JPS6146178B2 - - Google Patents

Info

Publication number
JPS6146178B2
JPS6146178B2 JP15093777A JP15093777A JPS6146178B2 JP S6146178 B2 JPS6146178 B2 JP S6146178B2 JP 15093777 A JP15093777 A JP 15093777A JP 15093777 A JP15093777 A JP 15093777A JP S6146178 B2 JPS6146178 B2 JP S6146178B2
Authority
JP
Japan
Prior art keywords
frequency
corona discharge
alternating
voltage
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15093777A
Other languages
Japanese (ja)
Other versions
JPS5482778A (en
Inventor
Senichi Masuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP15093777A priority Critical patent/JPS5482778A/en
Priority to GB7834853A priority patent/GB2012493B/en
Priority to US05/938,370 priority patent/US4210949A/en
Priority to FR7825125A priority patent/FR2402322A1/en
Priority to DE19782838688 priority patent/DE2838688A1/en
Publication of JPS5482778A publication Critical patent/JPS5482778A/en
Publication of JPS6146178B2 publication Critical patent/JPS6146178B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 発明は固体微粒子、特に低硫黄炭の燃焼により
生ずるフライアツシユやプラスチツク粉体等のご
とく電気抵抗の著しく高い固体微粒子に、逆コロ
ナの妨害作用を受けることなく迅速且つ有効に電
荷を与えて、其れらの静電的処理や集塵を効果的
に行なう事を可能ならしめる為の、新規の粒子荷
電装置に関するものである。
[Detailed Description of the Invention] The present invention is capable of quickly and effectively treating solid particles, particularly solid particles with extremely high electrical resistance, such as fly ash and plastic powder produced by the combustion of low-sulfur coal, without being affected by the interfering effects of reverse corona. The present invention relates to a novel particle charging device for applying a charge to enable effective electrostatic treatment and dust collection of particles.

固体微粒子に工業的に電荷を供与するには、通
常第1図に示したごときコロナ放電用針状または
線状電極1、平板状または円筒状・環状等の対向
電極2、直流電源3等よりなる荷電装置を用いて
直流コロナ放電4を行なわしめ、このコロナ放電
によつて生ずるイオン5の固体微粒子6へのコロ
ナ空間8における衝突・付着現象を利用する方法
が一般に用いられているが、この場合(1)帯電粒子
7はコロナ放電極1から対向電極2に向かう方向
のクーロン力を受けて駆動され、荷電量の大きい
粒子が対向電極9に付着して目的とする作業域1
0には排出されず、荷電量の少ない粒子のみが荷
電装置から排出される、(2)対向電極9は電気抵抗
の高い微粒子層に覆われ、その上に飛来するイオ
ンによつて電荷が蓄積し、微粒子層上の電位が上
昇して絶縁破壊を生じ、ここから逆極性のイオン
を荷電空間8へと放出し、微粒子の電荷を中和減
少せしめるという所謂逆コロナ現象を発生して大
幅な荷電性能低下を生ずる、等という大きな欠点
があつた。
To provide electric charge to solid particles industrially, usually a corona discharge needle-like or linear electrode 1 as shown in FIG. Generally, a method is used in which a DC corona discharge 4 is performed using a charging device, and the collision and adhesion of ions 5 generated by this corona discharge to solid particles 6 in a corona space 8 is utilized. Case (1) The charged particles 7 are driven by the Coulomb force in the direction from the corona discharge electrode 1 toward the counter electrode 2, and particles with a large amount of charge adhere to the counter electrode 9 and reach the target work area 1.
(2) The counter electrode 9 is covered with a fine particle layer with high electrical resistance, and charges are accumulated by the ions flying onto it. However, the electric potential on the fine particle layer rises, causing dielectric breakdown, and ions of opposite polarity are released from this into the charged space 8, causing a so-called reverse corona phenomenon that neutralizes and reduces the electric charge of the fine particles, resulting in a large amount of damage. There were major drawbacks such as a decrease in charging performance.

