JPS6146197B2 - - Google Patents

Info

Publication number
JPS6146197B2
JPS6146197B2 JP12213877A JP12213877A JPS6146197B2 JP S6146197 B2 JPS6146197 B2 JP S6146197B2 JP 12213877 A JP12213877 A JP 12213877A JP 12213877 A JP12213877 A JP 12213877A JP S6146197 B2 JPS6146197 B2 JP S6146197B2
Authority
JP
Japan
Prior art keywords
cod
treatment method
wastewater
wastewater treatment
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12213877A
Other languages
Japanese (ja)
Other versions
JPS5456245A (en
Inventor
Muneshige Aritaki
Sadaoki Kaneda
Sakae Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KATAYAMA KAGAKU KOGYO KENKYUSHO KK
Original Assignee
KATAYAMA KAGAKU KOGYO KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KATAYAMA KAGAKU KOGYO KENKYUSHO KK filed Critical KATAYAMA KAGAKU KOGYO KENKYUSHO KK
Priority to JP12213877A priority Critical patent/JPS5456245A/en
Publication of JPS5456245A publication Critical patent/JPS5456245A/en
Publication of JPS6146197B2 publication Critical patent/JPS6146197B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Removal Of Specific Substances (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

この発明は廃水処理法に関する。 更に詳しくはこの発明は高CODを示す高炉ス
ラグ接触廃水を、酸化第二鉄、四三酸化鉄並びに
三酸化モリブデンより選択される金属酸化物の一
種以上と酸性条件下で処理することにより前記廃
水のCODを低減させることを特徴とする廃水処
理法に関する。 製鉄所の高炉で銑鉄を作る際、同時にスラグも
副生し、これを高炉滓または高炉スラグと呼んで
いる。 高炉スラグの砂状のものは、高炉用セメント、
生コンクリート用細骨材、道路用、生アスフアル
トコンクリート用、コンクリート二次製品用等多
様な用途を有している。 この高炉スラグの副生量は、主製品である銑鉄
1トンに対し318Kg(銑鉄:高炉スラグの容量比
は1:1.47〜1.67)にも達し、上記用途における
需給の状態その他の理由で大量が屋外に山積貯蔵
されることが多く、その間雨水によつて高炉スラ
グ含有成分が溶出し、その溶出成分を含有する廃
水が河川または海に流出されることとなる。他
方、海または湖沼等の高炉スラグでの埋立時にも
その余出水は同様の溶出液となる。しかるに高炉
スラグの雨水による溶出水中や埋立時の余出水中
には各種の成分、特にイオウ分等スラグ含有成分
を溶出含有し、その化学的酸素要求量すなわち
COD(以下CODと記載する)値は情況により差
はあるが通常1000ppm以上であり、公害面で好
ましいものではない。 製鉄工場においては現在貯蔵工程の管理、改善
によつてこれの解決を計つているが、なお、更に
充分な対策が望まれている。 この発明の処理対象である高CODを示す高炉
スラグ接触廃水には、CODを高めている成分
(以下COD成分と記載する)として、イオウ分、
特にSx(x=2、4、6、8、…………)で示
される多硫化イオウ、イオン状のS2O3 --、S--
があり、COD値の90%以上がこのようなイオウ
化合物に基因しているものと考えられている。こ
のような廃水のCODを低減させる方法としては
種々考えることができる。 A 曝気による方法 (i) 単なる曝気 (ii) PH中性付近での酸化触媒存在下の曝気 B 曝気以外の方法 (i) 酸化剤(たとえばH2O2、NaClo、高度サ
ラシコ等)による酸化 (ii) 硫化物として沈澱させる方法(水溶性鉄
塩、水溶性亜鉛塩等の添加) (iii) (i)と(ii)の併用。 処理対象である高炉スラグ接触廃水中の
COD成分の量が余りにも大量であるので、B
の方法ではいずれも大量の薬剤が必要となり経
済的な面から考えると全く非現実的である。一
方、Aの方法のうち(i)の方法はCODの低減に
長時間の曝気が必要であり実用に適さず、また
Aの(ii)の方法でもCODを急速に低減させるこ
とはできない。 この発明は上記のような現状を改善するために
なされたものである。すなわち本発明者らは種々
研究の結果高CODを示す高炉スラグ接触廃水
を、酸化第二鉄〔Fe2O3で示され、酸化鉄〔)
ともいう〕、四三酸化鉄〔Fe3O4で示され、酸化
鉄()鉄()とをいう〕並びに三酸化モリブ
テン(MoC3)より選択される一種以上と酸性の条
件下で処理するという簡単な操作によりCOD値
を急速に低下させ得ることを見い出し、この発明
に到達したものである。 この発明における金属酸化物は、高い純度のも
のを用いる必要はなく、多小の不純物の混入して
いるものでも使用可能であつて、工業的に副生物
として出てくるようなものでも使用できる。形状
は表面積が大きいものがよく微粉末が好ましい。
この発明に使用する金属酸化物のうち酸化第二鉄
は安定、安価であり特に推奨される触媒である。 この発明による処理は金属酸化物と処理対象水
中のCOD成分との接触が充分に行なわれるよう
にするのが好ましく、このために機械的撹拌や空
気の強制的導入(曝気)が行なわれる。通常は機
械的に撹拌しながら空気の気泡を強制的に導入す
るのが好ましい。 またこの発明の処理は酸性の条件下行なわれ、
PH3以下が好ましく、PH1.5以下が最も好まし
い。このPH調整のためには、塩酸、硫酸、硝酸、
リン酸等の鉱酸が使用でき製鉄会社で鉄板の表面
処理を行つた後の塩化鉄等を含有する廃塩酸や、
またその他の種々の工程で出てくる廃硫酸、廃硝
酸等が好的に用いられる。 この発明に用いられる金属酸化物の量は概ね約
1000〜1300ppmのCOD値を示す廃液に対して約
1000ppmの添加が好ましいが、これは廃水の
COD値に応じて変化させ得るものであり、約500
〜5000ppmの添加量であれば大抵の場合をカバ
ーできる。 処理は常温〜60℃で2〜5時間行なわれるのが
好ましい。 以上の条件を具備すればCODの低減は達成さ
れるが、更に塩化鉄等の水溶性鉄塩を併用せしめ
ることにより処理対象水中のイオウ化合物を硫化
鉄として沈澱せしめ更にCOD値を下げることが
可能である。鉄の表面処理後の廃塩酸は鉄イオン
を多量に含有するのでPHの調整と同時にイオウ化
合物を除去し好都合である。 また一般に酸化剤として知られている過酸化水
素水、次亜塩素酸塩並びに高度サラシコの一種以
上を更に添加して処理してもよい。 高CODを示す高炉スラグ接触廃水中のCOD成
分のうちの主要部を占めると考えられるイオウ化
合物のうちの大部分は単体のイオウとして析出し
酸化鉄の周囲に付着して沈澱になるものとみられ
る。 この発明による方法は1000〜1300ppm程度の
高炉スラグ接触廃水のCODを200〜300ppmに速
かに低減させ得ることが特徴であるので、廃水規
制値に適合させるには、本発明の方法による処理
の後更に次亜塩素酸ナトリウムのような酸化剤を
加えてCOD成分を除くとよい。酸化剤を加えて
更に処理しない場合は中和後沈澱を分離し、水で
希釈し放流する。 この発明の処理法は、高炉スラグ接触水以外の
ものでもSx(X=2、4、6、8…………)、
S2O3 --、S--等のCOD成分を含む水であれば何れ
にも応用することができる。 次に実施例を挙げてこの発明を説明する。 実施例 1−1〜1−3 某製鉄工場の高炉スラグの貯蔵区域にめぐらさ
れたピツト中に溜つた高炉スラグ接触水を採取
し、この液(以下原液と記載する)の組成、性状
を調べたところ下記の通りであつた。 COD 1520 ppm I2消費量 3160 〃 PH 11.9 S 23.0ppm Na 322 〃 K 1290 〃 Ca 340 〃 この原水1をビーカーに入れ、この液のPHを
各々1.5、6、12に合わせた(PHメーター使用)。
次に金属酸化物(Fe2O3、Fe3O4、MoO3の3種)
の粉末各々2gを加え、この粉末が沈澱してしま
わないようにスターラーで常温で60分間撹拌した
