JPS6146476A - Actuator device - Google Patents

Actuator device

Info

Publication number
JPS6146476A
JPS6146476A JP16834184A JP16834184A JPS6146476A JP S6146476 A JPS6146476 A JP S6146476A JP 16834184 A JP16834184 A JP 16834184A JP 16834184 A JP16834184 A JP 16834184A JP S6146476 A JPS6146476 A JP S6146476A
Authority
JP
Japan
Prior art keywords
layer
memory alloy
insulating layer
shape memory
positive characteristic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16834184A
Other languages
Japanese (ja)
Inventor
Tsunehiko Todoroki
轟 恒彦
Shiro Yamamura
史郎 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16834184A priority Critical patent/JPS6146476A/en
Publication of JPS6146476A publication Critical patent/JPS6146476A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/06Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like
    • F03G7/065Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using expansion or contraction of bodies due to heating, cooling, moistening, drying or the like using a shape memory element

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Temperature-Responsive Valves (AREA)

Abstract

PURPOSE:To prevent overheat of a shape memory alloy with simple structure, by providing a positive-characteristics resistor layer through an insulating layer on a surface of a core made of a shape memory alloy, and covering the outer circumference of the resistor layer with an insulating layer. CONSTITUTION:An insulating layer 2 such as a silicone resin layer is provided on a shape memory alloy 1 such as a Ti-Ni-Cu alloy wire, and is solidified. Then, a positive-characteristics resistor layer 3 made of a mixture of conductive carbon and high molecular material is formed on the insulating layer 2. Electrodes are formed at fixed positions of the positive-characteristics resistor layer 3, and external terminals 5 are drawn out. The outer circumference of the layer 3 is covered with an insulating layer 4 such as a silicone resin layer to form an outer cover 10, thus constructing an actuator device. When engaged terminals 6 of the actuator device are engaged with operating portions of an actuator, and a power unit is connected to the external terminals 5, the outer cover 10 is heated to deform the shape memory alloy 1, thereby carrying out operation as the actuator.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、形状記憶合金を利用したアクチュエータ素子
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an actuator element using a shape memory alloy.

従来例の構成とその問題点 形状記憶合金(以下、SMAと称する)を変態温度以上
に加熱すると、その記憶形状に戻ろうとして変位を生ず
ると共に力を発生する。近年、この性質を利用したアク
チュエータの開発研究が盛んである。
Conventional Structure and Problems When a shape memory alloy (hereinafter referred to as SMA) is heated above its transformation temperature, it attempts to return to its memorized shape, causing displacement and generating force. In recent years, there has been active research and development into actuators that take advantage of this property.

このアクチュエータを作動させる加熱方式としては間接
法と直接法がある。間接法はヒータあるいは温風等によ
ってSMAを外から加熱する方式である。直接法けSM
Aに通電して、SMAの電気抵抗による自己発熱を利用
する方式である。
Heating methods for operating this actuator include an indirect method and a direct method. The indirect method is a method in which the SMA is heated from the outside using a heater, hot air, or the like. Direct Hoke SM
This is a method that applies electricity to A and utilizes self-heating due to the electrical resistance of the SMA.

SMAは過熱すると特性が劣化するため、いずれの加熱
方式においても使用最高温度を越えないようにすること
が必要である。この使用最高温度は、一般に、SMAが
銅合金の場合には約150’C,Ni−Ti系合金の場
合には約20o0Cとされている。これらの温度をこえ
た状態で使用すると、変a温度の変化や動作変位のへた
シを生じて精度良い制御が出来なくなる。
Since the characteristics of SMA deteriorate when it is overheated, it is necessary to ensure that the maximum operating temperature is not exceeded in any heating method. The maximum operating temperature is generally about 150'C when the SMA is a copper alloy, and about 20°C when the SMA is a Ni-Ti alloy. If the device is used at a temperature exceeding these temperatures, a change in the variable a temperature and a deterioration in the operational displacement will occur, making accurate control impossible.

