JPS6146169B2 - - Google Patents

Info

Publication number
JPS6146169B2
JPS6146169B2 JP57005339A JP533982A JPS6146169B2 JP S6146169 B2 JPS6146169 B2 JP S6146169B2 JP 57005339 A JP57005339 A JP 57005339A JP 533982 A JP533982 A JP 533982A JP S6146169 B2 JPS6146169 B2 JP S6146169B2
Authority
JP
Japan
Prior art keywords
hydrogen sulfide
tower
absorption liquid
absorption
regenerated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57005339A
Other languages
Japanese (ja)
Other versions
JPS58124522A (en
Inventor
Kaoru Isaki
Shinya Takeyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP57005339A priority Critical patent/JPS58124522A/en
Publication of JPS58124522A publication Critical patent/JPS58124522A/en
Publication of JPS6146169B2 publication Critical patent/JPS6146169B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、硫化水素含有ガスの脱硫方法に関す
るものである。詳しく述べると、レドツクス系触
媒を用いて硫化水素含有ガスから硫化水素を除去
する方法に関するものである。 従来、コークス炉ガス、石油分解ガス、天然ガ
ス、工場廃ガス等の硫化水素含有ガスを湿式で処
理して硫化水素を除去し、硫黄を回収する方法と
しては、いわゆる「レドツクス系触媒」を用いる
方法が知られ、その代表的なものとしては、ピク
リン酸を使用するフマツクス法、アントラキノン
スルホン酸塩を使用するストレツトフオード法、
ナフトキノンスルホン酸塩を使用するタカハツク
ス法等がある。これらの方法は、いずれも前記レ
ドツクス系触媒溶液と硫化水素含有ガスとを接触
させて硫化水素を吸収除去し、硫化水素を吸収し
た触媒溶液は空気等の分子状酸素含有ガスで再生
し、その再生液は再び触媒液として循環使用され
るものである。 その反応機構は、例えばフマツクス法によりコ
ークス炉ガスを処理する場合、つぎのとおりであ
る。 まず、吸収塔においてコークス炉ガスは、
NH3、H2SおよびHCNがNH4HSおよびNH4CNと
して反応吸収され、NH4HSは系内に添加してい
るピクリン酸の触媒作用によりSを分離する。こ
のSは吸収塔で生成する(NH42Sx+1の分離Sと
して消費され、NH4CNと反応してNH4SCNを生
成する。 NH3+H2SNH4HS NH3+HCN→NH4CN NH4HS+R・NO+H2O→ NH4OH+S+R・NHOH NH4HS+NH3+Sx→(NH42Sx+1 NH4CN+(NH42Sx+1→ NH4SCN+(NH42Sx 触媒作用により酸素を放出したピクリン酸は、
再生塔で空気中の酸素を供給されて再生される。 2NH4HS+202→(NH42S2O3 R・NHOH+1/202→R・NO+H2O (NH42Sx+S→(NH42Sx+1 しかして、コークス炉は製鉄所の大型化に伴な
つ大規模なものとなり、その結果、コークス炉ガ
スの脱硫装置も大型化することになる。このよう
な大規模なコークス炉は、該コークス炉で製造さ
れるコークスを使用する溶鉱炉の操業度に応じて
操業されるので、前記脱硫装置にかかる負荷は、
前記溶鉱炉ないしコークス炉の操業度に左右され
て変動する。この場合、脱硫装置の規模を前記コ
ークス炉の最大操業度に応じて建設すれば充分な
脱硫効果が得られるが、通常はそれ以下で操業さ
れるので、最大操業度の場合に応じて脱硫装置を
建設することは、建設費を増大させるだけでなく
動力費をも増大させるので、コスト高となる欠点
があつた。一方、このような通常の操業度にあわ
せて脱硫装置を建設すれば、コークス炉の操業度
が上つて脱硫装置に対する負荷が増大した場合、
所定の脱硫効果が得られないという欠点があつ
た。 本発明は、このような従来法の諸欠点を解消す
るためになされたもので、硫化水素含有ガスを吸
収塔においてレドツクス系触媒を含有するアルカ
リ性吸収液と接触させて硫化水素を該吸収液に吸
収させ、この硫化水素を吸収した吸収液を再生塔
において分子状酸素含有ガスで接触酸化して硫黄
を遊離させ、ついでこのようにして得られる再生
吸収液を前記吸収塔へ循環使用してなる硫化水素
含有ガスの脱硫方法において、前記再生塔で得ら
れる再生吸収液の一部を該再生塔へ循環すること
を特徴とする硫化水素含有ガスの脱硫方法であ
る。 本発明において使用されるレドツクス系触媒と
しては、ピクリン酸、アントラキノンスルホン酸
塩、ナフトキノンスルホン酸塩、ナフトハイドロ
キノンスルホン酸塩等があり、好ましくはピクリ
ン酸である。 つぎに、図面を参照しながら、レドツクス系触
媒としてピクリン酸を使用してコークス炉ガスの
脱硫を行なう場合を例に挙げて本発明を説明す
る。すなわち、図面に示すように、導管1より吸
収塔2の下部に導入されたコークス炉ガスは、導
管3より塔頂に供給されるピクリン酸のアンモニ
ア水溶液よりなる吸収液と向流接触されて、硫化
水素、アンモニア、青酸等が吸収除去されたの
ち、吸収塔2の上部の導管4より系外に排出され
る。硫化水素、アンモニア、青酸等を吸収した吸
収液は塔底より導管5により排出され、消費され
た量のピクリン酸を、例えば後述するように抜き
出される再生吸収液の量に相当する水とともに導
管6より補給したのち、ポンプ7を経て導管8よ
り再生塔9の上部に供給される。 再生塔9において、吸収液は導管10より供給
される分子状酸素含有ガス、例えば空気と向流接
触させることにより再生されて硫黄を遊離する。
残余の分子状酸素含有ガスは、塔頂より導管11
を経て系外へ排出される。再生された吸収液は塔
底より導管12を経て排出され、ポンプ13、導
管14,3を経て吸収塔2の塔頂に供給される。
しかして、前記吸収液は全量が吸収塔2へ循環さ
れることなく、その一部は導管15より取出され
て、吸収塔2から再生塔9へ送られる導管8内の
硫化水素等を吸収した吸収液と混合されて再生塔
9へ循環される。しかしながら、このような循環
を繰り返すことにより再生吸収液中に遊離した硫