後中和し30分間静置して沈澱を沈降させ、これの
上澄液を取り、常法によりCODを測定した。そ
の結果を表1に示す。 参考例 1−1〜1−3 V2O5、MnO2、SeO2の3種の金属酸化物の粉
体についても実施例1と全く同様にしてCODを
測定した。その結果を表1に併記する。
This invention relates to a wastewater treatment method. More specifically, the present invention provides a method for treating blast furnace slag contact wastewater exhibiting a high COD with one or more metal oxides selected from ferric oxide, triiron tetroxide, and molybdenum trioxide under acidic conditions. This invention relates to a wastewater treatment method characterized by reducing COD. When pig iron is made in the blast furnace of a steel mill, slag is also produced as a by-product, and this is called blast furnace slag or blast furnace slag. Sand-like blast furnace slag can be used as blast furnace cement,
It has a variety of uses, including fine aggregate for fresh concrete, roads, fresh asphalt concrete, and secondary concrete products. The amount of blast furnace slag produced as a by-product reaches 318 kg per 1 ton of pig iron, which is the main product (the volume ratio of pig iron to blast furnace slag is 1:1.47 to 1.67). Blast furnace slag is often stored in piles outdoors, during which time components containing blast furnace slag are eluted by rainwater, and wastewater containing the eluted components is discharged into rivers or the sea. On the other hand, when reclaiming blast furnace slag from the sea, lakes, etc., the residual water becomes a similar leachate. However, the water eluted from blast furnace slag by rainwater and the water left over from landfilling contain various components, especially slag-containing components such as sulfur, and their chemical oxygen demand, i.e.
COD (hereinafter referred to as COD) values vary depending on the situation, but are usually over 1000 ppm, which is not desirable from a pollution standpoint. Steel factories are currently trying to solve this problem by managing and improving storage processes, but even more thorough measures are still desired. The blast furnace slag contact wastewater exhibiting high COD, which is the subject of treatment in this invention, contains sulfur,
In particular, there are sulfur polysulfide represented by Sx (x = 2, 4, 6, 8, ......), ionic S 2 O 3 -- , S --, etc., and more than 90% of the COD value is this. It is thought that this is caused by sulfur compounds such as Various methods can be considered for reducing the COD of such wastewater. A Method using aeration (i) Simple aeration (ii) Aeration in the presence of an oxidation catalyst near neutral pH B Methods other than aeration (i) Oxidation using an oxidizing agent (e.g. H 2 O 2 , NaClo, Advanced Salashco, etc.) ii) Method of precipitating as sulfide (addition of water-soluble iron salt, water-soluble zinc salt, etc.) (iii) Combination of (i) and (ii). in blast furnace slag contact wastewater to be treated.
Since the amount of COD components is too large, B
Both of these methods require large amounts of drugs and are completely unrealistic from an economic standpoint. On the other hand, among methods A, method (i) requires a long period of aeration to reduce COD and is not suitable for practical use, and method A (ii) also cannot rapidly reduce COD. This invention was made to improve the current situation as described above. In other words, the present inventors conducted various studies and determined that wastewater in contact with blast furnace slag, which exhibits high COD, was treated with ferric oxide [indicated by Fe 2 O 3 , iron oxide].
], triiron tetroxide [represented by Fe 3 O 4 , referred to as iron oxide () iron ()], and molybdenum trioxide (MoC 3 ) under acidic conditions. This invention was achieved by discovering that the COD value can be rapidly lowered by this simple operation. The metal oxide in this invention does not need to be of high purity; it can be used even if it contains some impurities, and even if it is produced as a by-product in industry. . The shape preferably has a large surface area, and is preferably a fine powder.