過熱を避けるため、次の二つの方式が知られている。一
つはロック方式である。この方式は、加熱してSMAが
作動した後、直ちに、SMAの動ttストッパーでロッ
クし、加熱を停止するもので、SMAの動作を元に戻す
場合には、別のアクチュエータでヌトッパーを動かして
ロックを解除するものである。
The following two methods are known to avoid overheating. One is a lock method. In this method, after the SMA is activated by heating, the SMA's movable tt stopper is immediately locked to stop the heating.If the SMA operation is to be restored to its original state, the nutopper must be moved using another actuator. This is to release the lock.

他は通電電力制御方式である。この方式は、加熱ヒータ
の温度あるいはSMAの自己発熱による温度を、各々通
電する電流値あるいは通電間隔を電子回路にて制御して
一定温度に保持するものである。
The others are energized power control methods. In this method, the temperature of the heater or the temperature due to self-heating of the SMA is maintained at a constant temperature by controlling the current value or the interval between currents to be applied, respectively, using an electronic circuit.

これらの従来方式においては次のような問題点がある。These conventional methods have the following problems.

ロック方式においてはロック用のアクチュエータが必要
なため構造が複雑で大型化し、コスト高となる。通電電
力制御方式においては、電子制御回路が別に必要となる
ため、これまたシステムが大型化し、コスト高となる。
In the locking method, a locking actuator is required, resulting in a complicated structure, large size, and high cost. In the energized power control method, a separate electronic control circuit is required, which also increases the size of the system and increases the cost.

発明の目的 本発明はこのような問題を解決するもので、構造簡易に
してSMAの過熱防止を図ったアクチーエータ素子を得
ることを目的とするものである。
OBJECTS OF THE INVENTION The present invention solves these problems and aims to provide an actuator element that has a simple structure and prevents overheating of the SMA.

発明の構成 この目的を達成するためだ、本発明はアクチュエータの
動作素子として、形状記憶合金からなる芯材の表面に絶
縁層を介して正特性抵抗体層を設け、さらにその外周を
絶縁層で被覆した構成の複合材料を提供するものである
Structure of the Invention In order to achieve this object, the present invention provides a positive characteristic resistor layer on the surface of a core material made of a shape memory alloy through an insulating layer as an operating element of an actuator, and further covers the outer periphery with an insulating layer. The present invention provides a composite material in a coated configuration.

正特性抵抗体は温度が上昇して、その材料のキュリ一温
度以上になると電気抵抗が3〜7桁も急に増大する抵抗
隼であり、PTC抵抗体あるいはPTCサーミスタとも
呼ばれている。この性質によって、キュリ一温度以上に
なると正特性抵抗体に流れる電流が制限される。このた
め、正特性抵を 抗体は自己発熱による温度と昇はキュリ一温度程度のは
ソ一定値に保つことが出来るとともに、正特性抵抗体を
通る電流は温度によって決まる抵抗値に対応した小さな
値となる。
A positive characteristic resistor is a type of resistor whose electrical resistance suddenly increases by three to seven orders of magnitude when the temperature rises above the Curie temperature of the material, and is also called a PTC resistor or a PTC thermistor. Due to this property, the current flowing through the positive characteristic resistor is limited when the temperature exceeds one Curie temperature. For this reason, the temperature and rise due to self-heating of a positive characteristic resistor can be kept at a constant value of approximately one Curie temperature, and the current passing through a positive characteristic resistor is a small value corresponding to the resistance value determined by the temperature. becomes.

正特性抵抗体としてはチタン酸バリウム系磁器が良く知
られており、その他、カーボンと樹脂との混合物も実用
化されている。特に後者は定常状態の抵抗値が1/10
〜1/100Ωであり大電流回路に向いている。いずれ
においても、キュリ一温度は組成や混合割合を変えるこ
とによシ変化させることが出来る。
Barium titanate ceramics are well known as positive characteristic resistors, and mixtures of carbon and resin have also been put into practical use. In particular, the latter has a steady state resistance of 1/10
~1/100Ω, suitable for large current circuits. In either case, the Curie temperature can be changed by changing the composition and mixing ratio.

