JPS6146138B2 - - Google Patents

Info

Publication number
JPS6146138B2
JPS6146138B2 JP52028784A JP2878477A JPS6146138B2 JP S6146138 B2 JPS6146138 B2 JP S6146138B2 JP 52028784 A JP52028784 A JP 52028784A JP 2878477 A JP2878477 A JP 2878477A JP S6146138 B2 JPS6146138 B2 JP S6146138B2
Authority
JP
Japan
Prior art keywords
detector
radiation
subject
diagnostic apparatus
fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52028784A
Other languages
Japanese (ja)
Other versions
JPS53114377A (en
Inventor
Kyoto Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP2878477A priority Critical patent/JPS53114377A/en
Publication of JPS53114377A publication Critical patent/JPS53114377A/en
Publication of JPS6146138B2 publication Critical patent/JPS6146138B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Measurement Of Radiation (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Description

【発明の詳細な説明】 本発明は、被検体の同一断層面上における多方
向からの放射線投影データを得、それに基いて前
記被検体の断層像を再構成するコンピユータ断層
法(Computerized Tomography〜CT)を適用
したコンピユータ断層診断装置(以下単に「CT
装置」と称する)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention uses computerized tomography (CT), which obtains radiation projection data from multiple directions on the same tomographic plane of a subject and reconstructs a tomographic image of the subject based on the data. CT
(referred to as "device").

CT装置において、放射線源から実質的に扇状
を呈し、被検体の断層部位を覆い得る拡角の放射
線ビームを発生させ且つこれに対応する検出器を
設けて、放射線源−検出器を被検体に対して回転
のみさせることにより前記断層部位についての多
方向からの投影データ(プロジエクシヨンデー
タ)を得る方式を用いたものは俗に第3世代の
CT装置と呼ばれている。このようなCT装置にお
ける一般的な投影方式の例を第1図に示す。第1
図においても撮像可能領域を円Q、円Qの中心を
Q0、円Qに内包される被検体をS、扇状の放射
線ビーム(フアンビーム)を発生する放射線源を
B、放射線ビームの扇状の拡がり角をα、1次元
位置分解能を有する検出器をDで示してある。一
般に、被検体Sは撮像可能領域を示す円Qに内包
され、この円Qはαなる拡がり角を有する放射線
ビームに包含される必要がある。投影データを得
るにあたつては放射線源Bと検出器Dは円Qを挾
んで対向し、且つこれら放射線源B、検出器Dは
共に点Q0を中心とする円周上を一体となつて回
転する。この結果、被検体Sに関し、断層像の作
成に必要な多方向からの投影データを検出器Dに
て得ることができる。
In a CT apparatus, a radiation source generates a radiation beam with a wide angle that is substantially fan-shaped and can cover a tomographic region of a subject, and a corresponding detector is provided, and the radiation source-detector is connected to the subject. On the other hand, the method that uses only rotation to obtain projection data from multiple directions (projection data) about the tomographic region is commonly referred to as the third generation.
It is called a CT device. An example of a general projection method used in such a CT apparatus is shown in FIG. 1st
In the figure, the imageable area is circle Q, and the center of circle Q is
Q 0 , S is the subject enclosed in circle Q, B is the radiation source that generates a fan-shaped radiation beam (fan beam), α is the fan-shaped spread angle of the radiation beam, and D is the detector with one-dimensional position resolution. It is shown. Generally, the subject S is included in a circle Q indicating an imageable region, and this circle Q needs to be included in a radiation beam having a divergence angle α. When obtaining projection data, radiation source B and detector D face each other with circle Q in between, and both radiation source B and detector D are integrated on the circumference centered on point Q0. and rotate. As a result, the detector D can obtain projection data regarding the subject S from multiple directions necessary for creating a tomographic image.

ところで、従来、上記検出器Dは、図示の如く
実質的にそれぞれ独立した放射線検知機能を有す
る放射線検知素子D1,D2…Doを複数個、等間隔
に配列して構成されていた。
By the way, conventionally, the detector D has been constructed by arranging a plurality of radiation detection elements D 1 , D 2 , . . .

ところが、例えば第2図において、円S1の内部
を被検体すると、撮像領域の中心に位置する点P1
の画像再構成に寄与する検知素子は検出器Dの中
央位置Daに位置する検知素子のみである。ま
た、図示S2上の任意の点例えば点P2の画像再構成
に寄与する検知素子は検出器Dの範囲Dbに含ま
れるすべての検知素子である。そして、円S1上の
任意の点例えば点P3の画像再構成に寄与する検知
素子は検出器Dの範囲Dcに含まれるすべての検
知素子である。
However, in FIG. 2, for example, if the object is inside the circle S1 , the point P1 located at the center of the imaging area
The only sensing element that contributes to image reconstruction is the sensing element located at the central position D a of the detector D. Furthermore, all the sensing elements included in the range D b of the detector D are the sensing elements that contribute to the image reconstruction of any point on the diagram S 2 , for example, the point P 2 . The sensing elements that contribute to the image reconstruction of any point on the circle S1 , for example, the point P3 , are all the sensing elements included in the range Dc of the detector D.