この第1の欠点を克服するため、本発明者は別
発明「粒子荷電装置」(特許願昭和46年第50087
号)において、例えば第2図に示す如く相互に絶
縁され一定の間隔をへだてて互いに平行に配置せ
る交番電極11,12を設け、該交番電極の各々
に小孔または細隙13,14を設けてそれぞれの
中央に該交番電極から絶縁して放電用第3電極1
5,16を設け、該交番電極11,12間に例え
ば変圧器17の二次巻線端子18,19を介して
交番主電圧を印加、両電極間の荷電空間20に交
番主電界を形成せしめ、更に該放電用第3電極1
5,16に例えば図示のごとく整流器21,2
2、抵抗23,24、コンデンサ25,26と結
合の上、該変圧器17の二次巻線端子27,28
を介して該交番主電圧と同一極性かつ同一周波数
の脈流電圧を供給する方法により、図の例では交
番電極11が負極性の十分高い電圧となつた時に
はこれと第3電極15との間のみに、くり返し火
花放電を発生せしめ(この時12,16間には整
流器22の作用で放電を発生せしめない)、生成
負イオンを荷電空間20内に左方より右方に向つ
て放出せしめて固体微粒子に射突荷電せしめ、次
に主電圧の極性が反転し電極12が負極性の十分
高い電圧となつた時には上述の動作を反転せしめ
て、負イオンを荷電空間20内へ右方より左方に
向かつて放出の上同じく該微粒子に射突荷電せし
め、かくして常に粒子に本例では負の強力な電荷
を与えつつ粒子に働くクーロン力は交番せしめ
て、粒子の電極への付着を防止する方法を提案し
た。
In order to overcome this first drawback, the present inventor developed another invention, "Particle Charging Device" (Patent Application No. 50087, 1972).
For example, as shown in FIG. 2, alternating electrodes 11 and 12 are provided which are insulated from each other and arranged parallel to each other with a certain distance apart, and small holes or slits 13 and 14 are provided in each of the alternating electrodes. Insulated from the alternating electrode, a third electrode 1 for discharge is placed in the center of each electrode.
5 and 16 are provided, and an alternating main voltage is applied between the alternating electrodes 11 and 12, for example, via the secondary winding terminals 18 and 19 of the transformer 17, to form an alternating main electric field in the charged space 20 between the two electrodes. , and further the third electrode for discharge 1
For example, as shown in the figure, rectifiers 21 and 2 are connected to 5 and 16.
2, coupled with resistors 23, 24 and capacitors 25, 26, and secondary winding terminals 27, 28 of the transformer 17;
By supplying a pulsating current voltage having the same polarity and the same frequency as the alternating main voltage through the alternating current main voltage, in the example shown in the figure, when the alternating electrode 11 reaches a sufficiently high voltage of negative polarity, the voltage between the alternating electrode 11 and the third electrode 15 increases. Then, a spark discharge is repeatedly generated (at this time, no discharge is generated between 12 and 16 due to the action of the rectifier 22), and the generated negative ions are released into the charged space 20 from the left to the right. The solid particles are charged by impact, and then when the polarity of the main voltage is reversed and the electrode 12 reaches a sufficiently high voltage of negative polarity, the above operation is reversed and the negative ions are introduced into the charged space 20 from the right to the left. When the particles are emitted in the same direction, the fine particles are charged with an impact charge, thus constantly giving the particles a strong negative charge in this example, and alternating the Coulomb force acting on the particles to prevent the particles from adhering to the electrode. proposed a method.

しかし乍ら本発明は微粒子の交番電極11,1
2への付着による損失は大幅に低減出来るもの
の、その完全な防止は不可能であり、時間と共に
やがては11,12の表面が高抵抗微粒子層に覆
われる様になり、相手方の放電用第3電極から飛
来するイオンの蓄積により上記の逆コロナ障害が
発生するのを防ぐ事はできなかつた。
However, the present invention provides alternating electrodes 11, 1 of fine particles.
Although the loss due to adhesion to 2 can be significantly reduced, it is impossible to completely prevent it, and as time passes, the surfaces of 11 and 12 will eventually become covered with a layer of high-resistance fine particles, and the opposing discharge third It was not possible to prevent the above-mentioned reverse corona damage from occurring due to the accumulation of ions flying from the electrodes.

又おなじく粒子の付着損失を防ぐ目的で本発明
の発明者はいまひとつの別発明「高性能粒子荷電
装置」(特開昭50−52673号公報)において放電用
第3電極15,16としてコロナ電極を用い、こ
れと交番電極11,12との間の間隙13,14
を大きくし、それぞれの交番電極11,12が交
互に交番主電圧の例えば負極性の十分高い電圧と
なつた時にこれらと当該コロナ放電用第3電極と
の間に後者を負とする同一周波数の脈流電圧を該
交番電圧に同期して印加し、当該コロナ放電用第
3電極より交互にコロナ放電、この場合負コロナ
放電を発生せしめ、これによる負イオンを荷電空
間20内に放出供給のうえ、左右に往復せしめて
粒子に射突荷電せしめる方法を提案した。
Similarly, for the purpose of preventing adhesion loss of particles, the inventor of the present invention used corona electrodes as the third discharge electrodes 15 and 16 in another invention, "High Performance Particle Charging Device" (Japanese Unexamined Patent Publication No. 50-52673). gaps 13, 14 between this and the alternating electrodes 11, 12
is increased, and when the respective alternating electrodes 11 and 12 alternately reach a sufficiently high voltage of negative polarity of the alternating main voltage, a voltage of the same frequency with the latter being negative is applied between these and the third electrode for corona discharge. A pulsating current voltage is applied in synchronization with the alternating voltage, and a corona discharge, in this case a negative corona discharge, is generated alternately from the third electrode for corona discharge, and the resulting negative ions are released and supplied into the charged space 20. proposed a method of charging particles by making them bounce back and forth from side to side.

しかし乍らこの場合も交番電極11,12の表
面上に電気抵抗の高い粒子が付着するのが避けら
れず、逆コロナ現象が発生するのを避け得なかつ
た。
However, in this case as well, it was unavoidable that particles with high electrical resistance adhered to the surfaces of the alternating electrodes 11 and 12, and the occurrence of the reverse corona phenomenon was unavoidable.

本発明の目的は上記のすべての欠点を根本的に
改良し、電気抵抗の極めて高い微粒子に有効に電
荷を賦与し得る極めて高性能の粒子荷電装置を提
供するにある。
The object of the present invention is to fundamentally improve all of the above-mentioned drawbacks and to provide an extremely high-performance particle charging device that can effectively impart a charge to fine particles having extremely high electrical resistance.