Among the metal oxides used in this invention, ferric oxide is stable and inexpensive, and is a particularly recommended catalyst. In the treatment according to the present invention, it is preferable to ensure sufficient contact between the metal oxide and the COD component in the water to be treated, and for this purpose mechanical stirring or forced introduction of air (aeration) is carried out. Usually, it is preferable to forcibly introduce air bubbles while stirring mechanically. Furthermore, the treatment of this invention is carried out under acidic conditions,
PH is preferably 3 or less, most preferably PH 1.5 or less. For this PH adjustment, hydrochloric acid, sulfuric acid, nitric acid,
Mineral acids such as phosphoric acid can be used, and waste hydrochloric acid containing iron chloride etc. after surface treatment of iron plates at steel companies,
In addition, waste sulfuric acid, waste nitric acid, etc. produced in various other processes are preferably used. The amount of metal oxide used in this invention is generally about
Approx.
It is preferable to add 1000ppm;
It can be changed depending on the COD value, approximately 500
An addition amount of ~5000ppm can cover most cases. The treatment is preferably carried out at room temperature to 60°C for 2 to 5 hours. If the above conditions are met, a reduction in COD can be achieved, but by combining water-soluble iron salts such as iron chloride, it is possible to precipitate sulfur compounds in the water to be treated as iron sulfide, further reducing the COD value. It is. Since the waste hydrochloric acid after surface treatment of iron contains a large amount of iron ions, it is convenient to remove sulfur compounds while adjusting the pH. In addition, one or more of hydrogen peroxide, hypochlorite, and highly salinized salts, which are generally known as oxidizing agents, may be further added for treatment. Most of the sulfur compounds, which are thought to account for the major part of the COD components in blast furnace slag contact wastewater that exhibits high COD, are likely to precipitate as simple sulfur and adhere to the surroundings of iron oxides, forming precipitates. . The method according to the present invention is characterized in that it can rapidly reduce the COD of blast furnace slag contact wastewater from about 1000 to 1300 ppm to 200 to 300 ppm. Afterwards, it is recommended to add an oxidizing agent such as sodium hypochlorite to remove COD components. If no further treatment is performed by adding an oxidizing agent, the precipitate is separated after neutralization, diluted with water, and discharged. The treatment method of this invention can be applied to water other than blast furnace slag contact water such as Sx (X=2, 4, 6, 8......),
It can be applied to any water containing COD components such as S 2 O 3 -- and S -- . Next, the present invention will be explained with reference to Examples. Examples 1-1 to 1-3 Blast furnace slag contact water collected in a pit distributed in the blast furnace slag storage area of a certain steel factory was collected, and the composition and properties of this liquid (hereinafter referred to as stock solution) were investigated. The situation was as follows. COD 1520 ppm I 2 consumption 3160 〃 PH 11.9 S 23.0ppm Na 322 〃 K 1290 〃 Ca 340 〃 Put this raw water 1 into a beaker and adjust the PH of this liquid to 1.5, 6, and 12 respectively (using a PH meter) .
Next, metal oxides (three types: Fe 2 O 3 , Fe 3 O 4 , and MoO 3 )
Add 2 g of each powder, stir with a stirrer for 60 minutes at room temperature to prevent the powder from settling, neutralize it, leave it to stand for 30 minutes to allow the precipitate to settle out, take the supernatant liquid, and stir using a standard method. COD was measured by The results are shown in Table 1. Reference Examples 1-1 to 1-3 COD was also measured in exactly the same manner as in Example 1 for powders of three types of metal oxides, V 2 O 5 , MnO 2 , and SeO 2 . The results are also listed in Table 1.

