JPS6146593B2 - - Google Patents

Info

Publication number
JPS6146593B2
JPS6146593B2 JP55159018A JP15901880A JPS6146593B2 JP S6146593 B2 JPS6146593 B2 JP S6146593B2 JP 55159018 A JP55159018 A JP 55159018A JP 15901880 A JP15901880 A JP 15901880A JP S6146593 B2 JPS6146593 B2 JP S6146593B2
Authority
JP
Japan
Prior art keywords
dyed
water
general formula
fastness
color fastness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55159018A
Other languages
Japanese (ja)
Other versions
JPS5782591A (en
Inventor
Harukuni Kishioka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON SENKA KOGYO KK
Original Assignee
NIPPON SENKA KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON SENKA KOGYO KK filed Critical NIPPON SENKA KOGYO KK
Priority to JP55159018A priority Critical patent/JPS5782591A/en
Publication of JPS5782591A publication Critical patent/JPS5782591A/en
Publication of JPS6146593B2 publication Critical patent/JPS6146593B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は反応性染料を用いて染色した被染物の
染色堅牢度を向上させる方法に関する。 反応性染料を用いて染色した被染物は、一般に
直接染料による被染物に比べると染色堅牢度が優
れているが、それでも耐洗濯堅牢度、耐水堅牢
度、耐汗堅牢度等においてなお不充分であり、ま
た繊維と反応性染料との共有結合が空気中で加水
分解を受けて徐々に切断される為に時間とともに
該被染物の染色堅牢度が低下する欠点がある。こ
のため従来より被染物の染色堅牢度を向上させる
目的で染色後にジシアンジアミドとホルマリンと
の縮合物或はエチレンジアミン、ジエチレントリ
アミン等のポリアミンとジシアンジアミド等の縮
合物の希薄水溶液により被染物を処理することが
通常行なわれている。しかしながら上記処理によ
れば被染物の変色が著しくなつたり、尚耐光堅牢
度の低下を避けることができないという欠点があ
る。また近年第2級アミンとエピハロヒドリンと
の等モル反応生成物(特公昭43―243号)及びポ
リアミンスルホン(特公昭43―18165号)を用い
て染色堅牢度を向上させる方法が開発されたが、
之等を用いる場合にも耐洗濯堅牢度、耐水堅牢
度、耐汗堅牢度等の染色堅牢度は尚充分には向上
し得ないだけでなく、ポリアミンスルホンは、こ
れと染料との結合力が強力でないために該化合物
の使用量が必然的に多くなり、しかも該化合物の
主鎖にスルホン基が存在する為にアルカリ加水分
解を受け易く解重合により分子が切断されるよう
になり、従つて経日に伴い処理された被染物の染
色堅牢度が徐々に低下する傾向がある。 本発明者は斯かる現状に鑑み被染物の染色堅牢
度を向上させるべく種々の努力を重ねて来た。そ
の結果下記一般式〔〕を基本構成単位とする低
重合度の化合物の水溶液にて被染物を浸漬処理す
る時には、この処理による変色や耐光堅牢度の低
下、耐摩擦堅牢度の低下をきたすことなく耐洗濯
堅牢度、耐水堅牢度、耐汗堅牢度、耐塩素水堅牢
度等の染色堅牢度を充分に向上できることを見い
出し、先に特願昭54―128232号に係る発明を完成
した。 本発明は、上記発明に見られる各種堅牢度殊に
耐洗濯堅牢度、アルカリ及び酸による加水分解に
対する堅牢度及び耐汗堅牢度を更に改善する方法
を提供するものである。 即ち本発明は反応性染料を用いて染色した被染
物の染色堅牢度を向上させるに際し、 (イ) 一般式 〔式中R1及びR2は同一又は相異なつて水素原子又
はメチル基を示す。HXは有機酸又は無機酸を示
す。〕 で表わされる繰返しモノマー単位から成る重合
体、及び (ロ) 上記一般式〔〕で表わされる繰返しモノマ
ー単位及び該単位となるモノマーに対し1/2モル
までの量で配合された該モノマーと共重合可能な
他のモノマーの単位から成る共重合体から選択さ
れた水溶性ポリマーを用いてpH11までのアルカ
リ条件下に被染物を処理することを特徴とする被
染物の染色堅牢度向上方法に係る。 本発明方法は、反応性染料により染色された被
染物例えばセルロース製品、蛋白質製品、合成ポ
リアミド製品等に有利に適用され、上記製品とし
ては、織布、糸等の繊維類に限らず、例えば皮革
等であつてもよい。また反応性染料としては、公
知の各種のものをいずれも使用できるが、殊にア
ミノ基又は水酸基と反応し得る反応基を2個以上
有する染料が好ましい。該染料としては代表的に
は例えば反応基として、ジクロルトリアジニル
基、ジクロルキノキザリン基、トリクロルピリミ
ジン基、モノクロルジフルオロピリミジン基、ビ
ニルスルフオニル基等を有するものを例示でき
る。 本発明方法によれば上記反応性染料により染色
された被染物の変色、耐光堅牢度低下、耐塩素水
堅牢度低下等を全く伴うことなく、各種湿潤堅牢
度を高度に向上させ得る。特に本発明方法によれ
ば、従来行なわれている第四級アミン塩ポリマー
等を用いる方法に比して、被染物の長期貯蔵時の
加水分解による染料脱落を防止でき、また酸やア
ルカリによる加水分解に対する染色堅牢度を極め
て向上させることができる。本発明方法によつて
上記格別顕著な効果が発現される理由は、現在尚
解明されてはいないが、上記特定の水溶性ポリマ
ーを用いてpH11までのアルカリ条件下に被染物
を処理する時には、上記ポリマー中の二級アミノ
基が繊維製品等に染着された反応性染料分子に残
存する未反応基と化学的に反応して共有結合によ
り繊維製品等の表面に強固に固着した見掛け上高
分子量の反応性染料層を生成するためと考えられ
る。いずれにせよ本発明方法によれば、従来のイ
オン結合に基づく方法とは全く異なつて、顕著に
向上された染色堅牢度を有する製品を収得でき
る。 本発明方法においては上記(イ)及び(ロ)から選択さ
れた水溶性ポリマーを用いることを必須とする。
上記ポリマー中(イ)に示される単独重合体は、例え
ば一般式 〔式中R1、R2及びHXは上記に同じ〕 で表わされる化合物をラジカル重合触媒を用いて
環化重合させることにより製造できる。この際の
重合方法は公知の方法に従えばよい。ラジカル重
合触媒としては例えば過硫酸アンモン、過酸化水
素、ベンゾイルパーオキサイド、第3級ブチルハ
イドロパーオキサイド、アゾビスイソブチロニト
リル、クメンハイドロパーオキサイド等を例示で
きる。また溶媒としては水或いはメタノール、エ
タノール、イソプロパノール、n―プロパノー
ル、ホルムアミド、ジメチルルムアミド、ジオキ
サン、アセトニトリル、ジメチルスルホキシド等
の極性溶媒を例示し得る。また重合反応は例えば
一般式〔〕の化合物100重量部を溶媒20〜100重
量部に溶解しラジカル重合触媒0.05〜10重量部を
加え、必要に応じ酸性亜硫酸ソーダ、硫酸第1
鉄、硫酸銅等の還元剤を0.01〜5重量部併用し
て、行ない得る。重合温度は通常70〜110℃、重
合時間は通常10〜50時間程度とするのが好ましく
重合反応は有利には窒素ガスを吹き込みながら行
なわれる。 上記水溶性ポリマー中(ロ)に示される共重合体に
おける共重合可能な他のモノマー単位としては、
代表的には、式 ―SO2― 〔〕 で表わされる単位、一般式 〔式中R1及びR2は上記に同じ。Yはハロゲン原子
を示す。〕 で表わされる単位及びアクリル系モノマー単位を
例示できる。上記式〔〕で表わされる単位を共
重合体中に導入するに当つては、例えば前記一般
式〔〕で表わされる化合物の環化重合反応系内
に亜硫酸ガスを吹込みつつ反応を行なわせればよ
く、上記一般式〔〕で表わされる単位を導入す
るに当つては、前記一般式〔〕で表わされる化
合物の環化重合反応系内に、下記一般式 〔式中R1、R2及びYは上記に同じ〕 で表わされる化合物をコーモノマーとして存在さ
せればよく、同様にアクリル系モノマー単位を導
入する場合にはコーモノマーとして、アクリル
酸、メタクリル酸、アクリルアミド、メタクリル
アミド、アクリル酸又はメタクリル酸のアルカリ
金属もしくはアンモニウム塩、アクリル酸又はメ
タクリル酸の低級アルキルエステル、第3級もし
くは第4級アミノ置換低級アルキルエステル、第
3級もしくは第4級アミノ及びヒドロキシ置換低
級アルキルエステル等を存在させればよい。上記
アクリル系モノマーを用いて導入される単位のう
ち特に好ましい単位は、下記式〔〕で表わされ
る。 〔式中R3はH又はCH3を、YはNH2、OH、ONa、
OK、CNH4、OCH3、OC2H5、OC2H4N
(CH32、 OC2H4N(C2H52、OC2H4N(CH33.C、 OC2H4N(CH3)(C2H52.C、 OCH2CH(OH)CH2N(CH32、又は OCH2CH(OH)CH2N(CH33.Cを示
す。〕 之等共重合体の製造条件は、上記(イ)に示される
単独重合体のそれに準じればよく、共重合可能な
モノマーは、上記一般式〔〕で表わされる化合
物に対し1/2モルまでの量で配合でき、かくして
得られる共重合体は、前記(イ)に示される単独重合
体と略々同等の作用効果を発揮できる。 上記の如くして得られる水溶性ポリマーは、好
ましくはセフアデツクスG―25(フアルマシア.
フアインケミカル社製、スウエーデン)等を充填
剤として用いたゲル過法で測定される分子量が
約1万以下、より好ましくは500〜5000程度であ
るのが適当である。 かくして得られるポリマーを用いた本発明の被
染物の処理は、特に該ポリマーを含み且つ被染物
を処理すべき浴のpHを11以下のアルカリ性とす
る以外は、従来法と同様にして行ない得る。例え
ば代表的には、上記ポリマーを繊維に対して0.1
〜2.0重量%程度溶解した水溶液を作成後そのpH
を上記範囲に調節し、これに処理すべき被染物を
所定時間浸漬した後水洗し乾燥させればよい。浴
比(被染物:水)は通常1:10〜20であり、処理
温度は通常常温〜100℃であり、また処理時間は
通常5〜30分である。 本発明では、特に上記処理液のpHを11以下の
アルカリ性とする。これは上記水溶性ポリマー自
体の水溶液が、ほぼ中性(通常pH約6.5〜7であ
るため、この水溶液に適当なpH調節剤を添加す
ることにより行なわれる。pH調節剤としては例
えば炭酸ソーダ、炭酸カリ、酢酸ソーダ、重炭酸
ソーダ、リン酸ソーダ、ケイ酸ソーダ、トリクロ
ル酢酸ソーダ、その他適当な緩衝剤等を例示でき
る。之等pH調節剤(アルカリ)の使用量は上記
水溶液(処理液)のpHを11以下のアルカリ性と
するよう適宜決定でき、通常0.05〜1g/程度
とすればよい。pH調節剤を多量添加し、処理液
のpHが11を越えても、本発明効果はそれだけ向
上するわけではなく、むしろ水溶性ポリマーの水
溶解性を低下させると共に被処理物全体に亘る均
一な染色堅牢度向上効果を期待できなくなるおそ
れがある。またpH調節剤を使用しないか使用量
が少なすぎ処理液のpHが7以下の中性もしくは
弱酸性の場合は、本発明効果は期待できない。特
に好適なpHは、約8.5〜10.5であり、10付近が最
も優れた染色堅牢度を与え得る。また本発明にお
ける上記処理は例えば水溶性ポリマー約0.1〜2.0
重量%及び必要に応じ繊維加工樹脂及び/又は螢
光染料を含有し、11以下の所定のpH値を有する
溶液を調製し、これにより処理すべき染色物をパ
ツド処理することによつても実施できる。上記処
理により製品上に染着された反応性染料の反応基
と上記水溶性ポリマーの脂肪族第二級アミノ基と