本発明はこの目的を(1)帯電微粒子の電極への付
着損失を上記交番主電界の周波数を少なくとも50
ヘルツ以上に上げる事によつて大幅に抑制し、ま
た(2)逆コロナの発生は(1)の条件に加えて、該主電
界の周波数の少なくとも2倍以上の周波数を有す
る交流コロナ放電を用いた面状プラズマイオン源
をイオン供給に利用する事により、電極付着微粒
子層上の蓄積電荷をこのプラズマイオン源からの
異極性イオンによつて有効に中和除電することに
より達成する。
The present invention aims to (1) reduce the adhesion loss of charged fine particles to the electrode by increasing the frequency of the alternating main electric field by at least 50%;
(2) In addition to the condition (1), the generation of reverse corona can be significantly suppressed by raising the electric field to a temperature higher than Hertz. By using a planar plasma ion source for ion supply, the charge accumulated on the electrode-attached fine particle layer is effectively neutralized and eliminated by ions of different polarity from the plasma ion source.

(1)については交番電界中で帯電微粒子の振動振
幅が周波数の上昇と共に減少することから、微粒
子の電極への衝突付着を防ぐには該交番主電界の
周波数を上げる必要があり、実際上少なくとも50
ヘルツ以上に選定して初めてその効果が発現する
という実験結果にもとずいている。又(2)について
は逆コロナ防止には2つの条件、すなはち先ずプ
ラズマ発生休止半サイクル中のコロナ放電極上の
粒子層表面電位の時間的上昇が、その絶縁破壊値
に達する前に交番主電圧の極性を反転せしめイオ
ンの飛来をとめる必要があり、このためには該交
番主電圧の周期が長過ぎては不可で、実際上(1)の
条件を満たす必要があること、第2にイオン源の
動作時には豊富な正・負イオンを含むプラズマを
形成する必要があり、そのためには該交番手電圧
の特定極性のピーク値付近で少なくとも1回は正
負に交番するごとき交番電圧(その周波数が該交
番主電圧のそれの少なくとも2倍以上の要あり)
で交流コロナ放電を発生する事が不可欠でこれに
よつて初めて豊富な正・負イオンを含むプラズマ
イオン源が形成出来、有効に該蓄積表電荷を中和
除電して完全に逆コロナを防止できるという実験
結果にもとずいている。
Regarding (1), since the vibration amplitude of charged particles decreases as the frequency increases in an alternating electric field, it is necessary to increase the frequency of the alternating main electric field in order to prevent particles from colliding and adhering to the electrode. 50
This is based on experimental results that show that the effect only appears when the temperature is selected to be above Hertz. Regarding (2), there are two conditions for preventing reverse corona: first, the temporal increase in the particle layer surface potential on the corona discharge electrode during the half cycle of plasma generation and pause, before reaching its dielectric breakdown value, It is necessary to reverse the polarity of the voltage and stop the ions from flying in, and for this purpose, it is impossible if the period of the alternating main voltage is too long, and in practice it is necessary to satisfy the condition (1).Secondly, During operation of the ion source, it is necessary to form a plasma containing abundant positive and negative ions, and for this purpose, an alternating voltage (its frequency must be at least twice that of the alternating mains voltage)
It is essential to generate an alternating current corona discharge, and only then can a plasma ion source containing abundant positive and negative ions be formed, effectively neutralizing and eliminating the accumulated surface charge, and completely preventing reverse corona. This is based on the experimental results.

すなはち本発明による粒子荷電装置は、微粒子
を荷電するための荷電空間を挟む一対の平行面の
双方の上に、それぞれ複数個の互いに平行且つ近
接の高周波コロナ放電を行なう為のコロナ放電極
を相隣る相互に絶縁のうえ配設して一対の面状プ
ラズマ発生部を構成し、該一対の面状プラズマ発
生部を相互に絶縁支持の上、それぞれに属するコ
ロナ放電極のいずれか各一本に接続してこれら一
対の面状プラズマ発生部の間に交番主電圧を印加
し、両者に挟まれた荷電空間に交番主電界を形成
するための、少なくとも50ヘルツ以上の出力周波
数を有する交流主電源を設け、且つこれらのプラ
ズマ発生部が交互に該交番主電圧の特定の極性と
なつた時にのみ、それに属する該コロナ放電極の
相隣るもの同志の間に上記交番主電圧の周波数の
少なくとも2倍以上の周波数を有する高周波電圧
を印加して当該コロナ放電極間に高周波コロナ放
電を発生せしめる為の別の高周波交流電源を設け
たことを特徴とする。
In other words, the particle charging device according to the present invention includes a plurality of corona discharge electrodes for performing high-frequency corona discharge parallel to and close to each other on both sides of a pair of parallel surfaces sandwiching a charging space for charging fine particles. are arranged adjacently and insulated from each other to form a pair of planar plasma generating sections, and the pair of planar plasma generating sections are mutually insulated and supported, and one of the corona discharge electrodes belonging to each It has an output frequency of at least 50 Hz to apply an alternating main voltage between the pair of planar plasma generating parts by connecting them as one, and to form an alternating main electric field in the charged space sandwiched between them. Only when an alternating current main power source is provided, and these plasma generating parts alternately assume a specific polarity of the alternating main voltage, the frequency of the alternating main voltage is changed between adjacent corona discharge electrodes belonging to it. The present invention is characterized in that a separate high-frequency AC power source is provided for applying a high-frequency voltage having a frequency at least twice or more to generate a high-frequency corona discharge between the corona discharge electrodes.

