JPS6146180A - Rectified voltage multiplier circuit - Google Patents

Rectified voltage multiplier circuit

Info

Publication number
JPS6146180A
JPS6146180A JP16751184A JP16751184A JPS6146180A JP S6146180 A JPS6146180 A JP S6146180A JP 16751184 A JP16751184 A JP 16751184A JP 16751184 A JP16751184 A JP 16751184A JP S6146180 A JPS6146180 A JP S6146180A
Authority
JP
Japan
Prior art keywords
voltage
capacitor
point
connection point
capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16751184A
Other languages
Japanese (ja)
Inventor
Yoshio Takamura
高村 芳雄
Hiroshi Nakajima
啓 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16751184A priority Critical patent/JPS6146180A/en
Publication of JPS6146180A publication Critical patent/JPS6146180A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • H02M7/10Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode arranged for operation in series, e.g. for multiplication of voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

PURPOSE:To control an output voltage by a simple configuration by composing rectifying means in combination of a plurality of rectifiers and a capacitor, and controlling a current flowed to the capacitor. CONSTITUTION:A plurality of diodes D1-D8 are connected in series between the midtap and the output terminal (o) of the seconary winding n2 of a transformer T, and capacitors C1-C8 are connected between one terminal of the secondary winding n2 and the prescribed connecting point of the diodes D1-D8. The voltage of the output terminal (o) is detected by resistors R1, R2 and a differential amplifier OP, a transistor Q is controlled by the detection output to control a current flowed to the capacitor C4.

Description

【発明の詳細な説明】 [発明の技術分野] この発明は複数個のダイオードとコンデンサとを組合わ
せて交流入力電圧から直流高電圧を得る整流電圧逓倍回
路に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a rectifier voltage multiplier circuit that combines a plurality of diodes and capacitors to obtain a high DC voltage from an AC input voltage.

[発明の技術的背景とその問題点] 一般に、交流電圧から高直流電圧を得る手段として、複
数個のダイオードとコンデンサとを組合わせた整流電圧
逓倍回路がよく用いられる。従来より、その出力電圧の
変動に対する制御に関しては、入力電源の出力制御、も
しくは出力段のシャントレギュレータによる出力制御が
考えられているが、前者は回路の複雑さの点で、後者は
制御手段に対する耐電圧的保護手段を要する等の点で問
題があった。
[Technical Background of the Invention and Problems Therewith] Generally, a rectifier voltage multiplier circuit that combines a plurality of diodes and capacitors is often used as a means for obtaining a high direct current voltage from an alternating current voltage. Conventionally, output control of the input power supply or output control using a shunt regulator in the output stage has been considered to control fluctuations in the output voltage, but the former is difficult due to the complexity of the circuit, and the latter is difficult to control. There were problems in that voltage-resistant protection measures were required.

[発明の目的] この発明は上記のような問題を改善するためになされた
もので、極めて簡単な回路構成で効果的な出力電圧の制
御が可能となる整流電圧逓倍回路を提供することを目的
とする。
[Objective of the Invention] This invention was made in order to improve the above-mentioned problems, and its purpose is to provide a rectifier voltage multiplier circuit that can effectively control the output voltage with an extremely simple circuit configuration. shall be.

[発明の概要] すなわち、この発明に係る整流電圧逓倍回路は、整流の
向きが同一となるように複数の整流素子を直列接続して
なる整流手段に対し、その両端間に複数個のコンデンサ
を直列接続すると共にコンデンサの各接続点を前記所定
の整流素子相互間の第1接続点に接続し、この第1接続
点以外の接続点に交流電圧が印加されるコンデンサを接
続し、各コンデンサが前記整流手段の各相互間に対して
互いに重複しないように接続したものにおいて、前記整
流手段の両端間に直列接続した複数のコンデンサの少な
くとも一部に流れる電流を制御するようにしたことを特
徴とするものである。
[Summary of the Invention] That is, the rectifying voltage multiplier circuit according to the present invention includes a rectifying means formed by connecting a plurality of rectifying elements in series so that the rectifying direction is the same, and a plurality of capacitors being connected between both ends of the rectifying means. Each capacitor is connected in series, and each connection point of the capacitor is connected to the first connection point between the predetermined rectifying elements, and a capacitor to which an alternating current voltage is applied is connected to a connection point other than the first connection point, so that each capacitor is connected in series. The rectifying means are connected to each other so as not to overlap with each other, and the current flowing through at least a portion of a plurality of capacitors connected in series between both ends of the rectifying means is controlled. It is something to do.