又、第3図において、円S1の内部を被検体とす
ると、検出器Dの中央位置Ddに位置する検知素
子は円S1の内側部すべての部分(被検体全体)の
画像再構成に寄与する。また、検出器Dの図示位
置Deに位置する検知素子は円S1と円S2に挾まれ
た図示斜線部分の画像再構成に寄与する。そし
て、検出器Dの図示位置Dfに位置する検知素子
は円S1の外周上の部分の画像再構成にしか寄与し
ない。
In addition, in Fig. 3, if the inside of the circle S1 is the subject, the detection element located at the center position Dd of the detector D reconstructs the image of all the parts inside the circle S1 (the entire subject). Contribute to Further, the sensing element located at the illustrated position D e of the detector D contributes to image reconstruction of the hatched area sandwiched between the circle S 1 and the circle S 2 . The sensing element located at the illustrated position D f of the detector D contributes only to the image reconstruction of the portion on the outer periphery of the circle S 1 .

以上の点から、被検体断層面の再構成画像の全
体の画質は検出器Dの周辺部の検知素子群に比し
て、中央部の検知素子群により得られた投影デー
タによつてより大きく左右されることがわかる。
すなわち、検出器Dにおける中央部の検知素子群
は周辺部に比べてより重要であるということがで
きる。
From the above points, the overall image quality of the reconstructed image of the tomographic plane of the object is higher due to the projection data obtained by the detection element group in the center than the detection element group in the peripheral part of detector D. You can see that it depends.
That is, it can be said that the sensing element group in the central part of the detector D is more important than the peripheral part.

そこで、本発明においては、上記第3世代の
CT装置において、扇状の放射線ビームの拡がり
角の中心部領域について、周辺部領域より小さな
角度間隔で投影データを得る構成とし、再構成画
像の画質の向上を図つたCT装置を提供すること
を目的としている。
Therefore, in the present invention, the third generation
An object of the present invention is to provide a CT device configured to obtain projection data at smaller angular intervals for the central region of the spread angle of a fan-shaped radiation beam than for the peripheral regions, and to improve the image quality of reconstructed images. It is said that

以下図面を参照して本発明の一実施例を説明す
る。
An embodiment of the present invention will be described below with reference to the drawings.

第4図においてBは放射線源、Dは検出器であ
る。検出器Dは例えばこの場合放射線の強度を電
気信号に変換し得るSi(シリコン)、CdTe(カド
ミウムテルル)等の半導体素子を用いた検出器セ
ルCを検知素子とし、この検出器セルCを図示の
如く中央部の検出器セルCの幅寸法をより小さ
く、周辺部に行くに従つて順次大きく形成しこれ
らを一次元的に複数個密に配列した構成とする。
従つてこの検出器Dは扇状の放射線ビームの拡が
り角の中心領域に関して、該拡がり角の周辺領域
に比して実質的により小さな角度間隔で放射線投
影データを検出することになる。
In FIG. 4, B is a radiation source and D is a detector. For example, in this case, the detector D uses a detector cell C using a semiconductor element such as Si (silicon) or CdTe (cadmium telluride) that can convert the intensity of radiation into an electrical signal, and this detector cell C is shown in the figure. As shown in the figure, the width of the detector cells C in the central portion is made smaller and gradually increases toward the periphery, and a plurality of these are densely arranged one-dimensionally.
This detector D therefore detects radiation projection data at substantially smaller angular intervals with respect to the central region of the divergence of the fan-shaped radiation beam than in the peripheral region of the divergence.

このような構成とすることにより、次のような
効果が得られる。
With such a configuration, the following effects can be obtained.

従来、検出素子が等間隔に配列されていたた
め、投影放射線の通路の分布が実質的に撮像領域
の中心部に比べ周辺部になる程密になつていたの
に対し、上述の如く検出器セルの間隔をビーム拡
がり角の中心部に近い程狭くすることによつて放
射線通路の分布を撮影領域の全面において実質的
に均一とすることもでき撮像領域全面にわたつて
空間分解能のより均質な画像を得ることが可能と
なる。
Conventionally, since the detection elements were arranged at equal intervals, the path distribution of the projection radiation was substantially denser at the periphery than at the center of the imaging area. By narrowing the interval closer to the center of the beam divergence angle, the distribution of radiation paths can be made substantially uniform over the entire imaging area, resulting in an image with more homogeneous spatial resolution over the entire imaging area. It becomes possible to obtain.

