JPS6146047B2 - - Google Patents

Info

Publication number
JPS6146047B2
JPS6146047B2 JP7246980A JP7246980A JPS6146047B2 JP S6146047 B2 JPS6146047 B2 JP S6146047B2 JP 7246980 A JP7246980 A JP 7246980A JP 7246980 A JP7246980 A JP 7246980A JP S6146047 B2 JPS6146047 B2 JP S6146047B2
Authority
JP
Japan
Prior art keywords
metal layer
gold
silver
semiconductor wafer
antimony alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7246980A
Other languages
Japanese (ja)
Other versions
JPS56169326A (en
Inventor
Setsuo Hiraoka
Keishiro Yonezawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Home Electronics Ltd
Original Assignee
NEC Home Electronics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Home Electronics Ltd filed Critical NEC Home Electronics Ltd
Priority to JP7246980A priority Critical patent/JPS56169326A/en
Publication of JPS56169326A publication Critical patent/JPS56169326A/en
Publication of JPS6146047B2 publication Critical patent/JPS6146047B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Die Bonding (AREA)

Description

【発明の詳細な説明】 この発明は半導体装置の製造方法に関し、特に
キヤリヤのライフタイムキラーを拡散した半導体
ウエーハに対するオーミツク電極の形成方法の改
良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and more particularly to an improvement in a method for forming an ohmic electrode on a semiconductor wafer in which a carrier lifetime killer is diffused.

トランジスタ、ダイオード、サイリスタ等の半
導体装置において、スイツチング速度を大きくす
るためにキヤリヤのライフタイムキラーを拡散す
ることは良く知られている。例えば、エピタキシ
ヤルプレーナ型スイツチングダイオードは第1図
に示すような構造を有する。図において、1は
N+型のサブストレートウエーハ、2はN-型のエ
ピタキシヤル成長層、3はP型領域、4はPN-
合、5は酸化膜等の絶縁膜、6は金蒸着膜、7は
金・アンチモン合金蒸着膜、8は銀電極層、8は
銀のバンプ電極であり、全体にキヤリヤのライフ
タイムキラー10が拡散されている。
In semiconductor devices such as transistors, diodes, and thyristors, it is well known to diffuse carrier lifetime killers in order to increase the switching speed. For example, an epitaxial planar switching diode has a structure as shown in FIG. In the figure, 1 is
N + type substrate wafer, 2 is an N - type epitaxial growth layer, 3 is a P type region, 4 is a PN - junction, 5 is an insulating film such as an oxide film, 6 is a gold vapor deposited film, 7 is gold An antimony alloy vapor deposited film, 8 a silver electrode layer, 8 a silver bump electrode, and carrier lifetime killer 10 is diffused throughout.