が共有結合により強固に結合し、かくして従来法
ではみられない染色堅牢度の顕著に向上された染
色物を収得できる。 本発明では上記水溶性ポリマーによる処理後、
必要に応じて水洗後乾燥することによつて、目的
とする染色物を得ることができ、これは更に必要
に応じて熱処理又は蒸気処理することもできる。
上記乾燥は、通常約100〜120℃下に2〜10分間で
行なうことができ、熱処理は通常約130〜180℃下
に1〜5分間で、また蒸気処理は通常約100〜170
℃下に1〜5分間で夫々行なうことができる。 以下本発明を更に詳しく説明するため、本発明
に用いる水溶性ポリマーの合成例を参考例として
掲げ、次いで実施例を掲げる。 参考例 1 撹拌装置、還流冷却管、滴下ロート、ガス導入
管及び温度計を備えた反応容器中に、ジアリルア
ミン塩酸塩100gと水40gを入れ撹拌して均一に
溶解させる。ガス導入管から窒素ガスを吹込みな
がら内温を80℃まで上昇させ、撹拌下に滴下ロー
トから第3級ブチルハイドロパーオキサイドの80
%ブタノール溶液2gを1時間で滴下する。反応
は発熱で内温は約90℃まで上昇する。滴下後約90
℃で撹拌を続けることにより淡褐色のペースト状
物が得られる。コロイド滴定法により測定した重
合率は90%であつた。上記ポリマーの0.1規定塩
化カリ溶液中で求めた極限粘度は30℃で0.13であ
つた。またこのポリマーの分子量分布をゲル過
法(セフアデツクスG―50を充填剤とする、ゲル
ベツドφ26×400cm、流速3ml/時)にて測定し
たところ、大部分は分子量1000〜4000の範囲にあ
つた。 参考例 2 撹拌装置、還流冷却管、滴下ロート、温度計及
びガス導入管を備えた反応容器中にジアリルアミ
ン塩酸塩135gと水250gを入れ撹拌して均一に溶
解させる。内温を50℃まで上昇させ亜硫酸ガスを
約15分間で吹込んでから、過硫酸安モン10%水溶
液50gを1時間かけて滴下する。この間も、継続
して亜硫酸ガスを吹込む。約2時間で64gの亜硫
酸ガスを吹込んでから、50℃で10時間撹拌反応を
続けた後、遊離の亜硫酸ガスを除去するために、
窒素ガスを吹込む。かくして淡黄色の少し粘性の
ある透明液が得られる。コロイド滴定により測定
した重合収率は、92%であつた。得られたポリマ
ーの0.1規定塩化カリ溶液中で求めた極限粘度
は、30℃で0.15であつた。またこのポリマーの分
子量分布をゲル過法で求めたところ大部分は
1500〜5000の範囲にあつた。 参考例 3 撹拌装置、還流冷却管、定量ポンプ、ガス導入
管、温度計を備えた反応容器中にジアリルアミン
塩酸塩135gと水100gを入れ撹拌して均一に溶解
させる。次に窒素ガスを吹込みながら内温を50℃
まで上昇させ過硫酸安モン20%水溶液20mlを毎分
0.2mlの速度で添加する。添加開始5分後、アク
リルアミド20%水溶液180gを、3時間かけて
徐々に滴下する。反応は発熱であり反応液の温度
を55℃に上昇させ、アクリルアミドの滴下が終る
まで同温度を保持する。そのまま10時間撹拌反応
を続けると黄色透明粘性液が得られる。コロイド
滴定により測定した重合収率は75%であつた。得
られたポリマーの0.1規定塩化カリ水溶液中で求
めた極限粘度は30℃で0.09であつた。またこのポ
リマーの分子量分布をゲル過法で測定したとこ
ろ、大部分は500〜2500の範囲にあつた。 参考例 4 撹拌装置、還流冷却管、滴下ロート、温度計及
びガス導入管を備えた反応容器中にジアリルアミ
ン塩酸塩135g、ジアリルジメチルアンモニウム
クロライド80g及び水100gを入れ撹拌して均一
に溶解させる。内温を60℃まで上げガス導入管か
ら窒素ガスを吹込みながら撹拌下に滴下ロートよ
り過硫酸安モン20%水溶液40gを、2時間かけて
徐々に滴下する。滴下終了後24時間60℃で静置重
合を続けると粘稠な淡褐色液体となる。このもの
のコロイド滴定による重合収率は85%であつた。
このポリマーの0.1規定塩化カリ溶液中で求めた
極限粘度は、0.11であつた。またこのポリマーの
分子量分布をゲル過法により求めたところ、大
部分1000〜3500の範囲にあつた。 比較参考例 1 撹拌装置、還流冷却管、滴下ロート、ガス導入
管及び温度計を備えた反応容器中に、ジアリルジ
メチルアンモニウムクロライド100gと水100gと
を入れ、撹拌均一溶解後、ガス導入管より窒素ガ
スを吹込みながら内温を60℃まで上昇させ撹拌下
に第三ブチルハイドロパーオキサイドの80%ブタ
ノール溶液1gを滴下ロートから徐々に滴下しそ
の後同温度で5時間撹拌し、次に90℃まで内温を
上げ撹拌を止めて同温度で48時間静置重合させ、
淡黄色粘稠液体を得る。これを50g採り、500ml
のアセトン中に注ぐと白色の沈澱を生じる。沈澱
を別し更に2回100mlのアセトンでよく洗つた
後真空デシケーター中で乾燥して潮解性の白色固
体26.5gを得る。得られたポリマーのゲル過法
による分子量分布は大部分1000〜3000の範囲にあ
つた。 比較参考例 2 特公昭43―18165号公報に記載の実施例1に従
い、二酸化硫黄の20%メタノール溶液32部にジメ
チルジアリールアンモニウムクロライド16部を加
えて溶解させ、この溶液を20℃に保ちながら撹拌
下にt―ブチルハイドロパーオキサイドの5%メ
タノール溶液5部を滴下し、撹拌を2時間続けた
後、生成したポリマーを別し、メタノールで充
分洗浄後、減圧乾燥して白色粉末を得る。 比較参考例 3 特公昭43―18165号公報に記載の実施例6に従
い、ジアリールアミン97部を105部の濃塩酸中に
冷却下に徐々に加えて中和しジアリールアミン塩
酸塩の水溶液を調製し、次にジメチルアンモニウ
ムクロライド160部を160部の水に溶かし上記水溶
液と混合し、得られるジアリールアミン塩酸塩と
ジメチルジアリールアンモニウムクロライドとの
混合水溶液を、30℃以下に保ちながら120部の二
酸化硫黄を吹込んだ後過硫酸カリ3部を水60部に
溶かした溶液を加え、50℃以下の温度で3時間重
合を続け、シロツプ状水溶液を得、その一部に多
量のメタノールを加えて白色沈澱物を得た。 実施例 1 A) 試験用染色布 綿ブロード40番を被染布として用い、これを下
記6種の反応性染料の夫々を、繊維重量に対し6
%の濃度で用い、浴比1:20で通常の方法に従い
染色する。 <染料> a:ミカシオン ブリリヤント レツド 8BS(日本化薬社製) b:ミカシオン ネイビー ブルー RBS (日本化薬社製) c:レマゾール ブラツクB(ヘキスト社製) d:ミカシオン ブルー 3GS(日本化薬社
製) e:ミカシオン スカーレツト GS(日本化
薬社製) f:プロシオン レツド MX―5B(I.C.I社
製) B) 処理方法 各参考例及び比較参考例で得た水溶性ポリマー
の0.025重量%水溶液を作成し、これに炭酸ソー
ダ約0.2g/を添加してpHを9.8に調節しこの水
溶液又は比較のため上記pH調節されない水溶液
(pH6.5)に各試験用染色布を浴比1:20、温度
60℃にて20分間浸漬処理後、水洗風乾する。 かくして得られた処理布につき下記試験を行な
う。 C) 試験法 C―1 洗濯に対する染色堅牢度 各試験布を湿度100%、温度60℃の容器中に入
れ、2週間持(長期貯蔵による染料の加水分解
性)したものにつき、JIS―L―0844 A―4号に従う試験を行なう。 C―2 酸加水分解に対する染色堅牢度 酢酸10g/及び家庭用洗剤(花王石鹸社製
「ニユービーズ」)0.5g/を含む水溶液中に、浴
比1:20で各試験布を浸し、37℃で20時間保持後
の試験液の吸光度を、分光光度計で測定する。脱
落染料濃度の高い程吸光度は大となる。参照液と
して上記酢酸―洗剤液を用いた。 C―3 アルカリ加水分解に対する染色堅牢度炭
酸ソーダ0.5g/及び家庭用洗剤(「ニユービー
ズ」)0.5g/を含むアルカリ―洗剤液を用い上
記C―2と同様の試験を行なう。 C―4 汗に対する染色堅牢度 各試験布を湿度100%、温度60℃の容器に2週
間保持後、JIS―L―0848 A法に従い、酸性汗に
つき試験を行なう。添布白布綿汚染をグレースケ
ールにて判定する。 D) 結 果 D―1 洗濯に対する染色堅牢度 上記C―1に従い洗濯試験後の試験液を10%酢
酸を含むn―プロピルアルコールで2倍に希釈し
たものにつき、分光光度計にて各染料の特定波長
における吸光度を測定する。脱落染料濃度の高い
程吸光度は大となる。参照液として上記で用いた
洗濯液を10%酢酸含有n―プロピルアルコール液
で2倍に希釈したものを用いた。測定波長は次の
通りである。 染料a…521mμ 〃 b…590mμ 〃 c…580mμ 〃 d…603mμ 〃 e…500mμ 〃 f…512mμ 結果(吸光度)を第1表に示す。
The present invention relates to a method for improving the color fastness of a dyed object dyed using a reactive dye. Objects dyed with reactive dyes generally have superior color fastness compared to objects dyed with direct dyes, but they are still unsatisfactory in terms of washing fastness, water fastness, sweat fastness, etc. Moreover, since the covalent bond between the fiber and the reactive dye undergoes hydrolysis in the air and is gradually broken, there is a drawback that the color fastness of the dyed object decreases over time. For this reason, conventionally, in order to improve the color fastness of the dyed object, it has been usual to treat the dyed object with a dilute aqueous solution of a condensate of dicyandiamide and formalin or a condensate of a polyamine such as ethylenediamine or diethylenetriamine and dicyandiamide after dyeing. It is being done. However, the above-mentioned treatment has disadvantages in that the color of the dyed object becomes marked and a decrease in light fastness cannot be avoided. In addition, in recent years, a method has been developed to improve color fastness using equimolar reaction products of secondary amines and epihalohydrin (Japanese Patent Publication No. 43-243) and polyamine sulfone (Japanese Patent Publication No. 18165-1977).