黄が蓄積してくるので、その一部は導管16より
排出させて脱硫二次処理工程へ送られる。 上記方法において吸収塔2へ供給されるアルカ
リとしてはアンモニア、水酸化ナトリウム等があ
るが、好ましくはアンモニアである、特にコーク
ス炉ガスの脱硫を行なう場合には該ガスに由来す
るアンモニアのために、特に添加する必要はな
い。 再生塔9において必要な酸素量は、吸収塔の硫
化水素1Kg当り空気2Nm3以上であり、好ましく
は10〜30Nm3とすることがよい。導管16より排
出される遊離硫黄を含有する再生吸収液は系内循
環量の0.05〜0.5容量%であり、元素状硫黄を回
収するかあるいは燃焼または硫酸を製造する等の
脱硫液の処理に供される。 前記のように系外に排出されなかつた大部分の
再生吸収液のうち、10〜50容量%、好ましくは20
〜40容量%は導管15より分離されて再生塔へ循
環使用される。このように、再生吸収液の一部を
再生塔へ循環するのは、吸収塔の循環量を低下さ
せても、再生効率がよい場合には脱硫率に問題な
いことを実験的に確め、吸収塔への循環量を低下
させてその一部を再生塔へ循環したところ、通常
の循環量と比べ再生塔での空気との接触時間が長
くなり、塔高をその分だけ高くしたのと同じ効果
が得られ、しかも、いつたん再生された液が再度
循環され、未再生部分の再生を助け、希釈効果と
相まつて再生速度を早めることを見出したためで
ある。さらに、再生雰囲気にとつても、吸収塔へ
の循環量が低下した分だけアンモニアの循環量が
低下し、希釈効果によつて再生塔におけるアンモ
ニア濃度が低下するので、再生の妨害を防止する
ことができる。したがつて、前記のごとき再生吸
収液の一部を再生塔へ循環することによる再生効
率の向上、ひいては脱硫効率の向上は、これらの
相乗効果によるものであるといえる。 つぎに、実施例を上げて本発明方法をさらに詳
細に説明する。 実施例 図面に示す装置において、導管1よりコークス
炉ガス(COG;硫化水素4g/Nm3、アンモニア
10g/Nm3含有)を吸収塔2に供給し、導管3か
ら供給される再生吸収液(アンモニア7g/)
1.5×10-2m3/Nm3-COGと向流接触させて硫化水
素を吸収除去し、導管4より脱流コークス炉ガス
を排出させた。導管5より排出される吸収液(ア
ンモニア12.0g/含有)は再生塔9の上部に供
給した。再生塔9に空気0.1Nm3/Nm3-COGを供
給して吸収液を再生し、塔頂より導管11を経て
空気を排出させた。再生塔9の塔底より導管1
2,14を経て再生吸収液(アンモニア7g/
含有)2.2×10-2m3/Nm3-COGを排出させ、2/3
を導管3により吸収塔2に供給し、残りの1/3は
導管15より導管8内の吸収液と混合し、その結
果得られた混合吸収液(アンモニア7.0g/含
有)2.2×10-2m3/Nm3-COGを再生塔9へ循環し
た。なお、導管16より再生吸収液を少量ずつを
排出させ、脱硫液処理工程へ強襲した。この場合
の硫化水素除去率は95%であつた。 なお、再生吸収液の一部を再生塔9へ循環する
ことなくその全量を導管3より吸収塔2へ供給し
たとはの硫化水素除去率は92%であつた。 また、再生吸収液を再生塔へ循環させる割合を
変えて、再生吸収液のアンモニア濃度および酸化
還元電位(O、R、P、)を測定したところ、つ
ぎの結果を得た。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for desulfurizing hydrogen sulfide-containing gas. Specifically, the present invention relates to a method for removing hydrogen sulfide from a hydrogen sulfide-containing gas using a redox catalyst. Conventionally, so-called "redox catalysts" are used to wet-process hydrogen sulfide-containing gases such as coke oven gas, petroleum cracking gas, natural gas, and factory waste gas to remove hydrogen sulfide and recover sulfur. Methods are known, and representative ones include the fumux method using picric acid, the strep hood method using anthraquinone sulfonate,
There is the Takahatsu method using naphthoquinone sulfonate. In both of these methods, hydrogen sulfide is absorbed and removed by bringing the redox catalyst solution into contact with a hydrogen sulfide-containing gas, and the catalyst solution that has absorbed hydrogen sulfide is regenerated with a molecular oxygen-containing gas such as air. The regenerated liquid is recycled and used again as a catalyst liquid. The reaction mechanism, for example when coke oven gas is treated by the Fumax method, is as follows. First, in the absorption tower, coke oven gas is
NH 3 , H 2 S and HCN are reacted and absorbed as NH 4 HS and NH 4 CN, and S is separated from NH 4 HS by the catalytic action of picric acid added to the system. This S is consumed as separated S from (NH 4 ) 2 Sx +1 produced in the absorption tower, and reacts with NH 4 CN to produce NH 4 SCN. NH 3 +H 2 SNH 4 HS NH 3 +HCN→NH 4 CN NH 4 HS+R・NO+H 2 O→ NH 4 OH+S+R・NHOH NH 4 HS+NH 3 +Sx→(NH 4 ) 2 Sx +1 NH 4 CN+(NH 4 ) 2 Sx +1 → NH 4 SCN + (NH 4 ) 2 Sx Picric acid, which released oxygen through catalytic action,