【表】 表1よりわかるようにFe2O3すなわち酸化第二
鉄、Fe3O4すなわち四三酸化鉄、MoO3すなわち
三酸化モリブデンの3種の金属酸化物はPH1.5に
おいて著しい触媒作用を示し、特に酸化第二鉄の
効果が優れている。 実施例 2 最も触媒効果の良好な酸化第二鉄に関し、PHと
温度を種々変えたものについてCODの低下を調
べた。 原水(実施例1の工場の異つた場所から採取し
たもの)のCOD1050ppm、酸化第二鉄の添加量
1000ppm、撹拌時間4時間の他は実施例1と同
様にした。その結果を表2に示す。
[Table] As can be seen from Table 1, three metal oxides, Fe 2 O 3 or ferric oxide, Fe 3 O 4 or triiron tetroxide, and MoO 3 or molybdenum trioxide, have a remarkable catalytic effect at pH 1.5. The effect of ferric oxide is particularly excellent. Example 2 Regarding ferric oxide, which has the best catalytic effect, the reduction in COD was investigated with various pH and temperature changes. COD 1050ppm of raw water (collected from different locations in the factory of Example 1), amount of ferric oxide added
The procedure was the same as in Example 1 except that the stirring time was 1000 ppm and the stirring time was 4 hours. The results are shown in Table 2.

