JPS6145981A - Confirming method of ship position - Google Patents

Confirming method of ship position

Info

Publication number
JPS6145981A
JPS6145981A JP16868284A JP16868284A JPS6145981A JP S6145981 A JPS6145981 A JP S6145981A JP 16868284 A JP16868284 A JP 16868284A JP 16868284 A JP16868284 A JP 16868284A JP S6145981 A JPS6145981 A JP S6145981A
Authority
JP
Japan
Prior art keywords
ship
angle
fixed point
point
line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16868284A
Other languages
Japanese (ja)
Other versions
JPH028667B2 (en
Inventor
Koichi Takeuchi
幸一 竹内
Hiroyuki Ogino
弘幸 荻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIPBUILD RES ASSOC JAPAN
Hitachi Zosen Corp
Original Assignee
SHIPBUILD RES ASSOC JAPAN
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIPBUILD RES ASSOC JAPAN, Hitachi Zosen Corp filed Critical SHIPBUILD RES ASSOC JAPAN
Priority to JP16868284A priority Critical patent/JPS6145981A/en
Publication of JPS6145981A publication Critical patent/JPS6145981A/en
Publication of JPH028667B2 publication Critical patent/JPH028667B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/16Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using electromagnetic waves other than radio waves

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Navigation (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

PURPOSE:To calculate the accurate position of a ship on previously set coordinates from a specific calculation expression by measuring the distance between a constant point and a fixed point, elevation angle, horizontal angle, and angle between a constant line running on the constant point at the horizontal reference line. CONSTITUTION:The constant point A on the ship 1 and the constant straight line L running on it are set, and coodinates having a coordinate axis X at a specific angle sigma to the horizontal reference line N in a horizontal plane and the fixed point B are set at the side of the ground 2. Then, the distance l from th constant point A to the fixed point B, elevation angle theta of the straight line connecting the constant point A and fixed point B to the horizontal plane, and horizontal angle phi1 of said straight line to the constant straight line L are measured, and the angle phi2 of the constant straight line L to the horizontal reference line N is measured; and those measured values l, theta, phi1, and phi2 are substituted in the specific calculation expression to calculate the position of the ship 1 on the coordinates, obtaining the accurate position of the ship 1.

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、船舶の接岸、l1i11片りなどにおける
位置を確認する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION FIELD OF INDUSTRIAL APPLICATION This invention relates to a method for confirming the position of a ship when it is berthing, l1i11, etc.

操船上、刻々と変化する船舶の位F、+を、リアルタイ
ムに精度よく把握することは非常に重要である。
When maneuvering a ship, it is very important to accurately grasp the ship's position F, +, which changes every moment, in real time.

従来技術とその問題点 従来例1 第8図を参照して第1の従来例について説明すると、こ
れは1例えば、特公昭58−23908号公報に開示さ
れているように、岸壁又は桟橋(19)の水中に設置し
た超音波送受波器(20)より接岸又は離14″−中の
船舶(21)に向(プ超音波パルスを発射し、発剣波の
帰来するまでの時間をh1測り−ることにより距離を求
め、こうして得られた距離を岸壁又は桟橋(19)上に
設置した電光掲示板(22)に表示し、これを船舶(2
1)がゎで読みとるようにしたものである。
Prior art and its problems Conventional example 1 The first conventional example will be explained with reference to FIG. ) An ultrasonic pulse is emitted from the ultrasonic transducer (20) installed underwater toward the vessel (21) that is 14 inches away from the shore or away from the shore, and the time h1 until the emitted sword wave returns is measured. - The distance thus obtained is displayed on the electronic bulletin board (22) installed on the quay or pier (19), and this is displayed on the ship (2).
1) is read as ゎ.

これには、つぎのような問題点がある。第1に、船舶(
21)が超音波送受波器(2o)に正対する方向に入ら
なければ、計測することができない。
This has the following problems. First, ships (
21) cannot be measured unless it enters in a direction directly facing the ultrasonic transducer (2o).

第2に、船舶(1)の向きが岸壁または桟1(19)に
そう線とほぼ平行でなければ、反射波が超音波送受波器
(20)に帰来しないから、計測することができない。
Second, unless the direction of the ship (1) is substantially parallel to the line of the quay or the crosspiece 1 (19), the reflected waves will not return to the ultrasonic transducer (20) and cannot be measured.