この種のダイオードは次のようにして製造され
ている。まず、N型不純物であるアンチモン
(Sb)を1016〜1017atoms/cm3程度の濃度にドープ
したN+型シリコンサブストレート1を用意する
(第2図)。このN+型サブストレート1上に、N
型不純物としてリン(P)を1014〜1015atoms/cm3
程度にドープしたN-型エピタキシヤル成長層2
を形成して、N+N-型半導体ウエーハ11を製造
する(第3図)。この半導体ウエーハ11の表裏
両面にそれぞれ絶縁膜5,12を形成し、表面の
絶縁膜5に周知のフオトエツチングにより窓孔5
aを形成し、この窓孔5aからN-型エピタキシ
ヤル成長層2内にP型不純物としてボロン(B)
を1017atoms/cm3以上の濃度に選択拡散してP型領
域3およびPN-接合4を形成する(第4図)。次
に、裏面の絶縁膜12を除去し、金蒸着膜13を
形成して熱処理を施して、半導体ウエーハ11中
にライフタイムキラーとして金10を拡散する
(第5図)。こののち、N+型サブストレート1の
裏面を所定寸法だけ研磨除去して、半導体ウエー
ハ11の厚さを所定寸法に調整し、さらに絶縁膜
5にコンタクト用の窓孔5bを形成する(第6
図)。次に、半導体ウエーハ11の表面全体に金
蒸着膜6を形成するとともに、裏面全体に金・ア
ンチモン合金蒸着膜7を形成する。こののち、表
面の金蒸着膜6を所定パターンに形成し、裏面の
金・アンチモン合金蒸着膜7上にメツキにより銀
電極層8を形成する(第8図)。次に、この半導
体ウエーハ11の裏面をワツクス14によつて石
英板15に貼り付け、メツキ液中で銀板をメツキ
電源の正極に、また銀電極層8をメツキ電源の負
極に接続して、表面の金蒸着膜6上に銀のバンプ
電極9を形成する(第9図)。しかるのち、ワツ
クス14を溶解して半導体ウエーハ11を石英板
15から剥離し、図示一点鎖線個所から切断分離
する(第10図)。すると、第1図のようなダイ
オードが得られる。
This type of diode is manufactured as follows. First, an N + type silicon substrate 1 doped with antimony (Sb), which is an N type impurity, to a concentration of about 10 16 to 10 17 atoms/cm 3 is prepared (FIG. 2). On this N + type substrate 1, N
Phosphorus (P) as type impurity is 10 14 to 10 15 atoms/cm 3
Moderately doped N - type epitaxial growth layer 2
An N + N - type semiconductor wafer 11 is manufactured by forming the N + N - type semiconductor wafer 11 (FIG. 3). Insulating films 5 and 12 are formed on the front and back surfaces of this semiconductor wafer 11, respectively, and window holes 5 are formed in the insulating film 5 on the front surface by well-known photoetching.
boron (B) as a P-type impurity is formed in the N - type epitaxial growth layer 2 from this window hole 5a.
is selectively diffused to a concentration of 10 17 atoms/cm 3 or higher to form a P-type region 3 and a PN - junction 4 (FIG. 4). Next, the insulating film 12 on the back surface is removed, a gold vapor deposited film 13 is formed, and heat treatment is performed to diffuse gold 10 as a lifetime killer into the semiconductor wafer 11 (FIG. 5). Thereafter, the back surface of the N + type substrate 1 is polished away by a predetermined dimension, the thickness of the semiconductor wafer 11 is adjusted to a predetermined dimension, and a contact window hole 5b is formed in the insulating film 5 (sixth
figure). Next, a gold vapor deposited film 6 is formed on the entire front surface of the semiconductor wafer 11, and a gold/antimony alloy vapor deposited film 7 is formed on the entire back surface. Thereafter, the gold vapor deposited film 6 on the front surface is formed in a predetermined pattern, and the silver electrode layer 8 is formed by plating on the gold/antimony alloy vapor deposited film 7 on the back surface (FIG. 8). Next, the back side of this semiconductor wafer 11 is attached to a quartz plate 15 with wax 14, and the silver plate is connected to the positive electrode of the plating power source in a plating solution, and the silver electrode layer 8 is connected to the negative electrode of the plating power source. A silver bump electrode 9 is formed on the gold vapor-deposited film 6 on the surface (FIG. 9). Thereafter, the wax 14 is melted, the semiconductor wafer 11 is peeled off from the quartz plate 15, and the semiconductor wafer 11 is separated from the quartz plate 15 by cutting along the dashed line shown in the figure (FIG. 10). Then, a diode as shown in FIG. 1 is obtained.

なお、表面のP型領域3上には金蒸着膜6を形
成するのに対し、裏面のN+型サブストレート1
の裏面には金・アンチモン合金蒸着膜7を形成す
るのは次の理由による。すなわち、表面のP型領
域3の不純物濃度は、前述のとおり1017atoms/cm3
以上あるので、金蒸着膜6で十分オーミツク接触
が得られる。一方、N+型サブストレート1の不
純物濃度は1017atoms/cm3以上にすると、ライフタ
イムキラーがゲツタリングされるため、所期のス
イツチング速度の増大が図れなくなるため、通常
1015〜1016atoms/cm3程度に抑えている。このた
め、N+型サブストレート1に対しては金のみで
は十分なオーミツク接触が得られず、N型不純物
であるアンチモン(Sb)を微量含む金・アンチ
モン合金蒸着膜7を形成し、金・アンチモン合金
蒸着膜7中のアンチモンをN+型サブストレート
1に浅く拡散することによつて十分なオーミツク
接触を得るようにしているのである。
Note that while the gold vapor deposition film 6 is formed on the P-type region 3 on the front surface, the N + type substrate 1 on the back surface is
The reason why the gold/antimony alloy vapor deposited film 7 is formed on the back surface of the substrate is as follows. That is, the impurity concentration of the P-type region 3 on the surface is 10 17 atoms/cm 3 as described above.
Because of the above, sufficient ohmic contact can be obtained with the gold vapor deposited film 6. On the other hand, if the impurity concentration of the N + type substrate 1 is 10 17 atoms/cm 3 or more, the lifetime killer will getter, making it impossible to increase the switching speed as expected.
It is kept to about 10 15 to 10 16 atoms/cm 3 . Therefore, sufficient ohmic contact cannot be obtained with gold alone to the N + type substrate 1, and a gold/antimony alloy vapor deposited film 7 containing a small amount of antimony (Sb), which is an N type impurity, is formed. By shallowly diffusing antimony in the antimony alloy vapor deposited film 7 into the N + type substrate 1, sufficient ohmic contact is obtained.