[発明の実施例] 以下、第1図を参照してこの発明の一実施例を詳細に説
明する。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG.

第1図はその構成を示すもので、トランスTの1次巻線
n1には方形波の交流電力を出力する交流電3!Aが接
続される。このトランスTの2次巻線n2には中間タッ
プmが設けられ、トランス2次巻線の両端子a、b、中
間タップmはそれぞれ第1乃至第3の交流入力端となる
。尚、第3の入力端であるタップmは接地される。また
、このタップmと出力端0との間には整流の向きが同一
となるように複数個のダイオードD1〜D8が直列接続
される。すなわち、ダイオードD1のアノードがタップ
mに接続され、ダイオードD8のカソードが出力端0に
接続される。
FIG. 1 shows its configuration, in which the primary winding n1 of the transformer T is an AC power source 3! which outputs square wave AC power. A is connected. The secondary winding n2 of the transformer T is provided with an intermediate tap m, and both terminals a and b of the transformer secondary winding and the intermediate tap m serve as first to third AC input terminals, respectively. Note that tap m, which is the third input terminal, is grounded. Further, a plurality of diodes D1 to D8 are connected in series between the tap m and the output terminal 0 so that the rectification directions are the same. That is, the anode of the diode D1 is connected to the tap m, and the cathode of the diode D8 is connected to the output terminal 0.

また、第1の入力端である2次巻線n2の一方の端子a
及びダイオードD1〜D8の所定の接続点間には複数個
のコンデンサ01〜C3が接続される。すなわち、コン
デンサC1は端子a及びダイオードD2とD3の接続点
0間に接続される。
Also, one terminal a of the secondary winding n2 which is the first input terminal
A plurality of capacitors 01 to C3 are connected between predetermined connection points of the diodes D1 to D8. That is, the capacitor C1 is connected between the terminal a and the connection point 0 between the diodes D2 and D3.

また、コンデンサC2、C3は端子a及びダイオードD
7とD8の接続点3間に直列接続され、これらコンデン
サC2、C3の接続点はダイオードD5とD6の接続点
りに接続される。また、ダイオードD1のアノードとダ
イオードD8のカソード間にはコンデンサC4: cs
が直列接続される。
In addition, capacitors C2 and C3 are connected to terminal a and diode D.
7 and D8 are connected in series, and the connection point between these capacitors C2 and C3 is connected to the connection point between diodes D5 and D6. In addition, a capacitor C4: cs is connected between the anode of the diode D1 and the cathode of the diode D8.
are connected in series.

そして、コンデンサC4、C5の接続点はダイオードD
3とD4の接続点fに接続される。
The connection point between capacitors C4 and C5 is diode D.
It is connected to the connection point f between 3 and D4.

一方、第2の入力端である2次巻線n2の他方の端子す
とダイオードD1〜D8の所定の接続点間には複数個の
コンデンサC6〜C8が接続される。すなわち、端子す
とダイオードD1とD2の接続点6間にはコンデンサC
6が接続される。また、端子すとダイオードD6とD7
の接続点1間にはコンデンサC7,C8が直列接続され
る。そして、コンデンサC7と08の接続点はダイオー
ドD4とD5の接続点qに接続される。
On the other hand, a plurality of capacitors C6 to C8 are connected between the other terminal of the secondary winding n2, which is the second input terminal, and predetermined connection points of the diodes D1 to D8. That is, a capacitor C is connected between the terminals and the connection point 6 between the diodes D1 and D2.
6 is connected. Also, the terminals and diodes D6 and D7
Capacitors C7 and C8 are connected in series between connection point 1 of . The connection point between capacitors C7 and 08 is connected to the connection point q between diodes D4 and D5.