従って、SMAを加熱するヒータて正特性抵抗ないため
、SMAを適切な温度状態に維持することができる。ま
た、正特性抵抗体をSMAと直例に電気的に接続し、通
電した場合には、正特性抵抗体およびSMAの両者とも
自己発熱によって温度上昇するが、キュリ一温度をこえ
ると正特性抵抗体の抵抗値が急に上昇し、その結果、正
特性抵抗体およびSMAK流れる電流は低下し、自己発
熱は制限され、SMAが過熱することがない。
Therefore, since the heater that heats the SMA has no positive characteristic resistance, the SMA can be maintained at an appropriate temperature. Furthermore, when a positive characteristic resistor is directly electrically connected to the SMA and current is applied, the temperature of both the positive characteristic resistor and the SMA rises due to self-heating. The resistance value of the body increases suddenly, and as a result, the current flowing through the positive characteristic resistor and the SMAK decreases, self-heating is limited, and the SMA does not overheat.

本発明においてはSMAが正特性抵抗体と絶縁物を介し
て接触しているから、この絶縁物層の厚さを薄くするか
良熱伝導性の樹脂を使用すれば、SMAと正特性抵抗体
の温度ははソ同じになる。
In the present invention, since the SMA is in contact with the PTC resistor through the insulator, if the thickness of this insulator layer is made thin or a resin with good thermal conductivity is used, the SMA and the PTC resistor can be connected to each other through the insulator. The temperature of will be the same.

このため、通電による加熱で動作させるアクチュエータ
素子として応答性が良く、小型化が図られることになる
Therefore, as an actuator element operated by heating by energization, the actuator element has good responsiveness and can be miniaturized.

実施例の説明 以下、本発明をその実施例によって説明する。Description of examples Hereinafter, the present invention will be explained with reference to examples thereof.

第1図は本発明におけるアクチュエータ素子の1に、0
.2gg+厚のシリコン樹脂層3を設は固化した後、導
電性カーボンと高分子材料との混合物である正特性抵抗
体層3を形成せしめ、この正特性抵抗体層3の所定の個
所に電極を形成して外部端子(図示せず)を取り出した
。そして、さらに外周をシリコン樹脂層4で被覆して外
装置0としたアクチュエータ素子を作成した。
FIG. 1 shows 1 of the actuator element in the present invention, 0
.. After setting and solidifying the silicone resin layer 3 with a thickness of 2 gg+, a positive characteristic resistor layer 3 made of a mixture of conductive carbon and a polymer material is formed, and electrodes are placed at predetermined locations on this positive characteristic resistor layer 3. The external terminals (not shown) were taken out. Then, the outer periphery of the actuator element was further covered with a silicone resin layer 4 to form an outer device 0.

第2図は同ナクチューエータ素子の外観図の一例である
。直線状のTiN1Cu合金線1は正特性抵抗体層を含
む外装置0が形成されており、外装置0の両端よシ外部
端子5が取シ出しである。
FIG. 2 is an example of an external view of the same nactuator element. A linear TiN1Cu alloy wire 1 is formed with an outer device 0 including a positive characteristic resistor layer, and external terminals 5 are taken out from both ends of the outer device 0.

TiN1Cu合金線1の両端には係止端子6がかしめで
ある。このアクチュエータ素子の係止端子6t−アクチ
ーエータの動作部に係止し、そして、外部端子姿に電源
部を接続し、通電すると、外装置0が自で発熱により加
熱し、TiN1Cu合金線1は記憶形状へ変形し動作部
を動かしアクチュエータどしての作用をおこす。
Locking terminals 6 are caulked at both ends of the TiN1Cu alloy wire 1. When the locking terminal 6t of this actuator element is locked to the operating part of the actuator, and the power supply is connected to the external terminal and energized, the external device 0 heats up by itself, and the TiN1Cu alloy wire 1 has a memory. It transforms into a shape, moves the operating part, and acts as an actuator.

第3図は本発明の他のアクチュエータ素子を示す外観図
である。
FIG. 3 is an external view showing another actuator element of the present invention.