ところで、上述の製造方法においては、N+
サブストレート1に対して金・アンチモン合金蒸
着膜7上に直接銀電極層8を形成しているが、銀
電極層8は銀の結晶構造が比較的粗く酸素を通し
やすく、一方、アンチモンは酸化されやすい性質
をもつ。このため、銀電極層8を通して金・アン
チモン合金蒸着膜7の表面が酸化され、電気抵抗
および熱抵抗が大きくなるという問題点があつ
た。
By the way, in the above-mentioned manufacturing method, the silver electrode layer 8 is formed directly on the gold/antimony alloy vapor deposited film 7 for the N + type substrate 1, but the silver electrode layer 8 has a comparatively different crystal structure of silver. It is rough and allows oxygen to pass through easily, while antimony has the property of being easily oxidized. Therefore, the surface of the gold/antimony alloy vapor deposited film 7 is oxidized through the silver electrode layer 8, resulting in a problem that electrical resistance and thermal resistance become large.

それゆえ、この発明の主たる目的は、キヤリヤ
のライフタイムキラーを拡散してなる半導体ウエ
ーハに対して、十分なオーミツク接触が得られ、
しかも電気抵抗および熱抵抗の小さいオーミツク
電極を形成し得る半導体装置の製造方法を提供す
ることである。
Therefore, the main object of the present invention is to obtain sufficient ohmic contact with a semiconductor wafer formed by diffusing a carrier lifetime killer.
Moreover, it is an object of the present invention to provide a method for manufacturing a semiconductor device that can form an ohmic electrode with low electrical resistance and low thermal resistance.

この発明は要約すると、キヤリヤのライフタイ
ムキラーを拡散してなる半導体ウエーハに、金・
アンチモン合金よりなる第1金属層と、金よりな
る第2金属層と、銀よりなる第3金属層とを順次
積層して形成することを特徴とするものである。
To summarize, this invention can be summarized by adding gold and
It is characterized in that it is formed by sequentially laminating a first metal layer made of an antimony alloy, a second metal layer made of gold, and a third metal layer made of silver.

この発明の上述の目的およびその他の目的と特
徴は、以下に図面を参照して行なう詳細な説明か
ら一層明らかとなろう。
The above objects and other objects and features of the present invention will become more apparent from the detailed description given below with reference to the drawings.

この発明においても、第2図ないし第6図まで
の途中工程は従来と同様である。しかるに、この
発明においては、第11図に示すように、絶縁膜
5にコンタクト用の窓孔5bを形成したのち、P
型領域3上に金を厚さ1000〜2000Å程度に蒸着し
て金蒸着膜6を形成するとともに、N+型サブス
トレート1の裏面に金・アンチモン合金を厚さ約
500〜1500Å程度に蒸着して第1金属層16を形
成し、この第1金属層16上に金を厚さ約1500〜
2000Å程度に蒸着して第2金属層17を形成し、
この第2金属層17上に銀を厚さ約1〜3μm程
度に蒸着して第3金属層18を形成する。しかる
のち、従来と同様にして、表面の金蒸着膜6上に
銀のバンプ電極19を形成し、図示一点鎖線個所
から切断分離する(第12図)。すると第13図
に示すようなダイオードが得られる。
In this invention as well, the intermediate steps from FIG. 2 to FIG. 6 are the same as in the prior art. However, in the present invention, as shown in FIG. 11, after forming the contact window 5b in the insulating film 5,
Gold is deposited on the mold region 3 to a thickness of approximately 1000 to 2000 Å to form a gold deposited film 6, and a gold/antimony alloy is deposited on the back surface of the N + type substrate 1 to a thickness of approximately 1000 to 2000 Å.
A first metal layer 16 is formed by vapor deposition to a thickness of about 500 to 1500 Å, and gold is deposited to a thickness of about 1500 to 1500 Å on this first metal layer 16.
A second metal layer 17 is formed by vapor deposition to a thickness of about 2000 Å,
A third metal layer 18 is formed on the second metal layer 17 by depositing silver to a thickness of about 1 to 3 μm. Thereafter, silver bump electrodes 19 are formed on the gold vapor-deposited film 6 on the surface in the same manner as in the conventional method, and the electrodes are cut and separated from the locations indicated by the dashed dot lines (FIG. 12). Then, a diode as shown in FIG. 13 is obtained.