さらに、上記出力端0とアース間には抵抗R1゜R2が
直列接続される。この抵抗R1、R2の直列回路はこの
整流電圧逓倍回路の出力レベルを検出するためのもので
、抵抗R1とR2の接続点は差動増幅器OPの一方の入
力端(+)に接続される。この差動増幅器○Pの他方の
入力端(−)には基準電源EOが接続されており、その
出力端はトランジスタQのベースに接続される。この1
ヘランジスタQのコレクタは抵抗R3を介してダイオニ
ドD3とD4の接続点fに接続され、エミッタは接地さ
れる。すなわち、トランジスタQ及び抵抗R3は電流制
御回路を構成するものである。
Further, resistors R1 and R2 are connected in series between the output terminal 0 and the ground. This series circuit of resistors R1 and R2 is for detecting the output level of this rectifier voltage multiplier circuit, and the connection point of resistors R1 and R2 is connected to one input terminal (+) of differential amplifier OP. A reference power source EO is connected to the other input terminal (-) of this differential amplifier ○P, and its output terminal is connected to the base of the transistor Q. This one
The collector of the helangistor Q is connected to the connection point f between the diodes D3 and D4 via a resistor R3, and the emitter is grounded. That is, the transistor Q and the resistor R3 constitute a current control circuit.

上記のような構成において、以下その動作について説明
する。
The operation of the above configuration will be described below.

すなわち、上記トランスTの1次巻線n1に供給される
方形波の交流電力により、まず2次巻線n2の両端子a
、bにa点が正になる如<2E[V]の電圧が発生した
とする。このとき、コンデンサC6はダイオードD1を
通じてd点が正、b点が負の向きにE[V]の電圧まで
充電される。
That is, the square wave AC power supplied to the primary winding n1 of the transformer T first causes both terminals a of the secondary winding n2 to
, b, such that a voltage of <2E[V] is generated such that point a becomes positive. At this time, the capacitor C6 is charged through the diode D1 to a voltage of E[V] with the point d being positive and the point b being negative.

次に、電圧が反転すると、2次巻線n2の両端子a、b
にはb点が正なる如<2E[V]が発生される。この場
合、コンデンサC1はダイオードD2を通じて2次巻線
n2の両端電圧2E[V]とコンデンサC6に充電され
ている同じ向きのE [V]が加算された3E[V]ま
でe点が正なる如く充電される。
Next, when the voltage is reversed, both terminals a and b of the secondary winding n2
If point b is positive, <2E[V] is generated. In this case, the point e of the capacitor C1 becomes positive up to 3E[V], which is the sum of the voltage 2E[V] across the secondary winding n2 through the diode D2 and the E[V] in the same direction charged in the capacitor C6. It will be charged like this.

ここで、再び電圧が反転すると、コンデンサC4はダイ
オードD3を通じて2次巻線n2のタップmと端子8間
に発生されるE [V]の電圧とコンデンサC1に充電
されている電圧3E[V]が加算され、f点が正になる
よう4E [V]まで充電される。これと同時にコンデ
ンサC6はダイオードD1を通じて再びE ’[V ]
まで充電される。
Here, when the voltage is reversed again, the capacitor C4 is connected to the voltage E [V] generated between the tap m of the secondary winding n2 and the terminal 8 through the diode D3 and the voltage 3E [V] charged in the capacitor C1. is added and charged to 4E [V] so that the f point becomes positive. At the same time, capacitor C6 is again connected to E'[V] through diode D1.
will be charged up to.

以下同様に順次電圧が反転すると、コンデンサC7、C
2、C8、C3、C5の順に充電され、出力端0には1
2E [V]の直流高電圧が現われるようになる。
Similarly, when the voltage is sequentially reversed, capacitors C7 and C
2, C8, C3, and C5 are charged in this order, and 1 is charged at the output terminal 0.
A high DC voltage of 2E [V] begins to appear.

一般に、この種の整流電圧逓倍回路においてコンデンサ
C4及びC5は出力リップル電圧に関与し、他のコンデ
ンサC1〜C3及びC6〜C8は出力の直流的電圧降下
に関与するものであることが知られており、かつ回路解
析と以下の実験によっても確められている。
It is generally known that in this type of rectifier voltage multiplier circuit, capacitors C4 and C5 are involved in the output ripple voltage, and other capacitors C1 to C3 and C6 to C8 are involved in the DC voltage drop of the output. This is also confirmed by circuit analysis and the following experiment.