同図のものは、記憾形状全コイル状にしたTiN1Cu
合金線1に正特性抵抗体層を含む外装置。
The one in the same figure is made of TiN1Cu with the entire coil shape as described.
An outer device including a positive characteristic resistor layer on an alloy wire 1.

を形成したもので、外装置0の両端より外部端子5が取
り出しである。このアクチュエータ素子においても外部
端子5へ通電することによりコイル形状が変わり、アク
チュエータの駆動係として使用することが出来る。
The external terminals 5 are taken out from both ends of the external device 0. In this actuator element as well, the shape of the coil changes by supplying electricity to the external terminal 5, and it can be used as a driver of the actuator.

これらの実施例においては、正特性抵抗体のみを自モ発
熱させる方式で説明したが、正特性抵抗体の外部端子の
一方をSMAの一端に電気的に接続して使用することも
可能である。この場合には通電によって電流は正特性抵
抗体とSMAを通っSMAを使用しても良い。
In these embodiments, only the positive characteristic resistor generates its own heat, but it is also possible to use one of the external terminals of the positive characteristic resistor by electrically connecting it to one end of the SMA. . In this case, the SMA may be used as the current passes through the positive characteristic resistor and the SMA.

発明の効果 本発明のアクチュエータ素子はSMAと正特性抵抗体を
一体化しであるため、正特性抵、抗体のみを加熱する駆
動方式にあっては、正特性抵抗体の熱が直ちにSMAに
伝達し応答性の良いものとなる。また、SMAと正特性
抵抗体を電気的に直列に接続して通電する駆動方式にあ
っては、SMA己 の1〜発熱による温度上昇が正特性抵抗体に直ちに伝達
され、正特性抵抗体の電流制御作用の応答性が良くなる
。さらに、いずれの方式においても正特性抵抗体の電流
制限作用により過熱防止が図れる。そして、SMAと正
特性抵抗体が一体化されているため、アクチュエータの
小型化も図れるという実用的に優れた効果を奏するもの
である。
Effects of the Invention Since the actuator element of the present invention integrates the SMA and the positive characteristic resistor, in a drive method that heats only the positive characteristic resistor or antibody, the heat of the positive characteristic resistor is immediately transferred to the SMA. It will be more responsive. In addition, in a drive method in which the SMA and the positive characteristic resistor are electrically connected in series and energized, the temperature rise due to the heat generated by the SMA itself is immediately transmitted to the positive characteristic resistor. Responsiveness of current control action is improved. Furthermore, in either system, overheating can be prevented by the current limiting action of the positive characteristic resistor. Furthermore, since the SMA and the positive characteristic resistor are integrated, the actuator can be made smaller, which is a practical advantage.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のアクチュエータ素子の断面図、第2図
は同アクチュエータ素子の外観図、第3図は本発明の他
の実施例を示すアクチュエータ素子の外観図である。 1・−一形状記憶合金(SMA )、2.3−一絶縁層
、4−一一正特性抵抗体層、5−一外部端子、10−一
外装。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第2図
FIG. 1 is a sectional view of an actuator element of the present invention, FIG. 2 is an external view of the same actuator element, and FIG. 3 is an external view of an actuator element showing another embodiment of the present invention. 1.-1 shape memory alloy (SMA), 2.3-1 insulating layer, 4-11 positive characteristic resistor layer, 5-1 external terminal, 10-1 exterior. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2

Claims (3)