It is regenerated by being supplied with oxygen from the air in a regeneration tower. 2NH 4 HS+20 2 →(NH 4 ) 2 S 2 O 3 R・NHOH+1/20 2 →R・NO+H 2 O (NH 4 ) 2 Sx+S→(NH 4 ) 2 Sx + 1However, the coke oven is As the size increases, the scale becomes larger, and as a result, the desulfurization equipment for coke oven gas also becomes larger. Such a large-scale coke oven is operated according to the operating rate of the blast furnace that uses the coke produced in the coke oven, so the load on the desulfurization equipment is as follows:
It varies depending on the operating rate of the blast furnace or coke oven. In this case, if the scale of the desulfurization equipment is constructed according to the maximum operation rate of the coke oven, a sufficient desulfurization effect can be obtained, but since it is usually operated at a smaller scale, the desulfurization equipment should be constructed according to the maximum operation rate. Not only does construction cost increase, but power costs also increase, which has the disadvantage of increasing costs. On the other hand, if the desulfurization equipment is constructed in accordance with the normal operation rate, if the coke oven operation rate increases and the load on the desulfurization equipment increases,
The drawback was that the desired desulfurization effect could not be obtained. The present invention was made in order to eliminate the various drawbacks of the conventional method, and involves bringing hydrogen sulfide-containing gas into contact with an alkaline absorption liquid containing a redox catalyst in an absorption tower, thereby transferring hydrogen sulfide to the absorption liquid. The absorbent liquid that has absorbed hydrogen sulfide is catalytically oxidized with a molecular oxygen-containing gas in a regeneration tower to liberate sulfur, and the regenerated absorbent thus obtained is then recycled to the absorption tower. A method for desulfurizing a gas containing hydrogen sulfide, characterized in that a part of the regenerated absorption liquid obtained in the regeneration tower is circulated to the regeneration tower. Examples of the redox catalyst used in the present invention include picric acid, anthraquinone sulfonate, naphthoquinone sulfonate, and naphthohydroquinone sulfonate, with picric acid being preferred. Next, the present invention will be described with reference to the drawings, taking as an example a case where coke oven gas is desulfurized using picric acid as a redox catalyst. That is, as shown in the drawing, the coke oven gas introduced into the lower part of the absorption tower 2 through the conduit 1 is brought into countercurrent contact with an absorption liquid consisting of an ammonia aqueous solution of picric acid, which is supplied to the top of the tower through the conduit 3. After hydrogen sulfide, ammonia, hydrocyanic