すなわち、f点及びアース間(コンデンサC4の端子間
)に可変抵抗が接続してその電流を増大させてみると、
コンデンサC1及びC6による電圧降下によりf点及び
アース間の電圧を大幅に低下させることができる。その
間、f点及び出力端0間の電圧は全く変化しない。この
ことは負荷電流による出力のレギュレーションが比較的
安定であることを示しており、負荷変動に対する安定化
には極めて有利な制御手段になることがわかる。
In other words, if a variable resistor is connected between point f and ground (between the terminals of capacitor C4) and the current is increased,
Due to the voltage drop caused by the capacitors C1 and C6, the voltage between point f and ground can be significantly reduced. During that time, the voltage between point f and output terminal 0 does not change at all. This shows that the regulation of the output by the load current is relatively stable, and it can be seen that this is an extremely advantageous control means for stabilizing against load fluctuations.

しかも、上記可変抵抗に加わる電圧は出力電圧の1/3
となるため、耐電圧的配慮は極めて容易なものとなる。
Moreover, the voltage applied to the variable resistor is 1/3 of the output voltage.
Therefore, voltage resistance considerations are extremely easy.

さらに、f点及びアース間の電圧降下はコンデンサC1
及びC6による電圧降下であるため、消費電力は極めて
少ない。そして、このコンデンサC1及びC6を小さな
容量のもので構成すれば、出力電圧の変化幅をより小さ
な制御電流で達成できることになる。
Furthermore, the voltage drop between point f and ground is capacitor C1
Since the voltage drop is caused by C6 and C6, power consumption is extremely small. If the capacitors C1 and C6 are configured with small capacitances, the range of change in the output voltage can be achieved with a smaller control current.

実験によれば、コンデンサCI 、C6を100[pF
l、C2,C3,C7,C8を250[pFl 、C4
、C5を1000[pFコとし、入力電圧の振幅Eを3
00[■]、その周波数を20 [kHz]で動作させ
たところ、可変抵抗をωから0.7 [MEGΩ]に変
化させたとき、無     !負荷出力3600[V]
に対して出力電圧は約2900 [V]まで低下した。
According to experiments, capacitors CI and C6 are set to 100 [pF
l, C2, C3, C7, C8 at 250 [pFl, C4
, C5 is 1000 [pF], and the input voltage amplitude E is 3
00 [■], the frequency was 20 [kHz], and when the variable resistance was changed from ω to 0.7 [MEGΩ], nothing! Load output 3600[V]
In contrast, the output voltage decreased to about 2900 [V].

このときのf点及びアース間の電圧は1200 [V]
から500[V]まで低下した。そして、可変抵抗で消
費された電力はわずか0.35 [W]にすぎなかった
The voltage between point f and ground at this time is 1200 [V]
to 500 [V]. The power consumed by the variable resistor was only 0.35 [W].

したがって、第1図のように構成した整流電圧逓倍回路
は、出力端0に現われる出力電圧を抵抗R1及びR2で
分圧して取出し、その検出電圧の変化分を差動増幅器O
P及び基準電源EOにより検出し、その変化分に応じて
トランジスタに流れる電流を制御することにより、簡単
な構成でかつ極めて少ない消費電力で効果的に出力電圧
の変動を抑圧することができる。
Therefore, the rectifier voltage multiplier circuit configured as shown in FIG.
By detecting P and the reference power source EO and controlling the current flowing through the transistor according to the amount of change, it is possible to effectively suppress fluctuations in the output voltage with a simple configuration and extremely low power consumption.

第2図乃至第5図に他の実施例を示す。但し、第2図乃
至第5図において第1図と同一部分には同一符号を付し
て示し、ここでは異なる部分ついて述べる。
Other embodiments are shown in FIGS. 2 to 5. However, in FIGS. 2 to 5, the same parts as in FIG. 1 are denoted by the same reference numerals, and different parts will be described here.