【表】 PH3から効果が出始め、PH1.5付近より急激な
COD低下が見られる。処理温度による効果は僅
少である。 実施例 3 実施例2で用いたのと同じ原水
(COD1050ppm)について、常温における酸化第
二鉄の添加量並びにPHの影響を調べた。他の条件
は実施例1と同様にした。結果を表3に示す。
[Table] Effects begin to appear at PH3, and become more rapid around PH1.5.
A decrease in COD is seen. The effect of processing temperature is small. Example 3 Regarding the same raw water (COD 1050 ppm) used in Example 2, the influence of the amount of ferric oxide added and pH at room temperature was investigated. Other conditions were the same as in Example 1. The results are shown in Table 3.

【表】 表3より酸化第二鉄の添加量1000ppm以上
で、PH1.5以下の場合に触媒効果が優れているこ
とがわかる。 実施例 4 COD1000ppmの高炉スラグ接触廃水に関し、
酸化第二鉄1000ppmを添加した場合および無添
加の場合についてそのCODの経時変化を追跡し
た。PHは1〜1.5、処理温度は常温で行なつた。
結果を表4に示す。
[Table] From Table 3, it can be seen that the catalytic effect is excellent when the amount of ferric oxide added is 1000 ppm or more and the pH is 1.5 or less. Example 4 Regarding blast furnace slag contact wastewater with a COD of 1000 ppm,
Changes in COD over time were tracked with and without the addition of 1000 ppm of ferric oxide. The pH was 1 to 1.5, and the treatment temperature was room temperature.
The results are shown in Table 4.

【表】 表4からわかるように酸化第二鉄存在下に処理
するとCOD低下速度(特に2〜4時間経過時)
が非常に大きい。 実施例 5 (i) COD1110ppmの高炉スラグ接触廃水につい
て、酸化第二鉄並びに三酸化モリブデンについ
て、その各々の添加量を変えてCODの低下を
調べた。PHは1.5、撹拌時間は4時間であつ
た。結果を表5に示す。
[Table] As shown in Table 4, when treated in the presence of ferric oxide, the rate of COD reduction (especially after 2 to 4 hours)
is very large. Example 5 (i) For blast furnace slag contact wastewater with a COD of 1110 ppm, the reduction in COD was investigated by changing the amounts of ferric oxide and molybdenum trioxide added. The pH was 1.5 and the stirring time was 4 hours. The results are shown in Table 5.

【表】 表5により三酸化モリブデンは酸化第二鉄とほ
ぼ同等の効果を示し、また各々の添加量は
1000ppm以上がよいことがわかる。 次に三酸化モリブデンと酸化第二鉄とを種々の
添加量で併用してPH1.5で4時間撹拌してCODを
測定した。その結果を表6に示す。
[Table] Table 5 shows that molybdenum trioxide has almost the same effect as ferric oxide, and the amount of each added is
It can be seen that 1000ppm or more is good. Next, various addition amounts of molybdenum trioxide and ferric oxide were used together, and the mixture was stirred at pH 1.5 for 4 hours, and the COD was measured. The results are shown in Table 6.