Even when these are used, color fastness such as washing fastness, water fastness, sweat fastness, etc. cannot be sufficiently improved, and polyamine sulfone has a strong bonding strength with dyes. Because it is not strong, the amount of the compound used is inevitably large, and because the main chain of the compound has a sulfone group, it is susceptible to alkaline hydrolysis and the molecule is cleaved by depolymerization. There is a tendency for the color fastness of treated dyed objects to gradually decrease over time. In view of the current situation, the present inventors have made various efforts to improve the color fastness of dyed objects. As a result, when dyed objects are immersed in an aqueous solution of a compound with a low degree of polymerization having the following general formula [ ] as a basic structural unit, this treatment may cause discoloration, decrease in light fastness, and decrease in abrasion fastness. They discovered that it was possible to sufficiently improve color fastness such as washing fastness, water fastness, sweat fastness, chlorine water fastness, etc., without any problems, and completed the invention related to Japanese Patent Application No. 128232-1983. The present invention provides a method for further improving various fastness properties found in the above invention, particularly washing fastness, alkali and acid hydrolytic fastness, and sweat fastness. That is, the present invention improves the color fastness of a dyed object dyed using a reactive dye. [In the formula, R 1 and R 2 are the same or different and represent a hydrogen atom or a methyl group. HX represents an organic or inorganic acid. ] A polymer consisting of a repeating monomer unit represented by the above general formula [], and (b) a repeating monomer unit represented by the above general formula [ ] and the monomer blended in an amount of up to 1/2 mole with respect to the monomer forming the unit. Relating to a method for improving the color fastness of a dyed object, which comprises treating the dyed object under alkaline conditions up to pH 11 using a water-soluble polymer selected from copolymers consisting of units of other polymerizable monomers. . The method of the present invention is advantageously applied to dyed objects such as cellulose products, protein products, synthetic polyamide products, etc. that have been dyed with reactive dyes. etc. may be used. Further, as the reactive dye, any of various known ones can be used, but dyes having two or more reactive groups capable of reacting with amino groups or hydroxyl groups are particularly preferred. Typical examples of the dye include those having a dichlorotriazinyl group, a dichloroquinoxaline group, a trichloropyrimidine group, a monochlorodifluoropyrimidine group, a vinylsulfonyl group, etc. as a reactive group. According to the method of the present invention, various wet fastnesses of dyed objects dyed with the above-mentioned reactive dyes can be highly improved without causing any discoloration, decrease in light fastness, decrease in chlorine water fastness, etc. In particular, according to the method of the present invention, compared to conventional methods using quaternary amine salt polymers, it is possible to prevent the dye from falling off due to hydrolysis during long-term storage of dyed objects, and it is also possible to prevent the dye from falling off due to hydrolysis during long-term storage of dyed objects. The color fastness to decomposition can be greatly improved. The reason why the above-mentioned particularly remarkable effect is expressed by the method of the present invention is not yet clear, but when the above-mentioned specific water-soluble polymer is used to treat the dyed object under alkaline conditions up to pH 11, The secondary amino groups in the above polymer chemically react with the unreacted groups remaining in the reactive dye molecules dyed on textile products, etc., and are firmly fixed to the surface of textile products etc. through covalent bonds. This is thought to be due to the generation of a molecular weight reactive dye layer. In any case, the method of the invention makes it possible to obtain products with markedly improved color fastness, in contrast to conventional methods based on ionic bonding. In the method of the present invention, it is essential to use a water-soluble polymer selected from (a) and (b) above.
The homopolymer shown in (a) among the above polymers has the general formula [In the formula, R 1 , R 2 and HX are the same as above] It can be produced by cyclization polymerizing a compound represented by the following formula using a radical polymerization catalyst. The polymerization method at this time may be according to a known method. Examples of the radical polymerization catalyst include ammonium persulfate, hydrogen peroxide, benzoyl peroxide, tertiary butyl hydroperoxide, azobisisobutyronitrile, and cumene hydroperoxide. Examples of the solvent include water and polar solvents such as methanol, ethanol, isopropanol, n-propanol, formamide, dimethyllumamide, dioxane, acetonitrile, and dimethyl sulfoxide. In addition, for the polymerization reaction, for example, 100 parts by weight of the compound of the general formula [] is dissolved in 20 to 100 parts by weight of a solvent, 0.05 to 10 parts by weight of a radical polymerization catalyst is added, and if necessary, acidic sodium sulfite, sulfuric acid dichloromethane, etc.
This can be carried out by using 0.01 to 5 parts by weight of a reducing agent such as iron or copper sulfate. It is preferable that the polymerization temperature is usually 70 to 110°C and the polymerization time is usually about 10 to 50 hours, and the polymerization reaction is advantageously carried out while blowing nitrogen gas. Other copolymerizable monomer units in the copolymer shown in (b) in the above water-soluble polymer include:
Typically, the unit represented by the formula -SO 2 - [], the general formula [In the formula, R 1 and R 2 are the same as above. Y represents a halogen atom. ] Examples include units represented by these and acrylic monomer units. When introducing the unit represented by the above formula [] into a copolymer, for example, the reaction may be carried out while blowing sulfur dioxide gas into the cyclization polymerization reaction system of the compound represented by the above general formula []. When introducing the unit represented by the above general formula [], the following general formula is often introduced into the cyclization polymerization reaction system of the compound represented by the above general formula []. [In the formula, R 1 , R 2 and Y are the same as above] A compound represented by the following may be present as a comonomer. Similarly, when introducing an acrylic monomer unit, acrylic acid, methacrylic acid, acrylamide, etc. may be used as a comonomer. , methacrylamide, alkali metal or ammonium salts of acrylic or methacrylic acid, lower alkyl esters of acrylic or methacrylic acid, tertiary or quaternary amino substituted lower alkyl esters, tertiary or quaternary amino and hydroxy substituted A lower alkyl ester or the like may be present. Among the units introduced using the above acrylic monomer, particularly preferred units are represented by the following formula []. [In the formula, R 3 is H or CH 3 , Y is NH 2 , OH, ONa,
OK, CNH 4 , OCH 3 , OC 2 H 5 , OC 2 H 4 N
( CH3 ) 2 , OC2H4N ( C2H5 ) 2 , OC2H4N ( CH3 ) 3.C , OC2H4N ( CH3 ) ( C2H5 ) 2.C , OCH2CH (OH) CH2N ( CH3 ) 2 , or OCH2CH (OH) CH2N ( CH3 ) 3.C . ] The manufacturing conditions for the homopolymer may be similar to those for the homopolymer shown in (a) above, and the amount of copolymerizable monomer is 1/2 mol based on the compound represented by the general formula [] above. The copolymer thus obtained can exhibit substantially the same effects as the homopolymer shown in (a) above. The water-soluble polymer obtained as described above is preferably Sephadex G-25 (Pharmacia.
It is appropriate that the molecular weight is about 10,000 or less, more preferably about 500 to 5,000, as measured by a gel filtration method using a filler such as Fine Chemical Co., Ltd., Sweden) as a filler. The treatment of the dyed object of the present invention using the polymer thus obtained can be carried out in the same manner as conventional methods, except that the pH of the bath containing the polymer and in which the dyed object is to be treated is made alkaline to 11 or less. For example, typically, the above polymer is applied to the fiber at 0.1
After creating an aqueous solution containing ~2.0% by weight, its pH
is adjusted to the above range, and the object to be dyed is immersed in the dye for a predetermined period of time, then washed with water and dried. The bath ratio (dyed material: water) is usually 1:10 to 20, the treatment temperature is usually room temperature to 100°C, and the treatment time is usually 5 to 30 minutes. In the present invention, in particular, the pH of the above-mentioned treatment liquid is made alkaline to 11 or less. Since the aqueous solution of the water-soluble polymer itself is approximately neutral (usually pH approximately 6.5 to 7), this is carried out by adding an appropriate pH adjuster to this aqueous solution. Examples of pH adjusters include soda carbonate, Examples include potassium carbonate, sodium acetate, sodium bicarbonate, sodium phosphate, sodium silicate, sodium trichloroacetate, and other suitable buffers.The amount of pH adjuster (alkali) to be used depends on the pH of the above aqueous solution (processing solution). It can be determined as appropriate to make the pH of the treatment solution alkaline to 11 or less, and it is usually about 0.05 to 1 g/g.Even if a large amount of pH regulator is added and the pH of the treatment solution exceeds 11, the effect of the present invention will improve accordingly. Rather, it may reduce the water solubility of the water-soluble polymer, and it may not be possible to expect a uniform color fastness improvement effect over the entire object to be treated.Also, if a pH adjuster is not used or the amount used is too small, If the pH of the solution is neutral or weakly acidic, such as 7 or less, the effects of the present invention cannot be expected.A particularly suitable pH is about 8.5 to 10.5, and a pH around 10 can provide the best color fastness. The above-mentioned treatment in the present invention is carried out, for example, by using a water-soluble polymer of about 0.1 to 2.0
It can also be carried out by preparing a solution containing % by weight and, if necessary, a fiber processing resin and/or a fluorescent dye and having a specified pH value of 11 or less, and pad-treating the dyed material to be treated with this solution. can. Through the above treatment, the reactive groups of the reactive dye dyed onto the product and the aliphatic secondary amino groups of the water-soluble polymer are strongly bonded by covalent bonds, resulting in color fastness that cannot be seen with conventional methods. Significantly improved dyed products can be obtained. In the present invention, after treatment with the water-soluble polymer,