また、一般的に再構成画像の空間解像力を向上
させるために検出器Dの構成する検知素子数を増
加させることが有効な手段であることは知られて
いるが、検知素子数を余り多くすると、検知素子
毎に用意されるべき増幅器の増加等の電子回路の
複雑化を伴ない、また撮像時間の増加あるいは
A/D変換、データ転送の高速化が要求される、
演算処理能力の増強が要求される等の不都合を生
ずるおそれがある。これに対し、上述の如く構成
して再構成画像の画質に与える影響の大きい中央
部領域の検出器セルCの数を周辺部に比して増加
させることにより、検知素子即ち検出器セルCの
総数を増加させることなく、極めて効率良く再構
成画像全体の空間分解能の向上をはじめとして、
検出器セルの特性の不均一に起因して発生しがち
な同心円状の偽像を目立ちにくくする等、再構成
画像の画質の実質的な向上を達成できる。また、
中央部の検出器セルCの間隔を更に密して撮像領
域中でも特に重要度の高い中央部の空間分解能を
一層向上させることもできる。
Additionally, it is generally known that increasing the number of sensing elements in detector D is an effective means of improving the spatial resolution of reconstructed images, but if the number of sensing elements is too large, , which necessitates the complication of electronic circuits such as an increase in the number of amplifiers that must be prepared for each sensing element, and also requires an increase in imaging time or faster A/D conversion and data transfer.
This may lead to inconveniences such as requiring an increase in arithmetic processing capacity. In contrast, by configuring as described above and increasing the number of detector cells C in the central region, which has a large influence on the image quality of the reconstructed image, compared to the peripheral region, the number of detector cells C can be increased. In addition to improving the spatial resolution of the entire reconstructed image extremely efficiently without increasing the total number of images,
It is possible to substantially improve the image quality of reconstructed images, such as by making concentric ring artifacts that tend to occur due to non-uniform characteristics of detector cells less noticeable. Also,
It is also possible to further improve the spatial resolution of the central portion, which is particularly important in the imaging region, by further spacing the detector cells C in the central portion.

尚、本発明は上記し且つ図面に示す実施例にの
み限定されることなく、その要旨を変更しない範
囲内で種々変形して実施できる。
It should be noted that the present invention is not limited to the embodiments described above and shown in the drawings, but can be implemented with various modifications without changing the gist thereof.

例えば、上記実施例では、中央部から周辺部に
かけて順次検出器セルCの間隔が大きくなるよう
にして検出器Dを構成したが、より簡単に構成す
べく例えば中央部から周辺部までを複数段階に分
け、複数個ずつ段階的に検出器Dの間隔を変化さ
せるようにしても良く、また、検出素子の配置の
密度以外の手段、例えば検知素子に対する結線上
の手段等を用いて投影データの実質的なサンプリ
ング角度間隔を異ならしめるようにしても良い。
For example, in the above embodiment, the detector D is configured such that the interval between the detector cells C gradually increases from the center to the periphery, but in order to simplify the structure, Alternatively, the distance between the detectors D may be changed stepwise by a plurality of detectors, and the projection data may be changed by using means other than the density of the arrangement of the detecting elements, for example, by means of wiring to the detecting elements. The actual sampling angle intervals may be made different.

以上述べたように、本発明によれば、第3世代
のCT装置において、扇状の放射線ビームの拡が
り角の中心部領域について、周辺部領域より小さ
な角度間隔で投影データを得る構成となし、再構
成画像の画質が著しく向上するCT装置を提供す
ることができる。
As described above, according to the present invention, in the third generation CT apparatus, projection data is obtained for the central region of the fan-shaped radiation beam spread angle at smaller angular intervals than for the peripheral region, and the projection data is reproduced. It is possible to provide a CT apparatus in which the image quality of constituent images is significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はいわゆる第3世代のCT装置における
撮像方法を示す図、第2図及び第3図は従来の
CT装置における問題点を説明するための図、第
4図は本発明の一実施例の構成を説明するための
図である。 B……放射線源、D……検出器、C……検出器
セル。
Figure 1 is a diagram showing the imaging method in the so-called 3rd generation CT device, and Figures 2 and 3 are diagrams showing the conventional imaging method.
FIG. 4 is a diagram for explaining problems in the CT apparatus, and is a diagram for explaining the configuration of an embodiment of the present invention. B... Radiation source, D... Detector, C... Detector cell.