acid, etc. are absorbed and removed, they are discharged from the system through a conduit 4 at the top of the absorption tower 2. The absorption liquid that has absorbed hydrogen sulfide, ammonia, hydrocyanic acid, etc. is discharged from the bottom of the tower through a conduit 5, and the consumed amount of picric acid is transferred to the conduit along with water corresponding to the amount of regenerated absorption liquid to be extracted as described later. After being replenished from 6, it is supplied to the upper part of the regeneration tower 9 via a pump 7 and a conduit 8. In the regeneration tower 9, the absorption liquid is regenerated by bringing it into countercurrent contact with a molecular oxygen-containing gas, such as air, supplied through a conduit 10 to liberate sulfur.
The remaining molecular oxygen-containing gas is transferred from the top of the column to conduit 11.
After that, it is discharged from the system. The regenerated absorption liquid is discharged from the bottom of the tower through a conduit 12, and is supplied to the top of the absorption tower 2 through a pump 13 and conduits 14 and 3.
However, the entire amount of the absorption liquid was not circulated to the absorption tower 2, and a part of it was taken out from the conduit 15 and absorbed hydrogen sulfide, etc. in the conduit 8, which was sent from the absorption tower 2 to the regeneration tower 9. It is mixed with the absorption liquid and circulated to the regeneration tower 9. However, by repeating such circulation, free sulfur accumulates in the regenerated absorption liquid, and a part of it is discharged from the conduit 16 and sent to the secondary desulfurization treatment process. In the above method, the alkali supplied to the absorption tower 2 includes ammonia, sodium hydroxide, etc., but preferably ammonia. Especially when desulfurizing coke oven gas, because of the ammonia derived from the gas, There is no particular need to add it. The amount of oxygen required in the regeneration tower 9 is 2 Nm 3 or more of air per 1 kg of hydrogen sulfide in the absorption tower, preferably 10 to 30 Nm 3 . The regenerated absorption liquid containing free sulfur discharged from the conduit 16 is 0.05 to 0.5% by volume of the amount circulated in the system, and is used to recover elemental sulfur or to treat the desulfurization liquid, such as combustion or production of sulfuric acid. be done. 10 to 50% by volume, preferably 20
~40% by volume is separated via conduit 15 and recycled to the regeneration tower. In this way, part of the regenerated absorption liquid is circulated to the regeneration tower because it has been experimentally confirmed that even if the circulation amount of the absorption tower is reduced, there is no problem with the desulfurization rate as long as the regeneration efficiency is good. When the circulation rate to the absorption tower was reduced and a part of it was circulated to the regeneration tower, the contact time with air in