この場合該交流主電源の出力周波数は上記のよ
うに少なくとも50ヘルツ以上に選ぶ必要がある
が、微粒子の電極への付着防止効果をより完全に
発揮せしめるためには、これを100から500ヘルツ
の間に選定するのが望ましい。又該高周波交流電
源の出力周波数は上述のごとく該交流主電源のそ
れの少なくとも2倍以上に選定する必要がある
が、最高度のイオン供給能力と逆コロナ防止効果
を発揮せしめるためには1キロヘルツ以上10キロ
ヘルツ程度までにえらぶのが望ましい。
In this case, the output frequency of the AC main power source must be selected to be at least 50 Hz as described above, but in order to more fully demonstrate the effect of preventing fine particles from adhering to the electrodes, it is necessary to select a frequency of 100 to 500 Hz. It is desirable to select between As mentioned above, the output frequency of the high-frequency AC power supply must be selected to be at least twice that of the AC main power supply, but in order to achieve the highest ion supply capacity and reverse corona prevention effect, it is necessary to select a frequency of 1 kHz. It is desirable to select a range of 10 kilohertz or higher.

又コロナ放電極の形状は丸線状、角線状、スト
リツプ状、刺付きストリツプ状、刺付き棒状等、
適当な如何なる形状のものをも用いる事が出来る
が、常に相隣る放電極の双方が相手に向かつて交
流コロナ放電を発生する様に互いに向き合つた端
縁が尖鋭な角縁状やナイフ刃状等のコロナ放電発
生用端縁であつたり、相手に向かつて鋭いコロナ
放電用突起部列を有するもの等である必要があ
る。そこで複数個のコロナ放電極列の内、最外側
の2本以外のものは、それぞれ其の両側の端縁が
上記のごとくコロナ放電を発生する能力をもつた
形状を具備していなければならない。しかし最外
側の2本についてはそれぞれの外向きの端縁はコ
ロナ放電発生部のない構造とする事が必要であ
る。その理由はこれらの端縁には主電界の大きな
集中が生ずるので、もしこれらが尖鋭なコロナ発
生部を有すると、当該電極列に高周波交流電圧が
印加されていない交番主電圧半周期中にも、ここ
から主電界集中によるコロナ放電が起こり、異極
性のイオンを荷電空間に放出して、荷電効率の大
幅な低下を来たすからである。
The shape of the corona discharge electrode can be round wire, square wire, strip, barbed strip, barbed rod, etc.
Any suitable shape can be used, but a square edge shape or a knife edge shape with sharp edges facing each other so that both adjacent discharge electrodes face each other and generate an alternating current corona discharge are always preferred. It is necessary to have a corona discharge generation edge such as a shape, or a corona discharge generation protrusion row that is sharp toward the other side. Therefore, among the plurality of corona discharge electrode arrays, the edges on both sides of the electrodes other than the outermost two must each have a shape capable of generating corona discharge as described above. However, it is necessary for the outermost two wires to have a structure in which there is no corona discharge generating portion on their respective outward edges. The reason for this is that a large concentration of the main electric field occurs at these edges, so if these have sharp corona-generating parts, even during the half-cycle of the alternating main voltage when no high-frequency alternating voltage is applied to the electrode array. This is because a corona discharge occurs due to the concentration of the main electric field, and ions of different polarity are released into the charged space, resulting in a significant decrease in charging efficiency.

本発明による粒子荷電装置は、上述のごとき特
徴の結果として、(1)微粒子のコロナ放電極への付
着損失が大幅に抑制され、殆ど総ての粒子が荷電
後に作業領域に排出され、その損失がなくなる、
(2)もし電気抵抗の著しく高い粒子が層状にコロナ
放電極の表面上に付着しても、交番主電圧の半サ
イクル毎に相隣るコロナ放電極間に誘起される多
量の正・負イオンを含む高周波コロナ放電による
プラズマから異極性イオンが該粒子層上の蓄積電
荷を有効に中和除電するので、逆コロナの発生が
完全に防止される、というすぐれた作用効果を発
揮するのである。
As a result of the above-mentioned features, the particle charging device according to the present invention has the following advantages: (1) The loss of fine particles adhering to the corona discharge electrode is greatly suppressed, and almost all the particles are discharged into the working area after being charged, reducing the loss. disappears,
(2) Even if particles with extremely high electrical resistance adhere to the surface of the corona discharge electrode in a layered manner, a large amount of positive and negative ions will be induced between adjacent corona discharge electrodes every half cycle of the alternating main voltage. Since ions of different polarity from the plasma generated by the high-frequency corona discharge containing the particles effectively neutralize and eliminate the charges accumulated on the particle layer, the generation of reverse corona is completely prevented, which is an excellent effect.

以下に本発明による粒子荷電装置の構造ならび
に特徴を実施例と図面により、より詳細に説明す
る。
The structure and features of the particle charging device according to the present invention will be explained in more detail below with reference to examples and drawings.