Claims (1)

【特許請求の範囲】 1 実質的に扇状を呈する放射線を発生する扇状
放射線源と、この扇状放射線源からの放射線を検
知するための放射線検出器とをそれぞれ被検体に
対して回転させることにより前記被検体の同一断
層面上における多方向からの放射線投影データを
得て、該放射線投影データに基き前記被検体の断
層像を再構成するコンピユータ断層診断装置にお
いて、中央部の検出器セルの幅寸法を、周辺部の
検出器セルの幅寸法よりも小さく形成しこれらを
一次元的に複数個密に配列した構成の検出器を具
備したことを特徴とするコンピユータ断層診断装
置。 2 特許請求の範囲第1項の記載のコンピユータ
断層診断装置において、検出器セルを周辺部に行
くに従つて連続的に順次大きく形成したことを特
徴とするコンピユータ断層診断装置。 3 特許請求の範囲第1項の記載のコンピユータ
断層診断装置において、検出器セルを周辺部に行
くに従つて段階的に順次大きく形成したことを特
徴とするコンピユータ断層診断装置。
[Scope of Claims] 1. By rotating a fan-shaped radiation source that generates substantially fan-shaped radiation and a radiation detector for detecting radiation from this fan-shaped radiation source with respect to the subject, In a computerized tomography diagnostic apparatus that obtains radiation projection data from multiple directions on the same tomographic plane of a subject and reconstructs a tomographic image of the subject based on the radiation projection data, the width dimension of a central detector cell A computerized tomography diagnostic apparatus comprising a detector configured to have a width smaller than the width of a detector cell in a peripheral portion and a plurality of detector cells arranged one-dimensionally and densely. 2. A computer tomography diagnostic apparatus as set forth in claim 1, characterized in that the detector cells are formed in a continuous manner so as to become larger toward the periphery. 3. A computer tomography diagnostic apparatus according to claim 1, characterized in that the detector cells are formed to gradually become larger toward the periphery.
JP2878477A 1977-03-16 1977-03-16 Computer tomographic diagnostic equipment Granted JPS53114377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2878477A JPS53114377A (en) 1977-03-16 1977-03-16 Computer tomographic diagnostic equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2878477A JPS53114377A (en) 1977-03-16 1977-03-16 Computer tomographic diagnostic equipment

Publications (2)

Publication Number Publication Date
JPS53114377A JPS53114377A (en) 1978-10-05
JPS6146138B2 true JPS6146138B2 (en) 1986-10-13

Family

ID=12258035

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2878477A Granted JPS53114377A (en) 1977-03-16 1977-03-16 Computer tomographic diagnostic equipment

Country Status (1)

Country Link
JP (1) JPS53114377A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061946A (en) * 2001-08-27 2003-03-04 Shimadzu Corp Ct apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6129339A (en) * 1984-07-19 1986-02-10 株式会社島津製作所 X-ray ct apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003061946A (en) * 2001-08-27 2003-03-04 Shimadzu Corp Ct apparatus
JP4654551B2 (en) * 2001-08-27 2011-03-23 株式会社島津製作所 CT equipment

Also Published As

Publication number Publication date
JPS53114377A (en) 1978-10-05

Similar Documents

Publication Publication Date Title
US9389320B2 (en) Radiation detector, and radiation imaging apparatus provided with detector
US9818182B2 (en) X-ray CT device
US20070205367A1 (en) Apparatus and method for hybrid computed tomography imaging
US6792068B1 (en) Computed tomography device with a multi-line detector system
JP4280018B2 (en) X-ray computed tomography system
JP4623785B2 (en) CT equipment
JPS6146138B2 (en)
US20050161609A1 (en) X-ray detector module for spectrally resolved measurements
CN210697663U (en) Body model for CT annular artifact correction
JP4551612B2 (en) Computed tomography equipment
GB2052207A (en) Positron emission transaxial tomography apparatus
JP4250795B2 (en) X-ray CT system
JPH08606A (en) X-ray ct device
JP7282933B2 (en) Systems and methods for mitigating channel trace triggering in x-ray detectors
JP7505899B2 (en) Radiation detector and radiation diagnostic device
US11428825B2 (en) Methods and systems for uniform CT detector heat distribution
JP7486939B2 (en) X-ray detector and X-ray CT device
JPH0452700Y2 (en)
JPH0551110B2 (en)
JPS61159180A (en) Collimator of ect device
JPS60144682A (en) Collimator for ring type ect device
JPS63193086A (en) Pet apparatus
JPS59222134A (en) Computer tomographic apparatus
JPS6336775B2 (en)
JPH0630923A (en) X-ray ct apparatus