the regeneration tower became longer compared to the normal circulation rate, and the height of the tower was increased by that amount. This is because it was discovered that the same effect can be obtained, and in addition, once the regenerated liquid is circulated again, it helps regenerate the unregenerated portion, and together with the dilution effect, the regeneration speed is increased. Furthermore, regarding the regeneration atmosphere, the amount of ammonia circulated to the absorption tower is reduced by the amount that is circulated to the absorption tower, and the ammonia concentration in the regeneration tower is reduced due to the dilution effect, so interference with regeneration can be prevented. I can do it. Therefore, it can be said that the above-mentioned improvement in regeneration efficiency by circulating a portion of the regenerated absorption liquid to the regeneration tower, and in turn, the improvement in desulfurization efficiency, is due to these synergistic effects. Next, the method of the present invention will be explained in more detail with reference to Examples. Example In the apparatus shown in the drawing, coke oven gas (COG; hydrogen sulfide 4g/Nm 3 , ammonia
10g/Nm 3 containing) is supplied to the absorption tower 2, and the regenerated absorption liquid (containing ammonia 7g/) is supplied from the conduit 3.
It was brought into countercurrent contact with 1.5×10 −2 m 3 /Nm 3 -COG to absorb and remove hydrogen sulfide, and deflow coke oven gas was discharged from conduit 4. The absorption liquid (containing 12.0 g/ammonia) discharged from the conduit 5 was supplied to the upper part of the regeneration tower 9. 0.1 Nm 3 /Nm 3 -COG of air was supplied to the regeneration tower 9 to regenerate the absorption liquid, and the air was discharged from the top of the tower through the conduit 11. Conduit 1 from the bottom of regeneration tower 9
2, 14, regenerated absorption liquid (ammonia 7g/
Containing) 2.2×10 -2 m 3 /Nm 3 -COG is discharged and 2/3
is supplied to the absorption tower 2 through conduit 3, and the remaining 1/3 is mixed with the absorption liquid in conduit 8 through conduit 15, resulting in a mixed absorption liquid (containing 7.0 g of ammonia) 2.2×10 -2 m 3 /Nm 3 -COG was circulated to regeneration tower 9. Incidentally, the regenerated absorption liquid was discharged little by little from the conduit 16 to attack the desulfurization liquid treatment process. The hydrogen sulfide removal rate in this case was 95%. Note that when a part of the regenerated absorption liquid was not circulated to the regeneration tower 9 and the entire amount was supplied to the absorption tower 2 through the conduit 3, the hydrogen sulfide removal rate was 92%. Furthermore, the ammonia concentration and oxidation-reduction potential (O, R, P,) of the regenerated absorbent were measured by changing the rate at which the regenerated absorbent was circulated to the regeneration tower, and the following results were obtained. 【table】