By washing with water and drying as necessary, the desired dyed product can be obtained, and this can also be further heat-treated or steam-treated as necessary.
The above drying can usually be carried out at about 100 to 120°C for 2 to 10 minutes, heat treatment can usually be carried out at about 130 to 180°C for 1 to 5 minutes, and steam treatment can usually be carried out at about 100 to 170°C.
It can be carried out for 1 to 5 minutes at 100°C. In order to explain the present invention in more detail, synthesis examples of water-soluble polymers used in the present invention are listed below as reference examples, and then examples are listed. Reference Example 1 100 g of diallylamine hydrochloride and 40 g of water are placed in a reaction vessel equipped with a stirrer, a reflux condenser, a dropping funnel, a gas introduction tube, and a thermometer, and the mixture is stirred to dissolve uniformly. The internal temperature was raised to 80°C while blowing nitrogen gas through the gas introduction tube, and 80°C of tertiary butyl hydroperoxide was added from the dropping funnel while stirring.
% butanol solution are added dropwise over 1 hour. The reaction is exothermic and the internal temperature rises to approximately 90°C. Approximately 90 minutes after dripping
By continuing stirring at ℃, a pale brown paste is obtained. The polymerization rate measured by colloid titration method was 90%. The intrinsic viscosity of the above polymer determined in a 0.1N potassium chloride solution was 0.13 at 30°C. When the molecular weight distribution of this polymer was measured by a gel permeation method (using Cephadex G-50 as a filler, gel bed φ26 x 400 cm, flow rate 3 ml/hour), the molecular weight of most of the polymers was in the range of 1,000 to 4,000. Reference Example 2 135 g of diallylamine hydrochloride and 250 g of water are placed in a reaction vessel equipped with a stirrer, a reflux condenser, a dropping funnel, a thermometer, and a gas inlet tube, and the mixture is stirred to dissolve uniformly. After raising the internal temperature to 50°C and blowing in sulfur dioxide gas for about 15 minutes, 50 g of a 10% aqueous solution of ammonium persulfate was added dropwise over 1 hour. During this time, continue to blow sulfur dioxide gas. After blowing in 64 g of sulfur dioxide gas for about 2 hours and continuing the stirring reaction at 50°C for 10 hours, in order to remove free sulfur dioxide gas,
Blow in nitrogen gas. A pale yellow, slightly viscous, transparent liquid is thus obtained. The polymerization yield measured by colloid titration was 92%. The intrinsic viscosity of the obtained polymer determined in a 0.1N potassium chloride solution was 0.15 at 30°C. In addition, when the molecular weight distribution of this polymer was determined by gel filtration method, most of the molecular weight distribution was
It was in the range of 1500-5000. Reference Example 3 135 g of diallylamine hydrochloride and 100 g of water are placed in a reaction vessel equipped with a stirrer, a reflux condenser, a metering pump, a gas inlet tube, and a thermometer, and the mixture is stirred to dissolve uniformly. Next, increase the internal temperature to 50℃ while blowing in nitrogen gas.
20ml of ammonium persulfate 20% aqueous solution per minute.
Add at a rate of 0.2 ml. Five minutes after the start of addition, 180 g of a 20% acrylamide aqueous solution was gradually added dropwise over 3 hours. The reaction is exothermic, and the temperature of the reaction solution is raised to 55°C, and the same temperature is maintained until the dropwise addition of acrylamide is completed. If the stirring reaction is continued for 10 hours, a yellow transparent viscous liquid is obtained. The polymerization yield determined by colloid titration was 75%. The intrinsic viscosity of the resulting polymer determined in a 0.1N aqueous potassium chloride solution was 0.09 at 30°C. Furthermore, when the molecular weight distribution of this polymer was measured by a gel filtration method, most of the molecular weight distribution was in the range of 500 to 2,500. Reference Example 4 135 g of diallylamine hydrochloride, 80 g of diallyldimethylammonium chloride, and 100 g of water are placed in a reaction vessel equipped with a stirring device, a reflux condenser, a dropping funnel, a thermometer, and a gas inlet tube, and are stirred to uniformly dissolve them. The internal temperature was raised to 60°C, and 40 g of a 20% aqueous solution of ammonium persulfate was gradually added dropwise over 2 hours from the dropping funnel while stirring and blowing nitrogen gas through the gas inlet tube. When the polymerization is continued at 60°C for 24 hours after the dropwise addition, a viscous light brown liquid is formed. The polymerization yield of this product was 85% by colloid titration.
The intrinsic viscosity of this polymer determined in a 0.1N potassium chloride solution was 0.11. Furthermore, when the molecular weight distribution of this polymer was determined by a gel filtration method, it was mostly in the range of 1000 to 3500. Comparative Reference Example 1 Put 100 g of diallyldimethylammonium chloride and 100 g of water into a reaction vessel equipped with a stirrer, reflux condenser, dropping funnel, gas inlet tube, and thermometer, stir to dissolve uniformly, and then introduce nitrogen through the gas inlet tube. While blowing gas, the internal temperature was raised to 60℃, and while stirring, 1 g of 80% butanol solution of tert-butyl hydroperoxide was gradually added dropwise from the dropping funnel.Then, the temperature was stirred at the same temperature for 5 hours, and then the temperature was raised to 90℃. Raise the internal temperature, stop stirring, and let the mixture stand at the same temperature for 48 hours to polymerize.