第3図は本発明の一実施例の構成図である。図
において29,30はそれぞれ荷電空間20を挟
んで互いに平行に相対向して絶縁配設された1対
の平行な面状プラズマ発生部で、本例にあつて
は、それぞれ平行な平面上に互いに近接して平行
且つ等間隔に絶縁配設された所の各2組のストリ
ツプ状コロナ放電極31,32,33と34,3
5および36,37,38と39,40とからな
る。この中31,32,33は共通導線41、保
護抵抗42を介して断続的に動作する周波数10キ
ロヘルツの交流電源43と昇圧・絶縁用変圧器4
4より成る一方のコロナ発生用高周波高圧電源4
5の一方の出力端子46に接続されている。又3
4,35は共通導線47、保護抵抗48を介して
該電源45の他方の出力端子49に接続されてい
る。次に36,37,38は共通導線50、保護
抵抗51を介して断続的に動作する周波数10キロ
ヘルツの交流電源52と昇圧・絶縁用変圧器53
より成るいま一方のコロナ発生用高周波高圧電源
54の一方の出力端子55に接続されている。又
39,40は共通導線56、保護抵抗57を介し
て該電源54の他方の出力端子58に接続されて
いる。此れ等のストリツプ状コロナ放電極は、い
ずれもその両側とも鋭く、コロナ発生部を形成し
ているが、最端部の電極31,33及び36,3
8の外側には、これらに接して円筒状の非コロナ
電極59,60,61,62が付加されている。
63は1対の面状プラズマ発生部29,30の間
の荷電空間20に交番主電界を形成するための周
波数500ヘルツの主電界形成用交流高圧電源で交
流電源64と昇圧用変圧器65より成り、その出
力端子66,67はそれぞれ端子42,51と接
続されている。これによつて該面状プラズマ発生
部、29,30間には交番主電圧が印加され、荷
電空間20には500ヘルツの周波数で交番する交
番主電界が形成される。更にいま、出力端子6
6,67が交互に特定の極性、本例では負極性と
成つた時にのみ、その信号が交互に導線68,6
9を介して該交流電源43,52に伝えられ、そ
れぞれの交流電源43,52が交互に該主電圧の
半周期の間動作して周波数10キロヘルツの交番電
圧を発生する様になつている。したがつて、いま
面状プラズマ発生部29が30に対して負極性と
なつた半周期には、29を構成する相隣る2組の
ストリツプ状コロナ放電極31,32,33と3
4,35の間に該コロナ発生用交流高圧電源45
から周波数10キロヘルツの高周波交流高電圧が印
加され、両組の放電極は高周波の交流コロナ放を
行なつて正・負イオンを豊富に供給し、その近傍
にこれに沿つてプラズマ70を面状に形成する。
この主電圧半周期の期間には、空間20内の主電
界は右から左に向かう方向にあるので、その作用
により該プラズマ中より負イオンのみが右方に引
き出され、荷電空間20内を右方に駆動されて走
行し、休止状態にあるプラズマ発生部30の放電
極群36−40に吸収されるが、その間に上方よ
り20に導入された微粒子71に左方から射突し
てこれを荷電する。この半周期には交流電源52
には導線69を介して動作信号が与えられないの
で、交流電源52、したがつて該コロナ発生用交
流高圧電源54はその動作を休止しており、正極
性にある面状プラズマ発生部30を構成する相隣
るストリツプ状コロナ放電極36,37,38と
39,40との間には高周波交流高電圧が印加さ
れず、両組の放電極間には高周波コロナ放電は発
生せず、したがつて該面状プラズマ発生部30に
はプラズマは生じない。その結果ここから正極性
イオンが荷電空間20へ放出され微粒子71に与
えられた負電荷を中和減少させる事はない。
FIG. 3 is a block diagram of an embodiment of the present invention. In the figure, reference numerals 29 and 30 are a pair of parallel planar plasma generating sections that are insulated and parallel to each other and facing each other with the charging space 20 in between. Two sets of strip-shaped corona discharge electrodes 31, 32, 33 and 34, 3 are insulated and arranged close to each other, parallel to each other and at equal intervals.
5, 36, 37, 38 and 39, 40. Among these, 31, 32, 33 are connected to a common conductor 41, an AC power supply 43 with a frequency of 10 kHz that operates intermittently through a protective resistor 42, and a step-up/insulation transformer 4.
One high-frequency high-voltage power supply for corona generation consisting of 4
5 is connected to one output terminal 46 of 5. Also 3
4 and 35 are connected to the other output terminal 49 of the power source 45 via a common conducting wire 47 and a protective resistor 48. Next, 36, 37, and 38 are connected to a common conductor 50, an AC power supply 52 with a frequency of 10 kHz, which operates intermittently through a protective resistor 51, and a step-up/isolation transformer 53.
It is connected to one output terminal 55 of the other high-frequency, high-voltage power source 54 for generating corona. Further, 39 and 40 are connected to the other output terminal 58 of the power source 54 via a common conducting wire 56 and a protective resistor 57. These strip-shaped corona discharge electrodes are sharp on both sides and form a corona generation part, but the electrodes 31, 33 and 36, 3 at the extreme end
Cylindrical non-corona electrodes 59, 60, 61, and 62 are added to the outside of 8 and in contact with these.
Reference numeral 63 is an AC high-voltage power source for forming a main electric field with a frequency of 500 Hz for forming an alternating main electric field in the charged space 20 between the pair of planar plasma generating parts 29 and 30, which is connected to an AC power source 64 and a step-up transformer 65. The output terminals 66 and 67 are connected to the terminals 42 and 51, respectively. As a result, an alternating main voltage is applied between the planar plasma generating parts 29 and 30, and an alternating main electric field alternating at a frequency of 500 hertz is formed in the charging space 20. Furthermore, now output terminal 6
Only when the signals 6 and 67 alternately assume a specific polarity, in this example negative polarity, the signal is alternately transmitted to the conductors 68 and 6.
9 to the alternating current power supplies 43 and 52, and each alternating current power supply 43 and 52 operates alternately during a half cycle of the main voltage to generate an alternating voltage with a frequency of 10 kilohertz. Therefore, in the half period in which the planar plasma generating section 29 has a negative polarity with respect to the polarity 30, two adjacent sets of strip-shaped corona discharge electrodes 31, 32, 33 and 3 constituting the plasma generating section 29
Between 4 and 35, the AC high voltage power supply 45 for generating the corona
A high frequency alternating current high voltage with a frequency of 10 kilohertz is applied from to form.
During the period of this main voltage half cycle, the main electric field in the space 20 is in the direction from right to left, so only negative ions are drawn out from the plasma to the right, and the charged space 20 moves to the right. The particles 71 introduced into the plasma generator 20 from above collide with them from the left and are absorbed by the discharge electrode group 36-40 of the plasma generator 30 which is in a resting state. be charged. During this half cycle, the AC power supply 52
Since no operating signal is applied to the AC power source 52 through the conductor 69, the AC power source 52, and thus the corona generation AC high voltage power source 54, are inactive, and the planar plasma generating section 30, which is in the positive polarity, is not operated. No high-frequency AC high voltage was applied between the adjacent strip-shaped corona discharge electrodes 36, 37, 38 and 39, 40, and no high-frequency corona discharge occurred between the two sets of discharge electrodes. Therefore, no plasma is generated in the planar plasma generating section 30. As a result, positive polarity ions are emitted from here into the charged space 20 and do not neutralize and reduce the negative charges imparted to the fine particles 71.