まず、第2図において、トランスTの2次巻線n2の端
子a及びj点間にはコンデンサC11〜C13が直列接
続され、そのC11と012の接続点はf点に接続され
、C12と013との接続点はhに接続される。また、
タップm及び出力端0間にはコンデンサC14,C15
が直列接続され、その014と015の接続点はe点に
接続される。ざらに、端子す及びd点間にはコンデンサ
016が接続され、端子す及びi点間にはコンデンサC
17,C18が直列接続され、そのC17とC18の接
続点は0点に接続される。そして、上記e点には前記抵
抗R3及びトランジスタQからなる電流制御回路が接続
される。
First, in FIG. 2, capacitors C11 to C13 are connected in series between the terminals a and j of the secondary winding n2 of the transformer T, the connection point of C11 and 012 is connected to the f point, and the connection point of C12 and 013 is connected in series. The connection point with is connected to h. Also,
Capacitors C14 and C15 are connected between tap m and output terminal 0.
are connected in series, and the connection point of 014 and 015 is connected to point e. Roughly speaking, a capacitor 016 is connected between terminals S and point d, and a capacitor C is connected between terminals S and point i.
17 and C18 are connected in series, and the connection point between C17 and C18 is connected to point 0. A current control circuit consisting of the resistor R3 and the transistor Q is connected to the point e.

次に、第3因において、トランスTの2次巻線n2には
前記中間タップmの他にこの中間タップmと端子aとの
間にタップa′が設けられ、中間タップmと端子すとの
間にタップb′が設けられている。そして、端子a及び
j点間にはコンデンサC21,C22が直列接続され、
その021と022との接続点はh点に接続される。ま
た、上記端子a′及びe点間にはコンデンサC23が接
続され、中間タップm及び出力端0間にはコンデンサC
24゜C25が直列接続されており、そのC24と02
5の接続点は9点に接続される。ざらに、上記タップb
−及びd点間にはコンデンサC26が接続され、端子す
及び1点間にはコンデンサQ27.028が接続されて
おり、その027と028との接続点は9点に接続され
る6そして、上記f点及びアース間には前記抵抗R3及
びトランジスタQよりなる電流制御回路が接続される。
Next, in the third factor, in addition to the intermediate tap m, the secondary winding n2 of the transformer T is provided with a tap a' between the intermediate tap m and the terminal a. A tap b' is provided between them. Capacitors C21 and C22 are connected in series between terminals a and j,
The connection point between 021 and 022 is connected to point h. In addition, a capacitor C23 is connected between the terminals a' and e, and a capacitor C23 is connected between the intermediate tap m and the output terminal 0.
24°C25 are connected in series, and the C24 and 02
Connection point 5 is connected to point 9. Roughly, tap above b
A capacitor C26 is connected between the - and d points, a capacitor Q27.028 is connected between the terminals 027 and 1, and the connection point between 027 and 028 is connected to the 9th point 6. A current control circuit consisting of the resistor R3 and transistor Q is connected between point f and ground.

次に、第4図において、トランスTの2次巻線n2の端
子a及びj点間にはコンデンサC31〜C33が直列接
続され、その031と032の接続点はe点に接続され
、C32と033との接続点はhに接続される。また、
タップm及び出力端0間にはコンデンサC34,C35
が直列接続され、そのC34と035の接続点はf点に
接続される。さらに、端子す及び1点間にはコンデンサ
C36,C37,C38が直列接続され、そのC36と
037の接続点はd点に接続され、その037とC38
の接続点は0点に接続される。そして、上記f点には前
記抵抗R3及びトランジスタQからなる電流制御回路が
接続される。
Next, in FIG. 4, capacitors C31 to C33 are connected in series between terminals a and j of the secondary winding n2 of the transformer T, and the connection point between 031 and 032 is connected to point e, and the connection point between C32 and The connection point with 033 is connected to h. Also,
Capacitors C34 and C35 are connected between tap m and output terminal 0.
are connected in series, and the connection point between C34 and 035 is connected to point f. Furthermore, capacitors C36, C37, and C38 are connected in series between the terminals and one point, and the connection point between C36 and 037 is connected to point d, and the connection point between 037 and C38 is connected to point d.
The connection point of is connected to the 0 point. A current control circuit consisting of the resistor R3 and the transistor Q is connected to the point f.

また、第5図において、トランスTの2次巻線n2には
タップが設られておらず、ダイオード01〜D6の直列
回路はダイオードD1のアノードが接地され、カソード
が出力端Oに接続される。
In addition, in FIG. 5, the secondary winding n2 of the transformer T is not provided with a tap, and in the series circuit of diodes 01 to D6, the anode of the diode D1 is grounded, and the cathode is connected to the output terminal O. .