A pale yellow viscous liquid is obtained. Take 50g of this and make 500ml
When poured into acetone, a white precipitate forms. The precipitate was separated, thoroughly washed twice with 100 ml of acetone, and then dried in a vacuum desiccator to obtain 26.5 g of a deliquescent white solid. The molecular weight distribution of the obtained polymer by gel filtration method was mostly in the range of 1000 to 3000. Comparative Reference Example 2 According to Example 1 described in Japanese Patent Publication No. 43-18165, 16 parts of dimethyldiarylammonium chloride was added and dissolved in 32 parts of a 20% methanol solution of sulfur dioxide, and the solution was stirred while maintaining the temperature at 20°C. Five parts of a 5% methanol solution of t-butyl hydroperoxide was added dropwise to the bottom, stirring was continued for 2 hours, and the resulting polymer was separated, thoroughly washed with methanol, and dried under reduced pressure to obtain a white powder. Comparative Reference Example 3 According to Example 6 described in Japanese Patent Publication No. 43-18165, 97 parts of diarylamine was gradually added to 105 parts of concentrated hydrochloric acid under cooling to neutralize it to prepare an aqueous solution of diarylamine hydrochloride. Next, 160 parts of dimethylammonium chloride was dissolved in 160 parts of water and mixed with the above aqueous solution, and the resulting mixed aqueous solution of diarylamine hydrochloride and dimethyldiarylammonium chloride was mixed with 120 parts of sulfur dioxide while keeping the temperature below 30°C. After blowing, a solution of 3 parts of potassium persulfate dissolved in 60 parts of water was added, and polymerization was continued for 3 hours at a temperature below 50°C to obtain a syrupy aqueous solution, and a large amount of methanol was added to a portion of it to form a white precipitate. I got something. Example 1 A) Dyed fabric for test A No. 40 cotton broadcloth was used as the fabric to be dyed, and each of the following 6 types of reactive dyes was applied to the fabric in a proportion of 6% by weight of the fiber.
% concentration and dye according to the usual method at a bath ratio of 1:20. <Dye> a: Mikasion Brilliant Red 8BS (manufactured by Nippon Kayaku) b: Mikasion Navy Blue RBS (manufactured by Nippon Kayaku) c: Remazol Black B (manufactured by Hoechst) d: Mikasion Blue 3GS (manufactured by Nippon Kayaku) ) e: Mikasion Scarlet GS (manufactured by Nippon Kayaku Co., Ltd.) f: Procion Red MX-5B (manufactured by ICI) B) Treatment method A 0.025% by weight aqueous solution of the water-soluble polymer obtained in each reference example and comparative reference example was prepared. To this, about 0.2 g of soda carbonate was added to adjust the pH to 9.8, and each test dyed fabric was added to this aqueous solution or the above aqueous solution (pH 6.5) for which the pH was not adjusted for comparison at a bath ratio of 1:20 and a temperature of
After soaking at 60℃ for 20 minutes, wash with water and air dry. The following tests were conducted on the thus obtained treated fabric. C) Test method C-1 Color fastness to washing Each test fabric was placed in a container at 100% humidity and 60℃ and kept for 2 weeks (dye hydrolyzability due to long-term storage), JIS-L- 0844 Conduct the test according to A-4. C-2 Color fastness to acid hydrolysis Each test fabric was immersed in an aqueous solution containing 10 g of acetic acid and 0.5 g of a household detergent ("New Beads" manufactured by Kao Soap Co., Ltd.) at a bath ratio of 1:20, and the test fabric was dyed at 37°C. After holding for 20 hours, the absorbance of the test solution is measured using a spectrophotometer. The higher the concentration of the shed dye, the higher the absorbance. The acetic acid-detergent solution mentioned above was used as a reference solution. C-3 Color fastness to alkaline hydrolysis A test similar to C-2 above is conducted using an alkaline detergent solution containing 0.5 g of soda carbonate and 0.5 g of household detergent ("Newbeads"). C-4 Colorfastness against perspiration After holding each test fabric in a container at 100% humidity and 60°C for two weeks, test against acid perspiration according to JIS-L-0848 A method. Determine the contamination of the attached white cloth using gray scale. D) Results D-1 Dye fastness to washing The test solution after the washing test according to C-1 above was diluted twice with n-propyl alcohol containing 10% acetic acid, and the color fastness of each dye was measured using a spectrophotometer. Measure the absorbance at a specific wavelength. The higher the concentration of the shed dye, the higher the absorbance. As a reference solution, the washing solution used above was diluted twice with an n-propyl alcohol solution containing 10% acetic acid. The measurement wavelengths are as follows. Dye a...521 mμ b...590 mμ c...580 mμ d...603 mμ e...500 mμ f...512 mμ The results (absorbance) are shown in Table 1.