【表】 表6より、両者の併用による相乗効果はないこ
とがわかる。 実施例 6 COD1110ppmの高炉スラグ接触廃水1ずつ
を2つの容器に計り取りこれに酸化第二鉄並びに
三酸化モリブデンを各々に加え、金魚用のエアポ
ンプを用いて500ml/分の流速で、G−2のグラ
スフイルターを通して空気を多数の小泡状にして
容器の底部より送り込み、機械的な撹拌を行なわ
ずに処理してCODの変化を調べた。結果を表7
に示す。
[Table] From Table 6, it can be seen that there is no synergistic effect due to the combination of both. Example 6 Weigh out one blast furnace slag contact wastewater with a COD of 1110 ppm into two containers, add ferric oxide and molybdenum trioxide to each container, and use an air pump for goldfish at a flow rate of 500 ml/min to G-2. A large number of small bubbles of air were introduced from the bottom of the container through a glass filter, and changes in COD were investigated by processing without mechanical stirring. Table 7 shows the results.
Shown below.

【表】 表2より時間の効果は明らかである。表5と比
較すると撹拌した場合と強制的に気泡を導入した
場合とでは、ほぼ同等の効果が現われている。 実施例 7 COD1016ppmの原水を用い、PHコントロール
のための酸の種類を変えて酸化第二鉄、三酸化モ
リブデンの各々の添加の場合について、PH1.0で
2時間スターラーで撹拌してCODを調べた。そ
の結果を表8に示す。
[Table] From Table 2, the effect of time is clear. Comparing with Table 5, almost the same effect appears in the case of stirring and the case of forcibly introducing bubbles. Example 7 Using raw water with a COD of 1016 ppm, the type of acid for PH control was changed and ferric oxide and molybdenum trioxide were added, stirring with a stirrer for 2 hours at PH 1.0 and COD was investigated. Ta. The results are shown in Table 8.

【表】 硫酸を加えたものがやや優る傾向があるが、水
差はなくほとんど同程度とみなし得る。 実施例 8 COD1016ppmの原水のPHを1.5に調整後、以下
の組合せで酸化第二鉄、塩化第一(または第二)
鉄を加え、2時間スターラーで撹拌後PH8〜9に
中和し、放置後、沈澱を分離してそのCODを測
定した。その結果を表9に示す。
[Table] There is a tendency for products with sulfuric acid added to be slightly superior, but there is no significant difference and they can be considered to be almost the same. Example 8 After adjusting the pH of raw water with COD 1016 ppm to 1.5, ferric oxide and ferrous chloride (or ferric chloride) were added in the following combination.
Iron was added, and after stirring with a stirrer for 2 hours, the mixture was neutralized to pH 8-9, and after being left to stand, the precipitate was separated and its COD was measured. The results are shown in Table 9.

【表】 塩化鉄同浴注入により、CODを酸化第二鉄単
独よりもさらに50〜55ppm低くすることができ
た。これは硫化鉄の生成によるためであると考え
られる。 参考例 2 COD1000ppm、PH7の原水1をビーカーに
とり、これを種々のPHで種々の化合物を50ppm
の濃度になるように添加し、これを実施例6と同
様の方法で2時間曝気した後中和し、放置後上澄
液を取りCODを測定した。結果を表10に示す。
[Table] By injecting iron chloride in the same bath, we were able to lower COD by 50 to 55 ppm more than using ferric oxide alone. This is thought to be due to the formation of iron sulfide. Reference example 2 Take raw water 1 with a COD of 1000ppm and a pH of 7 in a beaker, and add various compounds at various pHs to 50ppm.
The mixture was aerated for 2 hours in the same manner as in Example 6, then neutralized, and after being left to stand, the supernatant was taken and the COD was measured. The results are shown in Table 10.

【表】【table】

【表】 表10と表1を対比させてわかるように酸化第二
鉄、四三酸化鉄、三酸化モリブデンと比較すると
この三者に匹敵する触媒となり得るものは表10に
掲げた化合物中には見い出せない。 参考例 3 COD800ppmの原水に、一般に酸化剤としてよ
く知られている過酸化水素水、次亜塩素酸ナトリ
ウム、高度サラシコを種々のPHの条件下添加し
て、CODを200ppmにするに必要な各々の添加量
を調べた。結果を表11に示す。なお表11には
COD100ppm減少させるに必要な量(実験値)並
びに理論量を併記する。
[Table] As can be seen by comparing Table 10 and Table 1, when comparing ferric oxide, triiron tetroxide, and molybdenum trioxide, there are compounds listed in Table 10 that can serve as catalysts comparable to these three. cannot be found. Reference example 3 Hydrogen peroxide, sodium hypochlorite, and highly salinized water, which are generally well-known as oxidizing agents, are added to raw water with a COD of 800 ppm under various PH conditions to obtain the necessary amounts to reduce the COD to 200 ppm. The amount of addition was investigated. The results are shown in Table 11. Furthermore, Table 11 shows
The amount required to reduce COD by 100ppm (experimental value) and the theoretical amount are also listed.