そして、前記端子a及びh点間にはコンデンサ041〜
C43が直列接続され、その041と042との接続点
はd点に接続され、C42とC43との接続点はf点に
接続される。また、端子す及び出力端0間にはコンデン
サ044〜046が直列接続され、その044と045
との接続点はe点に接続され、C45と046との接続
点は0点に接続される。ざらに、上記e点には前記抵抗
R3及びトランジスタQからなる電流制御回路が接続さ
れる。
And capacitors 041 to 041 are connected between the terminals a and h.
C43 are connected in series, the connection point between 041 and 042 is connected to point d, and the connection point between C42 and C43 is connected to point f. Further, capacitors 044 to 046 are connected in series between the terminal 0 and the output terminal 0, and the capacitors 044 and 045 are connected in series.
The connection point between C45 and 046 is connected to point e, and the connection point between C45 and 046 is connected to point 0. Roughly speaking, a current control circuit consisting of the resistor R3 and the transistor Q is connected to the point e.

すなわち、第2図及び第3図に示す各整流電圧逓信回路
は、第1図に示した回路に比して電流制御回路にかかる
電圧が低くなるように構成したもので、これによって制
御手段に対する耐電圧的配慮を一層軽減することができ
るものである。
That is, each of the rectifying voltage transmitting circuits shown in FIGS. 2 and 3 is constructed so that the voltage applied to the current control circuit is lower than that of the circuit shown in FIG. This makes it possible to further reduce voltage resistance considerations.

また、第4図及び第5図に示す各整流電圧逓倍回路は、
第1図に示した回路に比して出力のレギュレーションに
関してやや不利なものであるが、e点及びアース間の電
圧を変化させたときe点及び出力端0間の電圧もその間
の逓倍段数に比例して変化が増大するため、より大きな
変化幅を期待できるものである。
In addition, each rectifier voltage multiplier circuit shown in FIGS. 4 and 5 is
Compared to the circuit shown in Figure 1, it is somewhat disadvantageous in terms of output regulation, but when the voltage between point e and the ground is changed, the voltage between point e and output terminal 0 also changes depending on the number of multiplication stages between them. Since the change increases proportionally, a larger range of change can be expected.

尚、上記実施例では、トランスの2次巻線を入力電源と
したが、これは位相的に一致していれば他のいかなる交
流電源に置換えても同様に実施可能であることは言うま
でもない。また、トランスTに設けるタップmは必ずし
も2次巻線n2の中点でなくてもよく、この場合も上記
同様に実施可能である。
In the above embodiment, the secondary winding of the transformer is used as the input power source, but it goes without saying that any other AC power source can be used as long as the phases match. Furthermore, the tap m provided on the transformer T does not necessarily have to be at the midpoint of the secondary winding n2, and in this case, the same implementation as described above is possible.