【表】 D―2 酸加水分解に対する染色堅牢度結果を吸
光度にて下記第2表に示す。
[Table] D-2 The color fastness results against acid hydrolysis are shown in Table 2 below in terms of absorbance.

【表】 D―3 アルカリ加水分解に対する染色堅牢度結
果を吸光度にて下記第3表に示す。
[Table] D-3 The color fastness results against alkaline hydrolysis are shown in Table 3 below in terms of absorbance.

【表】 D―4 汗に対する染色堅牢度 結果をグレースケール(級)にて下記第4表に
示す。
[Table] D-4 Color fastness to sweat The results are shown in Table 4 below in gray scale.

【表】 実施例 2 実施例1と同じ染色布を、参考例1で得た水溶
性ポリマーの0.025重量%を含み、炭酸ソーダ約
0.05〜1g/の添加によりpHを夫々7.4,8.6,
9.8,10.2及び11.0とした処理液で同様に処理す
る。 得られた処理布の酸及びアルカリ加水分解に対
する染色堅牢度試験を同様に行なつた結果を、
夫々第5表及び第6表に示す。
[Table] Example 2 The same dyed fabric as in Example 1 was prepared by adding 0.025% by weight of the water-soluble polymer obtained in Reference Example 1 and about 10% by weight of sodium carbonate.
By adding 0.05 to 1g/, the pH was adjusted to 7.4, 8.6, and
Treat in the same way using treatment solutions of 9.8, 10.2 and 11.0. The results of a similar color fastness test against acid and alkali hydrolysis of the treated fabric are as follows:
They are shown in Tables 5 and 6, respectively.

【表】【table】

【表】 上記第5表及び第6表より、pH11以下のアル
カリ条件下における特定の水溶性ポリマーによる
本発明の処理によれば、酸及びアルカリ加水分解
に対する染色堅牢度を顕著に向上できることが判
る。また上記本発明処理により得られた染色布
は、耐塩素水堅牢度においても極めて優れたもの
であつた。 比較例 1 綿ブロード40番を被染布として用い、これを下
記3種の直接染料の夫々を、繊維重量に対し3%
の濃度で用い、浴比1:20で通常の方法に従い染
色する。 <染料> a:スミライトレツド―3B(住友化学社製) b:カヤラススプラレツド―6BL(日本化薬社
製) c:カヤラススプラターマイズブルーGL (日本化薬社製) 処理方法は、実施例1のBに記載の方法と同様
とした。但しポリマーの使用量は繊維重量部に対
して1.5%とした。 ポリマーとして参考例1及び比較参考例3に記
載のものを各々用いて、実施例1のBと同様の処
理方法に従い処理して得られた処理布につき、実
施例1のCと同様にしてJIS―L―0844 A―2号
に従い、洗濯に対する染色堅牢度試験を行ない、
添布白布汚染をグレースケールにて判定した。結
果を下記第7表に示す。
[Table] From Tables 5 and 6 above, it can be seen that the treatment of the present invention with a specific water-soluble polymer under alkaline conditions of pH 11 or less can significantly improve the color fastness to acid and alkali hydrolysis. . Furthermore, the dyed fabric obtained by the above-mentioned treatment of the present invention was extremely excellent in fastness to chlorine water. Comparative Example 1 No. 40 broad cotton was used as the dyed fabric, and each of the following three types of direct dyes was applied to it at 3% by weight based on the fiber weight.
and dye according to the usual method at a bath ratio of 1:20. <Dye> a: Sumilight Red-3B (manufactured by Sumitomo Chemical Co., Ltd.) b: Kayarasu Spralett-6BL (manufactured by Nippon Kayaku Co., Ltd.) c: Kayarasu Splattermize Blue GL (manufactured by Nippon Kayaku Co., Ltd.) The processing method is as follows: The same method as described in Example 1 B was used. However, the amount of polymer used was 1.5% based on the weight of the fiber. Using each of the polymers described in Reference Example 1 and Comparative Reference Example 3 as polymers, treated fabrics obtained by processing in accordance with the same treatment method as B in Example 1 were subjected to JIS treatment in the same manner as C in Example 1. -L-0844 According to No. A-2, color fastness test against washing was carried out.
Contamination of the attached white cloth was determined on a gray scale. The results are shown in Table 7 below.