【表】 表11より反応条件としては、 H2O2:PH11またはPH1 NaclO:PH1 高度サラシコ:PH7 の各々の条件で理論量の70〜100%の効率でCOD
を低減できるが、このデータをもとにしてその使
用による単価を計算すると非現実的に高い値とな
り実用には適さないことがわかる。 実施例 9 COD1046ppmの高炉スラグ接触廃水200mlを2
つの容器に計り取りこれに酸化第二鉄を各々に加
え、一方にはN2ガスを他方には空気を90ml/分
の流速で容器の底部より送り込み下記条件におい
て処理してCODの変化を調べた。結果を下表に
示す。 条件;PH 1.5 試験時間 4hr. 温度 20℃
[Table] From Table 11, the reaction conditions are: H 2 O 2 : PH 11 or PH 1 NaclO: PH 1 NaclO: PH 1 Highly Sarashiko: PH 7 COD was achieved at an efficiency of 70 to 100% of the theoretical amount.
However, if the unit cost of its use is calculated based on this data, it becomes unrealistically high and is not suitable for practical use. Example 9 200ml of blast furnace slag contact wastewater with a COD of 1046ppm
Ferric oxide was added to each container, and N 2 gas was fed into one container and air was fed into the other at a flow rate of 90 ml/min from the bottom of the container, and the mixture was treated under the following conditions to examine changes in COD. Ta. The results are shown in the table below. Conditions: PH 1.5 Test time 4hr. Temperature 20℃

【表】 この表より、機械的撹拌を行なつた際に空気中
の酸素が水中に溶解しても、COD低減効果には
何ら影響を及ぼさないことが分る。従つて本願発
明で行なう機械的撹拌は単に金属酸化物と被処理
水中のCOD成分との充分な接触のためにすぎな
いものといえる。
[Table] This table shows that even if oxygen in the air dissolves into water during mechanical stirring, it does not affect the COD reduction effect in any way. Therefore, it can be said that the mechanical stirring performed in the present invention is merely for sufficient contact between the metal oxide and the COD component in the water to be treated.

Claims (1)

【特許請求の範囲】 1 高CODを示す高炉スラグ接触廃水を、PH3
以下の酸性条件下で酸化第二鉄、四三酸化鉄並び
に三酸化モリブデンより選択される金属酸化物の
一種以上と接触させることにより前記廃水の
CODを低減させることを特徴とする廃水処理
法。 2 処理が機械的撹拌下行なわれるものである特
許請求の範囲第1項記載の廃水処理法。 3 処理が空気の気泡を強制的に導入して行なわ
れるものである特許請求の範囲第1項または第2
項記載の廃水処理法。 4 処理がPH1.5以下で行なわれるものである特
許請求の範囲第1項〜第3項のいずれかに記載の
廃水処理法。 5 酸化第二鉄が工業的な過程で副生する副生物
である特許請求の範囲第1項〜第4項のいずれか
に記載の廃水処理法。 6 金属酸化物の添加量が約500〜5000ppmであ
る特許請求の範囲第1項〜第5項のいずれかに記
載の廃水処理法。 7 処理が、更に酸化剤を加えて行なわれるもの
である特許請求の範囲第1項〜第6項のいずれか
に記載の廃水処理法。 8 酸化剤として過酸化水素水、次亜塩素酸塩お
よび高度サラシコの一種以上を用いるものである
特許請求の範囲第7項記載の廃水処理法。
[Claims] 1 Blast furnace slag contact wastewater exhibiting high COD is
The wastewater is brought into contact with one or more metal oxides selected from ferric oxide, triiron tetroxide, and molybdenum trioxide under the following acidic conditions.
A wastewater treatment method characterized by reducing COD. 2. The wastewater treatment method according to claim 1, wherein the treatment is carried out under mechanical stirring. 3. Claim 1 or 2, in which the treatment is carried out by forcibly introducing air bubbles.
Wastewater treatment method described in Section. 4. The wastewater treatment method according to any one of claims 1 to 3, wherein the treatment is carried out at a pH of 1.5 or lower. 5. The wastewater treatment method according to any one of claims 1 to 4, wherein ferric oxide is a by-product produced in an industrial process. 6. The wastewater treatment method according to any one of claims 1 to 5, wherein the amount of metal oxide added is about 500 to 5000 ppm. 7. The wastewater treatment method according to any one of claims 1 to 6, wherein the treatment is performed by further adding an oxidizing agent. 8. The wastewater treatment method according to claim 7, wherein one or more of hydrogen peroxide solution, hypochlorite, and high-grade salamico is used as the oxidizing agent.
JP12213877A 1977-10-11 1977-10-11 Method of disposing waste water Granted JPS5456245A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12213877A JPS5456245A (en) 1977-10-11 1977-10-11 Method of disposing waste water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12213877A JPS5456245A (en) 1977-10-11 1977-10-11 Method of disposing waste water