【特許請求の範囲】[Claims] (1)形状記憶合金からなる芯材の表面に絶縁層を介し
て正特性抵抗体層を設け、さらにその外周を絶縁層で被
覆したアクチュエータ素子。
(1) An actuator element in which a positive characteristic resistor layer is provided on the surface of a core material made of a shape memory alloy via an insulating layer, and the outer periphery is further covered with an insulating layer.
(2)形状記憶合金からなる芯材の表面に絶縁層を介し
て正特性抵抗体層を設け、さらにその外周を絶縁層で被
覆し、正特性抵抗体層の電極間に通電することにより形
状記憶合金の加熱手段とする特許請求の範囲第1項記載
のアクチュエータ素子。
(2) A positive characteristic resistor layer is provided on the surface of a core material made of a shape memory alloy via an insulating layer, the outer periphery of the positive characteristic resistor layer is further covered with an insulating layer, and current is applied between the electrodes of the positive characteristic resistor layer. The actuator element according to claim 1, which is used as a heating means for a memory alloy.
(3)形状記憶合金からなる芯材の表面に絶縁層を介し
て正特性抵抗体層を設け、さらにその外周を絶縁体層で
被覆し、正特性抵抗体の一方の電極と形状記憶合金の一
端を電気的に接続し、正特性抵抗体の他方の電極と形状
記憶合金の他端に通電することにより形状記憶合金の加
熱手段とする特許請求の範囲第1項記載のアクチュエー
タ素子。
(3) A positive characteristic resistor layer is provided on the surface of the core material made of a shape memory alloy through an insulating layer, and the outer periphery is further covered with an insulating layer, and one electrode of the positive characteristic resistor and a shape memory alloy layer are provided. 2. The actuator element according to claim 1, wherein the actuator element is used as heating means for the shape memory alloy by electrically connecting one end thereof and supplying current to the other electrode of the positive characteristic resistor and the other end of the shape memory alloy.
JP16834184A 1984-08-10 1984-08-10 Actuator device Pending JPS6146476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16834184A JPS6146476A (en) 1984-08-10 1984-08-10 Actuator device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16834184A JPS6146476A (en) 1984-08-10 1984-08-10 Actuator device

Publications (1)

Publication Number Publication Date
JPS6146476A true JPS6146476A (en) 1986-03-06

Family

ID=15866260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16834184A Pending JPS6146476A (en) 1984-08-10 1984-08-10 Actuator device

Country Status (1)

Country Link
JP (1) JPS6146476A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111183U (en) * 1988-01-18 1989-07-26
FR2761116A1 (en) * 1997-03-18 1998-09-25 Matra Marconi Space France ROTARY ACTUATOR WITH SHAPE MEMORY ALLOY BAR
EP2472112A4 (en) * 2009-08-25 2015-09-16 Olympus Corp Shape-memory alloy actuator

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01111183U (en) * 1988-01-18 1989-07-26
FR2761116A1 (en) * 1997-03-18 1998-09-25 Matra Marconi Space France ROTARY ACTUATOR WITH SHAPE MEMORY ALLOY BAR
US5975468A (en) * 1997-03-18 1999-11-02 Matra Marconi Space France Rotary actuator using shape memory
EP2472112A4 (en) * 2009-08-25 2015-09-16 Olympus Corp Shape-memory alloy actuator

Similar Documents

Publication Publication Date Title
US4841127A (en) Dual temperature hair curler utilizing a pair of PTC heaters
JP2831594B2 (en) Protection circuit having PTC element
EP0417097B1 (en) Heating element and method for making such a heating element
US5512732A (en) Switch controlled, zone-type heating cable and method
KR101347020B1 (en) Warmer equipment, and warmer device for vehicle seat
CA2179821A1 (en) Improvements relating to electrically conductive materials
KR19990008487A (en) Ceramic heater
CA1060518A (en) Thermostatically controlled electrical heater assembly
JPH07293417A (en) Self temperature control type glow plug
JPS6146476A (en) Actuator device
JPS6146477A (en) Actuator
JPH06176857A (en) Car sheet heater
JPS62165824A (en) Thermostat
JPS6146478A (en) Actuator
JPH0582303A (en) Ptc thermistor
JPH0614797B2 (en) Electric motor armature current controller
JPH03187201A (en) Thermosensible electric resistance composition body
JP4724838B2 (en) Current control resistor element
ES481662A1 (en) Electric bedcover
JPH08145809A (en) Composite temperature detector
US3946201A (en) Temperature limiting wattage control for a ceramic cooking platform
JPS6151393B2 (en)
JPS5843763Y2 (en) current control element
JPH0312190Y2 (en)
JPH10270204A (en) Organic ptc composite material