【表】 比較例 2 比較参考例2で得られたポリマーを実施例1の
Bに記載の処理方法に準じて所定pHの水溶液に
調整後、同例1のC―1に従う洗濯に対する染色
堅牢度試験を行ない、同例1のD―1に従い求め
た結果を、第1表と同様にして下記第8表に示
す。
[Table] Comparative Example 2 After adjusting the polymer obtained in Comparative Reference Example 2 to an aqueous solution of a predetermined pH according to the treatment method described in Example 1, B, color fastness to washing according to C-1 of Example 1. The test was conducted and the results obtained according to D-1 of Example 1 are shown in Table 8 below in the same manner as Table 1.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 反応性染料を用いて染色した被染物の染色堅
牢度を向上させるに際し、 (イ) 一般式 〔式中R1及びR2は同一又は相異なつて水素原子又
はメチル基を示し、HXは有機酸又は無機酸を示
す。〕 で表わされる繰返しモノマー単位から成る重合
体、及び (ロ) 上記一般式〔〕で表わされる繰返しモノマ
ー単位及び該単位となるモノマーに対し1/2モル
までの量で配合された該モノマーと共重合体から
選択された水溶性ポリマーを用いてpH11までの
アルカリ条件下に被染物を処理することを特徴と
する被染物の染色堅牢度向上法。 2 水溶性ポリマーが分子量一万以下である特許
請求の範囲第1項記載の方法。 3 共重合可能な他のモノマーの単位が式 ―SO2― 〔〕 で表わされる単位、一般式 〔式中R1及びR2は上記に同じ。Yはハロゲン原子
を示す。〕 で表わされる単位及びアクリル系モノマー単位か
らなる群から選ばれた少なくとも1種である特許
請求の範囲第1項記載の方法。 4 反応性染料が水酸基またはアミノ基と反応し
得る基を2個またはそれ以上有する染料である特
許請求の範囲第1項記載の方法。
[Claims] 1. In improving the color fastness of a dyed object dyed with a reactive dye, (a) the general formula [In the formula, R 1 and R 2 are the same or different and represent a hydrogen atom or a methyl group, and HX represents an organic acid or an inorganic acid. ] A polymer consisting of a repeating monomer unit represented by the above general formula [], and (b) a repeating monomer unit represented by the above general formula [ ] and the monomer blended in an amount of up to 1/2 mole with respect to the monomer forming the unit. A method for improving the color fastness of a dyed object, which comprises treating the dyed object under alkaline conditions up to pH 11 using a water-soluble polymer selected from polymers. 2. The method according to claim 1, wherein the water-soluble polymer has a molecular weight of 10,000 or less. 3 Units of other copolymerizable monomers represented by the formula -SO 2 - [], general formula [In the formula, R 1 and R 2 are the same as above. Y represents a halogen atom. ] The method according to claim 1, wherein the acrylic monomer unit is at least one selected from the group consisting of the following units and acrylic monomer units. 4. The method according to claim 1, wherein the reactive dye is a dye having two or more groups capable of reacting with a hydroxyl group or an amino group.
JP55159018A 1980-11-11 1980-11-11 Enhancing of dyeing fastness Granted JPS5782591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55159018A JPS5782591A (en) 1980-11-11 1980-11-11 Enhancing of dyeing fastness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55159018A JPS5782591A (en) 1980-11-11 1980-11-11 Enhancing of dyeing fastness

Publications (2)

Publication Number Publication Date
JPS5782591A JPS5782591A (en) 1982-05-24
JPS6146593B2 true JPS6146593B2 (en) 1986-10-15

Family

ID=15684447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55159018A Granted JPS5782591A (en) 1980-11-11 1980-11-11 Enhancing of dyeing fastness

Country Status (1)

Country Link
JP (1) JPS5782591A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61231283A (en) * 1985-04-01 1986-10-15 日東紡績株式会社 Enhancement of dye fastness

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3316181A (en) * 1963-05-22 1967-04-25 Nalco Chemical Co Process for breaking emulsions of the oil-in-water type
JPS5196586A (en) * 1975-02-14 1976-08-24
JPS51103039A (en) * 1975-03-08 1976-09-11 Japan Metarufuinitsushingu Kan
JPS5324486A (en) * 1976-08-12 1978-03-07 Sanyo Chemical Ind Ltd Post treating method of dyed ariicle
JPS5370178A (en) * 1976-12-01 1978-06-22 Nippon Senka Kougiyou Kk Improving of dyeing fastness
JPS54151570A (en) * 1978-05-22 1979-11-28 Teijin Ltd Selectively permeable composite membrane and its manufacture
JPS5748671A (en) * 1980-09-08 1982-03-20 Matsushita Electric Ind Co Ltd Magnetic sensor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3316181A (en) * 1963-05-22 1967-04-25 Nalco Chemical Co Process for breaking emulsions of the oil-in-water type
JPS5196586A (en) * 1975-02-14 1976-08-24
JPS51103039A (en) * 1975-03-08 1976-09-11 Japan Metarufuinitsushingu Kan
JPS5324486A (en) * 1976-08-12 1978-03-07 Sanyo Chemical Ind Ltd Post treating method of dyed ariicle
JPS5370178A (en) * 1976-12-01 1978-06-22 Nippon Senka Kougiyou Kk Improving of dyeing fastness
JPS54151570A (en) * 1978-05-22 1979-11-28 Teijin Ltd Selectively permeable composite membrane and its manufacture
JPS5748671A (en) * 1980-09-08 1982-03-20 Matsushita Electric Ind Co Ltd Magnetic sensor

Also Published As

Publication number Publication date
JPS5782591A (en) 1982-05-24

Similar Documents

Publication Publication Date Title
KR880002282B1 (en) The elevation method of color fastness
JP4045510B2 (en) Fixing agent for fiber
US4436524A (en) After treating composition for direct or reactive dyeings on cellulose
JPS6146593B2 (en)
JPH01118509A (en) Copolymer, its production and use
JP2778036B2 (en) Chlorine fastness improver
US4484927A (en) Polymers useful for improving the fastness of dyes and optical brighteners on hydroxy group-containing substrates
JPH09302026A (en) Polyallylamine derivative and its production
JPS648757B2 (en)
JPS6220312B2 (en)
CN114990911A (en) Self-crosslinking color fixing agent and preparation method thereof
JPH0723589B2 (en) Dye fixing agent for direct dyes
JPS607079B2 (en) Colorfastness improvement method
JPS61130318A (en) Diallylamine polymer, its production and dye fixing agent containing the same
US6307007B1 (en) Polycondensation products and their use as dyeing aids
JPH04211407A (en) Polymerized quaternary diallylammonium compound
JPS61133213A (en) Diallylamine copolymer, production thereof and color fastness enhancer containing same
JPS62257481A (en) Dye fixing agent
JPH0647792B2 (en) Dye fixing agent
JP2751806B2 (en) Dye fixative
JPS648756B2 (en)
JPS6114276B2 (en)
JPS6220313B2 (en)
JPS63182485A (en) Enhancement of dyeing fastness
JPH0742660B2 (en) Post-treatment method for dyeing textile materials containing cellulose fibers