第14図および第15図はこの発明の実施に用
いる蒸着装置の縦断面図および横断面図で、20
は真空容器、21は抵抗加熱式の金・アンチモン
合金の蒸着源、22は電子銃、23は蒸着皿で、
金24を収容した凹部23aと銀25を収容した
凹部23bとを有し、図示時計方向に回転可能に
なつており、電子銃22から電子線26を照射し
て凹部23aまたは23b内の金24または銀2
5を発着せしめるようになつている。27はプラ
ネタリウムで、第7図に示すように、表面の絶縁
膜5に窓孔5bを形成し金蒸着膜6を形成した多
数の半導体ウエーハ11がN+型サブストレート
1を下側に向けて取り付けられている。
FIGS. 14 and 15 are longitudinal and cross-sectional views of a vapor deposition apparatus used for carrying out the present invention.
2 is a vacuum container, 21 is a resistance heating type gold-antimony alloy vapor deposition source, 22 is an electron gun, and 23 is a vapor deposition plate.
It has a recess 23a that accommodates gold 24 and a recess 23b that accommodates silver 25, and is rotatable in the clockwise direction in the figure, and the gold 24 in the recess 23a or 23b is irradiated with an electron beam 26 from the electron gun 22. or silver 2
5 is now available for departure and arrival. 27 is a planetarium, and as shown in FIG. 7, a large number of semiconductor wafers 11 with window holes 5b formed in the insulating film 5 on the surface and gold evaporated films 6 formed thereon are placed with the N + type substrate 1 facing downward. attached.

上記の構成において、まず、真空容器20内を
排気して十分な真空度にしたのち、抵抗加熱式の
蒸着源21に通電して、金・アンチモン合金を完
全に飛ばし切つて、金・アンチモン合金よりなる
第1金属層16を形成する。次に、金24を収容
した凹部23aが真空容器20の中心軸26に一
致するように蒸着皿23を回転し、電子銃22か
ら電子線26を発射して凹部23a内の金24に
照射して、第1金属層16の上に金よりなる第2
金属層17を形成する。こののち、蒸着皿23を
図示時計方向に回転して、銀25を収容した凹部
23bを真空容器20の中心軸28に一致させ、
電子銃22から電子線26を発射して凹部23b
内の銀25を照射して、第2金属層17上に銀よ
りなる第3金属層18を形成する。
In the above configuration, first, the inside of the vacuum container 20 is evacuated to a sufficient degree of vacuum, and then the resistance heating type evaporation source 21 is energized to completely remove the gold/antimony alloy. A first metal layer 16 is formed. Next, the deposition plate 23 is rotated so that the recess 23a containing the gold 24 coincides with the central axis 26 of the vacuum container 20, and the electron beam 26 is emitted from the electron gun 22 to irradiate the gold 24 in the recess 23a. Then, a second metal layer made of gold is formed on the first metal layer 16.
A metal layer 17 is formed. After that, the deposition plate 23 is rotated clockwise in the figure to align the recess 23b containing the silver 25 with the central axis 28 of the vacuum container 20,
The electron beam 26 is emitted from the electron gun 22 to form the recess 23b.
The third metal layer 18 made of silver is formed on the second metal layer 17 by irradiating the silver 25 inside.