次に主電圧の極性が反転し、29が正、30が
負の極性となつた半周期には、上記の動作も完全
に反転し、今度は負極性にある面状プラズマ発生
部30のみが面状プラズマ72を形成して荷電空
間へ左方に向つて負イオンを放出するが、この半
周期には面状プラズマ発生部29はプラズマ形成
動作を休止する。かくして荷電空間20内の電界
は500ヘルツの周波数で左右方向に交番するが、
そのなかでは常に単極性イオン、本例では負極性
イオンのみが左右に往復し、微粒子6に両側から
交互に射突してこれを理論的に定まる飽和電荷量
まで迅速に荷電する。十分な電荷を帯びた微粒子
7は500ヘルツの周波数、したがつて極めて小さ
な振幅で振動しつつ下方に落下し、殆ど電極に衝
突付着することなく下方の作業域10に排出供給
される。この場合両方の面状プラズマ発生部2
9,30を構成する各放電極の表面上には時間と
共に微粒子が僅かずつ堆積して粒子層を形成し、
その電気抵抗が著しく高い場合には、休止期間に
ある面状プラズマ発生部の放電極上の粒子層表面
に負イオンが蓄積して表面電位を上昇せしめる。
しかし、主電圧の周波数が500ヘルツと十分高
く、その周期が十分短いので、粒子層が絶縁破壊
を起こす前に主電圧の極性が反転し、次の半周期
では当該電極群が高周波コロナ放電を発生するの
で、ここから供給される豊富な正イオンによつて
該表面負電荷が完全に中和され、逆コロナを生ず
る事が無く、これから正極性イオンが放出されて
粒子電荷を中和減少せしめる事が無い。それゆえ
微粒子の電気抵抗がいかに高くても常に極めて高
い電荷がこれに有効に賦与されるのである。
Next, the polarity of the main voltage is reversed, and in the half cycle when 29 becomes positive and 30 becomes negative polarity, the above operation is also completely reversed, and this time only the planar plasma generating part 30 with negative polarity is activated. Although a planar plasma 72 is formed and negative ions are emitted leftward into the charged space, the planar plasma generating section 29 suspends the plasma forming operation during this half cycle. Thus, the electric field within the charged space 20 alternates from side to side at a frequency of 500 hertz;
Among them, unipolar ions, in this example only negative polarity ions, always reciprocate from side to side and bombard the fine particles 6 alternately from both sides, rapidly charging them to a theoretically determined saturation charge amount. The sufficiently electrically charged particles 7 fall downward while vibrating at a frequency of 500 hertz and therefore with an extremely small amplitude, and are discharged and supplied to the working area 10 below without colliding with or adhering to the electrodes. In this case, both planar plasma generating parts 2
Over time, fine particles are deposited little by little on the surface of each discharge electrode constituting the discharge electrodes 9 and 30, forming a particle layer.
If the electrical resistance is extremely high, negative ions accumulate on the surface of the particle layer on the discharge electrode of the planar plasma generating section during the rest period, raising the surface potential.
However, since the frequency of the main voltage is sufficiently high at 500 Hz and its period is sufficiently short, the polarity of the main voltage is reversed before the particle layer causes dielectric breakdown, and in the next half cycle, the electrode group generates a high-frequency corona discharge. Since the surface negative charges are completely neutralized by the abundant positive ions supplied from here, no reverse corona is generated, and positive polar ions are released from this to neutralize and reduce the particle charges. There's nothing wrong. Therefore, no matter how high the electrical resistance of the particles is, an extremely high charge is always effectively imparted to them.