Publications (2)

Publication Number Publication Date
JPS5456245A JPS5456245A (en) 1979-05-07
JPS6146197B2 true JPS6146197B2 (en) 1986-10-13

Family

ID=14828544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12213877A Granted JPS5456245A (en) 1977-10-11 1977-10-11 Method of disposing waste water

Country Status (1)

Country Link
JP (1) JPS5456245A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412793U (en) * 1987-07-09 1989-01-23

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6412793U (en) * 1987-07-09 1989-01-23

Also Published As

Publication number Publication date
JPS5456245A (en) 1979-05-07

Similar Documents

Publication Publication Date Title
EP0361614B1 (en) Method for rendering toxic waste harmless
CN106517577A (en) Process for processing acidic arsenic-containing waste water
CN106868320A (en) A kind of preparation method of the solid arsenic mineral of high stability
FI100966B (en) Process for the treatment of ferrous sulphate
CZ289326B6 (en) Preparation for treating water and soil maintenance
US4402851A (en) Pumpable composition for water-purifying purpose containing iron (II) sulphate, and a method for producing the same
DE3917412C2 (en) Process for the preparation of a composition for treating contaminated water
EP0398234B1 (en) Improved process for the removal of cyanide from wastewaters
RU2338710C2 (en) Water colloidal suspension of hydroxide of at least one transition element for reclamation of chrome in cement
KR20160124160A (en) PROCESS FOR REDUCING THE AMOUNTS OF ZINC(Zn) AND LEAD(Pb)IN MATERIALS CONTAINING IRON(Fe)
JPS6146197B2 (en)
KR101293283B1 (en) Method for removing fluoride from waste water containing fluoroboric acid
CN110227229B (en) Arsenic-removing residue composite stabilizing medicament and application thereof
CN106823234B (en) A kind of method that hydro-thermal method preparation high stability consolidates arsenic mineral
US2844439A (en) Production of aluminum sulphate from waste materials
KR0122328B1 (en) Method of iron dichloride liquid
JP3802264B2 (en) Detoxification method for soil contaminated with arsenic
CN106823235B (en) A kind of method that regulation and control growth method prepares the solid arsenic mineral of high stability
JPH07241404A (en) Iron based inorganic flocculant and its production
KR100631871B1 (en) Method for production of inorganic coagulant utilizing red mud
KR102567638B1 (en) Water treatment method to reduce residual aluminum
KR100243547B1 (en) The composition of pipe detergent and the preparation method of pipe detergent utilizing thereof
RU2106417C1 (en) Method for recovery of cobalt from middlings containing cobalt oxides
US1715877A (en) Process for purifying polluted liquids and industrial waste
JP6901807B1 (en) Treatment method of water containing selenate ion