なお、金・アンチモン合金よりなる第1金属層
16のみを抵抗加熱式の蒸着源21によつて形成
するのは、金・アンチモンの蒸気圧が相違するた
め、金・アンチモン合金に電子線を照射すると、
金とアンチモンの偏析が生じて、金・アンチモン
合金の組成が変化するためである。また、抵抗加
熱式の蒸着源21も一回の通電加熱で全部の金・
アンチモン合金を完全に飛ばし切るようにするこ
とが望ましい。
Note that the reason why only the first metal layer 16 made of the gold-antimony alloy is formed using the resistance heating type vapor deposition source 21 is that the gold-antimony alloy is irradiated with an electron beam because the vapor pressures of gold and antimony are different. Then,
This is because segregation of gold and antimony occurs and the composition of the gold-antimony alloy changes. In addition, the resistance heating type evaporation source 21 can also remove all the gold and
It is desirable to completely remove the antimony alloy.

かくして、半導体ウエーハ11に第1金属層1
6ないし第3金属層18を形成すると、真空容器
20を開いて、蒸着済み半導体ウエーハ11を取
り出し、未蒸着半導体ウエーハ11をセツトする
とともに、抵抗加熱式の蒸着源21に再び所要量
の金・アンチモン合金を装填したのち、真空容器
20を排気し、以下同様に蒸着していく。
Thus, the first metal layer 1 is formed on the semiconductor wafer 11.
After forming the metal layers 6 to 18, the vacuum chamber 20 is opened, the vapor-deposited semiconductor wafer 11 is taken out, the undeposited semiconductor wafer 11 is set, and the resistance heating type vapor deposition source 21 is again filled with the required amount of gold and metal. After loading the antimony alloy, the vacuum container 20 is evacuated, and vapor deposition is carried out in the same manner.

この発明は以上のように、金・アンチモン合金
よりなる第1金属層と、金よりなる第2金属層
と、銀よりなる第3金属層とを順次積層形成する
ことにより、金・アンチモン合金よりなる第1金
属層と銀よりなる第3金属層との間に、金よりな
る第2金属層を介在させたので、金・アンチモン
合金よりなる第1金属層の表面の酸化が防止で
き、電気抵抗および熱抵抗の小さい半導体装置が
得られる。また、金よりなる第2金属層を介在し
たことにより、金・アンチモン合金よりなる第1
金属層を従来よりも薄くでき、かつ従つて第1金
属層を従来よりも均質に形成でき、均一なオーミ
ツク接触の裏面電極が形成できるという効果を奏
する。
As described above, the present invention is made by sequentially laminating a first metal layer made of a gold-antimony alloy, a second metal layer made of gold, and a third metal layer made of silver. Since the second metal layer made of gold is interposed between the first metal layer made of gold and the third metal layer made of silver, oxidation of the surface of the first metal layer made of gold-antimony alloy can be prevented and A semiconductor device with low resistance and low thermal resistance can be obtained. In addition, by interposing the second metal layer made of gold, the first metal layer made of gold-antimony alloy
The metal layer can be made thinner than before, and the first metal layer can therefore be formed more uniformly than before, and a back electrode with uniform ohmic contact can be formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のエピタキシヤルプレーナ型ダイ
オードの断面図、第2図ないし第10図は第1図
のダイオードの製造方法を説明するための各段階
における半導体ウエーハの断面図、第11図ない
し第13図はこの発明によるエピタキシヤルプレ
ーナ型ダイオードの製造方法を説明するための主
要な各段階における半導体ウエーハないしペレツ
トの断面図、第14図および第15図はこの発明
の実施に用いる蒸着装置の概略構成図で、第14
図はその縦断面図、第15図は第14図の−
線に沿う横断面図である。 10……キヤリヤのライフタイムキラー、11
……半導体ウエーハ、16……第1金属層、17
……第2金属層、18……第3金属層、19……
バンプ電極。
FIG. 1 is a sectional view of a conventional epitaxial planar diode, FIGS. 2 to 10 are sectional views of a semiconductor wafer at various stages for explaining the method of manufacturing the diode shown in FIG. 1, and FIGS. Figure 13 is a cross-sectional view of a semiconductor wafer or pellet at each major stage to explain the method for manufacturing an epitaxial planar diode according to the present invention, and Figures 14 and 15 are schematic diagrams of a vapor deposition apparatus used to carry out the present invention. In the configuration diagram, the 14th
The figure is a vertical cross-sectional view, and Figure 15 is the - of Figure 14.
FIG. 10...Cariya's Lifetime Killer, 11
...Semiconductor wafer, 16...First metal layer, 17
...Second metal layer, 18...Third metal layer, 19...
Bump electrode.