本発明に使用するコロナ放電極は単に図3ある
いは図4aに示す様なストリツプ状電極のみなら
ず、図4bに示す様にストリツプ状電極の両側の
端縁に一定の間隔でコロナ放電を行なうための多
数の突起部73を付したもの、あるいはその両面
を図4cに示す様に絶縁層74で覆つて該突起部
73の先端のみが側方に露出する様にしたもの、
図4dに示す様に棒状導体75の両側面上に一定
の間隔をもつて針状のコロナ放電部76を設けた
もの等、適当な任意のものを用いる事が出来る。
又本発明に使用する主電圧の波形としては、正弦
波あるいは適当な任意の波形を用いうるが、特に
矩形波とするのが荷電速度を向上出来て好適であ
る。
The corona discharge electrode used in the present invention is not only a strip-shaped electrode as shown in FIG. 3 or 4a, but also a corona discharge electrode that performs corona discharge at regular intervals on both edges of the strip-shaped electrode as shown in FIG. 4b. A type with a large number of protrusions 73, or a type with both sides covered with an insulating layer 74 so that only the tips of the protrusions 73 are exposed laterally, as shown in FIG.
Any suitable material can be used, such as a rod-like conductor 75 with needle-like corona discharge portions 76 provided at regular intervals on both sides of the rod-like conductor 75, as shown in FIG. 4d.
Further, as the waveform of the main voltage used in the present invention, a sine wave or any other appropriate waveform can be used, but a rectangular wave is particularly preferred since it can improve the charging speed.

本発明の粒子荷電装置による粒子荷電量の実測
値の1例を示すと次のとうりで、極めて短い時間
内にほぼ理論的飽和値に近い値が得られ、本発明
の優れた荷電性能が実証されている。
An example of the measured value of the particle charge amount by the particle charging device of the present invention is as follows: a value close to the theoretical saturation value was obtained within an extremely short time, demonstrating the excellent charging performance of the present invention. Proven.

粒子直径2a=26ミクロン 理論飽和電荷量Qmax=0.0124ピコクーロン 実測平均電荷量Q=0.0120ピコクーロン (Q/Qmax)x100=99% 荷電時間T=50ミリセカンド Particle diameter 2a = 26 microns Theoretical saturation charge Qmax=0.0124 picocoulomb Actual average charge Q = 0.0120 picocoulomb (Q/Qmax)x100=99% Charging time T = 50 milliseconds

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は直流コロナ放電を利用する従来型の粒
子荷電装置の構成図、第2図は本発明者が既に提
案せる交番主電界と火花放電を組み合わせた粒子
荷電装置の構成図、第3図は本発明による粒子荷
電装置の一実施例の構成図、第4図は面状プラズ
マ発生部を構成するコロナ放電極の幾つかの構成
例を示す図である。 図において、1……針状コロナ放電極、2……
対向電極、3……直流高圧電源、6……微粒子、
11,12……交番電極、13,14……小孔、
15,16……火花放電極、17……変圧器、2
0……荷電空間、29,30……面状プラズマ発
生部、31−40……ストリツプ状コロナ放電
極、45,54……プラズマ発生用高周波交流高
圧電源、59−62……円筒状非コロナ電極、6
4……交番主電界形成用交流高圧主電源、70,
72……面状プラズマ、73……突起部、74…
…絶縁層、75……棒状導体、76……針状コロ
ナ放電部。
Fig. 1 is a block diagram of a conventional particle charging device that uses DC corona discharge, Fig. 2 is a block diagram of a particle charging device that combines an alternating main electric field and spark discharge, which the inventor has already proposed, and Fig. 3 4 is a block diagram of one embodiment of the particle charging device according to the present invention, and FIG. 4 is a diagram showing several configuration examples of corona discharge electrodes constituting a planar plasma generating section. In the figure, 1...acicular corona discharge electrode, 2...
Counter electrode, 3...DC high voltage power supply, 6...Particles,
11, 12... Alternating electrode, 13, 14... Small hole,
15, 16...Spark discharge electrode, 17...Transformer, 2
0... Charge space, 29, 30... Planar plasma generation section, 31-40... Strip-shaped corona discharge electrode, 45, 54... High frequency AC high voltage power supply for plasma generation, 59-62... Cylindrical non-corona electrode, 6
4...AC high voltage main power supply for forming an alternating main electric field, 70,
72...Planar plasma, 73...Protrusion, 74...
...Insulating layer, 75... Rod-shaped conductor, 76... Needle-shaped corona discharge part.