[発明の効果] 以上詳述したようにこの発明によれば、極めて簡単な回
路構成で効果的な出力電圧の制御が可能となる整流電圧
逓倍回路を提供することができる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to provide a rectifier voltage multiplier circuit that enables effective control of output voltage with an extremely simple circuit configuration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明に係る整流電圧逓倍回路の一実施例を
示す回路図、第2図乃至第5図はそれぞれこの発明に係
る他の実施例を示す回路図である。 A・・・交流電源、■・・・トランス、nl、n2・・
・1次、2次@線、m・・・中間タップ、0−・出力端
、Dl 〜D8−5イ;t−ド、C1〜c8.C21〜
C28,C31〜C38,C41〜c48・・・コンデ
ンサ、R1−R3・・・コンデンサ、OP・・・差動増
幅器、EO・・・基準電源、Q・・・トランジスタ。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図 第4図 第5図
FIG. 1 is a circuit diagram showing one embodiment of a rectifying voltage multiplier circuit according to the invention, and FIGS. 2 to 5 are circuit diagrams showing other embodiments of the invention. A...AC power supply, ■...Transformer, nl, n2...
・Primary, secondary @ line, m... intermediate tap, 0-・output end, Dl ~ D8-5 i; t-do, C1 ~ c8. C21~
C28, C31-C38, C41-c48... Capacitor, R1-R3... Capacitor, OP... Differential amplifier, EO... Reference power supply, Q... Transistor. Applicant's Representative Patent Attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)整流の向きが同一となるように複数の整流素子を
直列接続してなる整流手段と、この整流手段の両端間に
複数個のコンデンサを直列接続すると共にコンデンサの
各接続点を前記所定の整流素子相互間の第1接続点に接
続してなる第1のキャパシタ手段と、前記第1接続点以
外の接続点に交流電圧が印加されるコンデンサを接続し
てなる第2のキャパシタ手段とを有し、前記第1、第2
のキャパシタ手段が前記整流手段の各相互間に対して互
いに重複しないように接続した整流電圧逓倍回路におい
て、前記第1のキャパシタ手段の少なくとも一部に流れ
る電流を制御する電流制御手段を具備したことを特徴と
する整流電圧逓倍回路。
(1) A rectifying means formed by connecting a plurality of rectifying elements in series so that the rectifying direction is the same, and a plurality of capacitors connected in series between both ends of this rectifying means, and connecting each connection point of the capacitors to the above-mentioned predetermined location. a first capacitor means connected to a first connection point between the rectifying elements; and a second capacitor means connected to a capacitor to which an alternating current voltage is applied to a connection point other than the first connection point. and the first and second
A rectifier voltage multiplier circuit in which capacitor means are connected to each of the rectifier means so as not to overlap with each other, further comprising a current control means for controlling a current flowing through at least a part of the first capacitor means. A rectifier voltage multiplier circuit featuring:
(2)前記電流制御手段は前記整流手段の出力に応じて
電流を制御することを特徴とする特許請求の範囲第1項
記載の整流電圧逓倍回路。
(2) The rectifier voltage multiplier circuit according to claim 1, wherein the current control means controls the current according to the output of the rectifier.
JP16751184A 1984-08-10 1984-08-10 Rectified voltage multiplier circuit Pending JPS6146180A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16751184A JPS6146180A (en) 1984-08-10 1984-08-10 Rectified voltage multiplier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16751184A JPS6146180A (en) 1984-08-10 1984-08-10 Rectified voltage multiplier circuit

Publications (1)

Publication Number Publication Date
JPS6146180A true JPS6146180A (en) 1986-03-06

Family

ID=15851035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16751184A Pending JPS6146180A (en) 1984-08-10 1984-08-10 Rectified voltage multiplier circuit

Country Status (1)

Country Link
JP (1) JPS6146180A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165792U (en) * 1986-04-09 1987-10-21
US5044333A (en) * 1989-06-05 1991-09-03 Yamaha Hatsudoki Kabushiki Kaisha Balancing arrangement for internal combustion engine
EP0498350A2 (en) * 1991-02-07 1992-08-12 TEMIC TELEFUNKEN microelectronic GmbH Voltage boosting circuit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62165792U (en) * 1986-04-09 1987-10-21
US5044333A (en) * 1989-06-05 1991-09-03 Yamaha Hatsudoki Kabushiki Kaisha Balancing arrangement for internal combustion engine
EP0498350A2 (en) * 1991-02-07 1992-08-12 TEMIC TELEFUNKEN microelectronic GmbH Voltage boosting circuit
EP0498350A3 (en) * 1991-02-07 1995-03-01 Telefunken Electronic Gmbh Voltage boosting circuit

Similar Documents

Publication Publication Date Title
JPH06133540A (en) Ac-dc converter
JPH07143751A (en) Power circuit
US8619442B2 (en) Boost-buck power factor correction
US5345164A (en) Power factor corrected DC power supply
JPH0731150A (en) Switching power supply
US20040252528A1 (en) Switching power source device
JPS6146180A (en) Rectified voltage multiplier circuit
JP3367539B2 (en) DC power supply
JPH04127875A (en) Power supply
US4590547A (en) Active full-wave rectifier detector circuit
JPH09168281A (en) Dc power source apparatus
JP3027284B2 (en) Switching power supply
JP2984519B2 (en) Switching power supply
JPH079590Y2 (en) Rectifying and smoothing circuit
JP2622325B2 (en) High frequency power supply
KR100259184B1 (en) Error voltage detecting circuit for electronic ballast
JPS6039367A (en) Power supplying system
JPS583579A (en) Transistor inverter
JPS5910946Y2 (en) Quick response high pressure generation circuit
US20060285373A1 (en) Power factor correction circuit
JPH08186982A (en) Dc power supply
JPH019270Y2 (en)
JPH0644316Y2 (en) Power supply
JP3209881B2 (en) Power factor improvement circuit
JPH0324091B2 (en)