Claims (1)

【特許請求の範囲】 1 キヤリアのライフタイムキラーを拡散してな
る半導体ウエーハの一主面に、金・アンチモン合
金よりなる第1金属層を形成し、この第1金属層
上に金よりなる第2金属層を形成し、この第2金
属上に銀よりなる第3金属層を形成してオーミツ
ク電極層を形成することを特徴とする半導体装置
の製造方法。 2 前記第1金属層ないし第3金属層を、蒸着に
よつて形成する、特許請求の範囲第1項記載の半
導体装置の製造方法。 3 前記第1金属層を抵抗加熱方式による蒸着で
形成し、第2金属層および第3金属層を電子線方
式による蒸着で形成する、特許請求の範囲第2項
記載の半導体装置の製造方法。 4 前記第1金属層ないし第3金属層を、同一の
真空装置内で形成する、特許請求の範囲第3項記
載の半導体装置の製造方法。
[Claims] 1. A first metal layer made of a gold-antimony alloy is formed on one main surface of a semiconductor wafer obtained by diffusing a carrier lifetime killer, and a first metal layer made of gold is formed on the first metal layer. 1. A method for manufacturing a semiconductor device, comprising forming two metal layers, and forming an ohmic electrode layer by forming a third metal layer made of silver on the second metal layer. 2. The method of manufacturing a semiconductor device according to claim 1, wherein the first to third metal layers are formed by vapor deposition. 3. The method of manufacturing a semiconductor device according to claim 2, wherein the first metal layer is formed by vapor deposition using a resistance heating method, and the second metal layer and the third metal layer are formed by vapor deposition using an electron beam method. 4. The method of manufacturing a semiconductor device according to claim 3, wherein the first metal layer to the third metal layer are formed in the same vacuum apparatus.
JP7246980A 1980-05-29 1980-05-29 Manufacture of semiconductor device Granted JPS56169326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7246980A JPS56169326A (en) 1980-05-29 1980-05-29 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7246980A JPS56169326A (en) 1980-05-29 1980-05-29 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS56169326A JPS56169326A (en) 1981-12-26
JPS6146047B2 true JPS6146047B2 (en) 1986-10-11

Family

ID=13490195

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7246980A Granted JPS56169326A (en) 1980-05-29 1980-05-29 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS56169326A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6243123A (en) * 1985-08-21 1987-02-25 Rohm Co Ltd Formation of ohmic contact in individual semiconductor device

Also Published As

Publication number Publication date
JPS56169326A (en) 1981-12-26

Similar Documents

Publication Publication Date Title
US3028663A (en) Method for applying a gold-silver contact onto silicon and germanium semiconductors and article
US2861018A (en) Fabrication of semiconductive devices
US3585088A (en) Methods of producing single crystals on supporting substrates
US2879188A (en) Processes for making transistors
US2894862A (en) Method of fabricating p-n type junction devices
US4096622A (en) Ion implanted Schottky barrier diode
US2849664A (en) Semi-conductor diode
US3601888A (en) Semiconductor fabrication technique and devices formed thereby utilizing a doped metal conductor
US4011583A (en) Ohmics contacts of germanium and palladium alloy from group III-V n-type semiconductors
US2802759A (en) Method for producing evaporation fused junction semiconductor devices
US3938243A (en) Schottky barrier diode semiconductor structure and method
US2836523A (en) Manufacture of semiconductive devices
US3013955A (en) Method of transistor manufacture
GB1398006A (en) Semiconductor electroluminescent devices and to methods of making them
US3356543A (en) Method of decreasing the minority carrier lifetime by diffusion
US4342879A (en) Thin film photovoltaic device
US3158504A (en) Method of alloying an ohmic contact to a semiconductor
US2947924A (en) Semiconductor devices and methods of making the same
US3450581A (en) Process of coating a semiconductor with a mask and diffusing an impurity therein
US3342651A (en) Method of producing thyristors by diffusion in semiconductor material
US3863334A (en) Aluminum-zinc metallization
US3737380A (en) Process for contacting a semiconductor device
US3082127A (en) Fabrication of pn junction devices
US3768151A (en) Method of forming ohmic contacts to semiconductors
US3698077A (en) Method of producing a planar-transistor