Claims (1)

【特許請求の範囲】[Claims] 1 微粒子を荷電するための荷電空間を挟む一対
の平行面の双方の上に、それぞれ複数個の互いに
平行且つ近接の高周波コロナ放電を行なう為のコ
ロナ放電極を、相隣る相互に絶縁のうえ配設して
一対の面状プラズマ発生部を構成し、該一対の面
状プラズマ発生部を相互に絶縁支持の上、それぞ
れに属するコロナ放電極のいずれか各一本に接続
してこれら一対の面状プラズマ発生部の間に交番
主電圧を印加し、両者に挟まれた荷電空間に交番
主電界を形成するための、少なくとも50ヘルツ以
上の出力周波数を有する交流主電源を設け、且つ
これらのプラズマ発生部が交互に該交番主電圧の
特定の極性となつた時にのみ、それに属する該コ
ロナ放電極の相隣るもの同志の間に上記交番主電
圧の周波数の少なくとも2倍以上の周波数を有す
る高周波電圧を印加して、当該コロナ放電極間に
高周波コロナ放電を発生せしめる為の、出力周波
数が該交流主電源の出力周波数の少なくとも2倍
以上である別の高周波交流電源を設けたことを特
徴とする所の粒子荷電装置。
1. On both sides of a pair of parallel planes sandwiching a charging space for charging microparticles, a plurality of corona discharge electrodes for performing high-frequency corona discharge parallel to each other and close to each other are installed and insulated from each other. A pair of planar plasma generating sections are arranged, and the pair of planar plasma generating sections are supported insulated from each other and connected to any one of the corona discharge electrodes belonging to each. An AC main power source with an output frequency of at least 50 hertz or more is provided to apply an alternating main voltage between the planar plasma generation parts and form an alternating main electric field in the charged space sandwiched between the two. Only when the plasma generating parts alternately assume a specific polarity of the alternating main voltage, the corona discharge electrodes belonging thereto have a frequency that is at least twice the frequency of the alternating main voltage between adjacent ones. A separate high-frequency AC power source whose output frequency is at least twice the output frequency of the AC main power source is provided for applying a high-frequency voltage to generate a high-frequency corona discharge between the corona discharge electrodes. Particle charging device.
JP15093777A 1977-09-05 1977-12-15 Particle charger Granted JPS5482778A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP15093777A JPS5482778A (en) 1977-12-15 1977-12-15 Particle charger
GB7834853A GB2012493B (en) 1977-09-05 1978-08-29 Device for electrically charging particles
US05/938,370 US4210949A (en) 1977-09-05 1978-08-31 Device for electrically charging particles
FR7825125A FR2402322A1 (en) 1977-09-05 1978-08-31 DEVICE FOR ELECTRICALLY CHARGING PARTICLES
DE19782838688 DE2838688A1 (en) 1977-09-05 1978-09-05 ARRANGEMENT FOR ELECTRIC CHARGING OF PARTICLES

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15093777A JPS5482778A (en) 1977-12-15 1977-12-15 Particle charger

Publications (2)

Publication Number Publication Date
JPS5482778A JPS5482778A (en) 1979-07-02
JPS6146178B2 true JPS6146178B2 (en) 1986-10-13

Family

ID=15507665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15093777A Granted JPS5482778A (en) 1977-09-05 1977-12-15 Particle charger

Country Status (1)

Country Link
JP (1) JPS5482778A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT372301B (en) * 1980-05-06 1983-09-26 Fleck Carl M Dr ELECTROSTATIC AIR FILTER
JPS5719046A (en) * 1980-07-08 1982-02-01 Toyo Kenmazai Kogyo Kk Method of and apparatus for classifying powder particles utilizing plasma
JPS5719047A (en) * 1980-07-08 1982-02-01 Toyo Kenmazai Kogyo Kk Classification of powder particles utilizing plasma
JP3578646B2 (en) * 1998-11-05 2004-10-20 日立造船株式会社 Plastic sorting equipment
KR102027039B1 (en) 2017-12-08 2019-09-30 한국로봇융합연구원 Object auto arrangement system using image processing algorithm
KR102027040B1 (en) 2017-12-08 2019-09-30 한국로봇융합연구원 Object auto arrangement system using image processing algorithm

Also Published As

Publication number Publication date
JPS5482778A (en) 1979-07-02

Similar Documents

Publication Publication Date Title
US4210949A (en) Device for electrically charging particles
WO1999007475A1 (en) Electrostatic precipitator
GB1582194A (en) Pulse-charging type electric dust collecting apparatus
US3981695A (en) Electronic dust separator system
US1992974A (en) Electrostatic precipitator
US2440455A (en) Charging suspended particles
JPS6146178B2 (en)
US5949635A (en) Ionizer for static electricity neutralization
US2000020A (en) Method of electrical precipitation of suspended particles from gases
JPS6219033B2 (en)
JPS6348590B2 (en)
US4488885A (en) Electrostatic charging apparatus
JPS5828186A (en) Spark gap with several pairs of parallel electrodes
JPS58902B2 (en) Electrode for particle charging device
JPS6046517B2 (en) particle charging device
JP2001203093A (en) Static charge elimination method and static eliminator
JPS6342753A (en) Electrifying method for material and device therefor
JP2003020206A (en) Apparatus for generating ozone
JPS6033543B2 (en) Pulse charging type two-stage electrostatic precipitator
Masuda et al. Particle charging with travelling wave corona discharge
SU1126327A1 (en) Method of removing dust from electrostatic precipitator electrodes
SU1307609A1 (en) Static charge eliminator
JP5069495B2 (en) Ion balance adjustment circuit and static eliminator
JPH0160301B2 (en)
KR100489557B1 (en) A method of static elimination from charged body, and its apparatus