of the main fuel passage connecting the float chamber and the main nozzle, and discharge a certain amount of fuel during acceleration, and suck it during deceleration to adjust the amount of fuel discharged from the main nozzle. A movable member partitions a negative pressure chamber communicating with a downstream intake passage, and a pump means is provided for introducing an intake negative pressure into the negative pressure chamber and displacing the movable member to perform a pumping action. A carburetor characterized in that a conduit for introducing negative pressure into a chamber is provided with a throttle means that is controlled to have a large throttle area at low temperatures and a small throttle area at high temperatures depending on the engine temperature.
JP644878A 1978-01-23 1978-01-23 Carbureter Granted JPS5499833A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP644878A JPS5499833A (en) 1978-01-23 1978-01-23 Carbureter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP644878A JPS5499833A (en) 1978-01-23 1978-01-23 Carbureter

Publications (2)

Publication Number Publication Date
JPS5499833A JPS5499833A (en) 1979-08-07
JPS6146658B2 true JPS6146658B2 (en) 1986-10-15

Family

ID=11638693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP644878A Granted JPS5499833A (en) 1978-01-23 1978-01-23 Carbureter

Country Status (1)

Country Link
JP (1) JPS5499833A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337644A (en) * 1989-07-04 1991-02-19 Toray Ind Inc Article sensitive to ultraviolet ray

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0337644A (en) * 1989-07-04 1991-02-19 Toray Ind Inc Article sensitive to ultraviolet ray

Also Published As

Publication number Publication date
JPS5499833A (en) 1979-08-07

Similar Documents

Publication Publication Date Title
JPS586056B2 (en) internal combustion engine carburetor
JPS6146658B2 (en)
US4003358A (en) Control system for controlling an air-fuel mixture in internal combustion engine
JPS6045774A (en) Fuel supply control device
JPS624532B2 (en)
JPH05256203A (en) Fuel quantity increase device for multiple carburetor
JPS6041217B2 (en) Enrichment device for internal combustion engine carburetor
US4147032A (en) Secondary air supply control system
JPS6032369Y2 (en) Exhaust gas recirculation device
JPH0139883Y2 (en)
JPS6055705B2 (en) Variable bench lily type vaporizer
JPS6054497B2 (en) Carburetor acceleration fuel supply device
JPS6042201Y2 (en) Auxiliary fuel supply device for internal combustion engines
JPS5834668B2 (en) Vaporizer acceleration pump mechanism
JPS5928747B2 (en) Air-fuel ratio control device for internal combustion engines
JPS626276Y2 (en)
JPS59162361A (en) Fuel pressure controller of fuel injection device
JPS6120291Y2 (en)
JP3852633B2 (en) Engine deceleration control device
JPS6221749Y2 (en)
JP3196084B2 (en) Vaporizer fuel booster
JPS62139960A (en) Intake device for multiple cylinder engine
JPS6045739A (en) Controller for acceleration of supercharged internal- combustion engine
JPS59147852A (en) Carburetor
JPS60261963A (en) Carburetor for engine associated with supercharger