【図面の簡単な説明】[Brief explanation of the drawing]

図面は、本発明方法の一実施例を示すフローシ
ートである。 2……吸収塔、9……再生塔、12……再生吸
収液排出導管、15……再生吸収液循環導管。
The drawing is a flow sheet showing one embodiment of the method of the present invention. 2...Absorption tower, 9...Regeneration tower, 12...Regenerated absorption liquid discharge conduit, 15...Regenerated absorption liquid circulation conduit.

Claims (1)

【特許請求の範囲】 1 硫化水素含有ガスを吸収塔においてレドツク
ス系触媒を含有するアルカリ性吸収液と接触させ
て硫化水素を該吸収液に吸収させ、この硫化水素
を吸収した吸収液を再生塔において分子状酸素含
有ガスで接触酸化して硫黄を遊離させ、ついでこ
のようにして得られる再生吸収液を前記吸収塔へ
循環使用してなる硫化水素含有ガスの脱硫方法に
おいて、前記再生塔で得られる再生吸収液の一部
を該再生塔へ循環することを特徴とする硫化水素
含有ガスの脱硫方法。 2 再生塔へ循環される再生吸収液は吸収塔へ供
給されるべき量の10〜50容量%である特許請求の
範囲第1項に記載の方法。 3 レツドクス系触媒はピクリン酸である特許請
求の範囲第1項または第2項に記載の方法。 4 アルカリはアンモニアである特許請求の範囲
第1項ないし第3項のいずれか一つに記載の方
法。 5 硫化水素含有ガスはコークス炉ガスである特
許請求の範囲第1項ないし第4項のいずれか一つ
に記載の方法。
[Claims] 1. Hydrogen sulfide-containing gas is brought into contact with an alkaline absorption liquid containing a redox catalyst in an absorption tower to absorb hydrogen sulfide into the absorption liquid, and the absorption liquid that has absorbed hydrogen sulfide is brought into contact with an alkaline absorption liquid containing a redox catalyst in an absorption tower. In a method for desulfurizing a hydrogen sulfide-containing gas, the hydrogen sulfide-containing gas is catalytically oxidized with a molecular oxygen-containing gas to liberate sulfur, and then the regenerated absorption liquid thus obtained is recycled to the absorption tower. A method for desulfurizing a hydrogen sulfide-containing gas, comprising circulating a portion of the regenerated absorption liquid to the regeneration tower. 2. The method according to claim 1, wherein the regenerated absorption liquid recycled to the regeneration tower is 10 to 50% by volume of the amount to be supplied to the absorption tower. 3. The method according to claim 1 or 2, wherein the redox catalyst is picric acid. 4. The method according to any one of claims 1 to 3, wherein the alkali is ammonia. 5. The method according to any one of claims 1 to 4, wherein the hydrogen sulfide-containing gas is coke oven gas.
JP57005339A 1982-01-19 1982-01-19 Desulfurization of hidrogen sulfide containing gas Granted JPS58124522A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57005339A JPS58124522A (en) 1982-01-19 1982-01-19 Desulfurization of hidrogen sulfide containing gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57005339A JPS58124522A (en) 1982-01-19 1982-01-19 Desulfurization of hidrogen sulfide containing gas

Publications (2)

Publication Number Publication Date
JPS58124522A JPS58124522A (en) 1983-07-25
JPS6146169B2 true JPS6146169B2 (en) 1986-10-13

Family

ID=11608461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57005339A Granted JPS58124522A (en) 1982-01-19 1982-01-19 Desulfurization of hidrogen sulfide containing gas

Country Status (1)

Country Link
JP (1) JPS58124522A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103007712B (en) * 2012-12-12 2015-01-14 北京城市排水集团有限责任公司 Low-consumption efficient separated wet type desulfurization system

Also Published As

Publication number Publication date
JPS58124522A (en) 1983-07-25

Similar Documents

Publication Publication Date Title
US4076621A (en) Chelate oxidation of hydrogen sulfide in sour water
US4147756A (en) Combustion gas scrubbing system
KR100599882B1 (en) Desulfurization for simultaneous removal of hydrogen sulfide and sulfur dioxide
GB2077249A (en) Removing carbon oxysulphide from gas streams
US3959452A (en) Process for removing hydrogen sulfide from contaminated gas
US4525338A (en) Method for removal of hydrogen sulfide
JPH1060449A (en) Purification of coke oven gas
US5139753A (en) Continuous process for mass transfer of a liquid reagent with two different gases
CN112107983A (en) Hydrogen peroxide desulfurization process
US3822339A (en) Method for removing sulfur dioxide from the exhaust of a combustion furnace
CN102019141A (en) Process for purifying tail gas containing hydrothion by using liquid phase catalytic oxidation method
US3953577A (en) Process for purifying gases containing HCN
JP3248956B2 (en) Exhaust gas treatment method
CN102380399A (en) Mixed catalyst and method for catalytic purification of waste gas containing hydrogen phosphide and hydrogen sulfide
JPH06228573A (en) Treatment of tail gas in coal gasification plant
JPS6146169B2 (en)
JPS6010773B2 (en) Removal of hydrogen sulfide from gas
JP7196575B2 (en) Method for detoxifying exhaust gas containing sulfur dioxide
JP2000102719A (en) Treatment of waste gas and device therefor
EP1156867B1 (en) Method for conversion of hydrogen sulfide to elemental sulfur
JP3786786B2 (en) Flue gas desulfurization method
JP2001348346A (en) Method for purifying methane fermentation gas
JP2002284510A (en) Method for recovering sulfuric acid of waste gas treatment system and device for recovering sulfuric acid
CN108970353B (en) Comprehensive desulfurization and denitrification method for catalytic flue gas and ammonia-containing acid gas
JP4266267B2 (en) Exhaust gas treatment method and apparatus