第3に、船舶(1)の前後方向の位置を把握することが
できない。第4に、船舶(1)が岸壁又は桟゛橋(19
)より遠方にあるときは、電光掲示板(22)を読みど
りにくい。
Thirdly, it is not possible to grasp the longitudinal position of the vessel (1). Fourth, if the vessel (1)
), it is difficult to read the electronic bulletin board (22).

従来例2 第9図を参照して第2の従来例について説明すると、こ
れは、例えば、特公昭58−30525号公報に開示さ
れているように、固定基準基盤(23)に所定間隔をお
いて、それが規準を受ける自動追尾光波距離計(24)
に対しての自動追尾用光源望遠鏡付設の反射鏡(25)
を2点もしくは3点配置し、船台(26)上には左右端
部の2点とこの2点線上間の1点に自動追尾光波距11
i1f 11(24)を配置し、当該左方2つの自動追
尾光波距1llIt訓(24)は左方の反射鏡(25)
1つもしくは2つを規準し、右方1つの自動追尾光波距
離:I−(24)は右方の反射鏡(25)を規準するも
のとし、この計測距離データを所定の別算式を記憶させ
た甜算m (27)にインプットし、さらに、計画値と
の相対的位置を表示する表示部(28)に表示し、これ
にもとづぎ船台(26)を計画位置に操船づ−ることを
特徴とする船台の位置決め方法である。
Conventional Example 2 A second conventional example will be explained with reference to FIG. 9. This is, for example, as disclosed in Japanese Patent Publication No. 58-30525, in which a fixed reference base (23) is spaced at a predetermined interval. Automatic tracking light wave distance meter (24)
Reflector with light source telescope for automatic tracking (25)
2 or 3 points are placed on the platform (26), and automatic tracking light wave distance 11 is placed on the two points on the left and right ends and one point between these two dotted lines.
i1f 11 (24) is placed, and the two left automatic tracking light wave distances (24) are the left reflector (25).
One or two points are referenced, and one right automatic tracking light wave distance: I-(24) is set to the right reflecting mirror (25), and this measured distance data is stored in a predetermined separate calculation formula. The calculated value is input to the calculation m (27), and the position relative to the planned value is displayed on the display section (28), and based on this, the ship's platform (26) is maneuvered to the planned position. This is a method for positioning a ship's platform.

この方法を船舶の接14′、111岸時などにおける位
置をvII認する方法に使用するには、つぎの問題点が
ある。第1に、反射鏡(25)と光波距離計(24)が
はは正対しなりれば、4測することができない。第2に
、すくなくとも2つの反射鏡(25)と、3つの光波距
離1t(24)などの多数のは器を必要とする。第3に
、反射鏡(Z5)と光波距離、;t(24)の設置され
る高さが異なると、両名が接止したときに、実測値と計
算上必要な水平距離との差によって位置確認の精度が悪
くなる。
There are the following problems when this method is used to confirm the position of a ship when it approaches shore 14', 111, etc. First, if the reflecting mirror (25) and the optical distance meter (24) face each other directly, it is impossible to measure the distance. Second, it requires a large number of instruments, such as at least two reflectors (25) and three light wave distances 1t (24). Thirdly, if the installation heights of the reflector (Z5) and the light wave distance; t(24) are different, when the two come into contact, the difference between the measured value and the horizontal distance required for calculation will cause The accuracy of position confirmation deteriorates.

この発明の目的は、上記問題点をすべて解消した船舶位
置確認方法を提供することにある。
An object of the present invention is to provide a ship position confirmation method that eliminates all of the above problems.

問題点を解決するための手段   ゛ この発明による船舶位置確認方法は、船舶上に定点とこ
れを通る定直線を設定するとともに、地上側に水平面内
においC水平基準線に対して所定の角度をなす座標軸を
もつ座標と固定点を設定し、ついで定点から固定点まで
の距離と、定点と固定点を結ぶ直線が水平面となす俯仰
角と、同直線が定直線となす水平角とをそれぞれ測定す
るとともに、定直線が水平基準線となづ角度を測定し、
これらの角測定(flを所定の目算式に入力して座標上
に船舶の位置を算出することにより、船舶の位置を確認
するようにしたものである。
Means for Solving the Problems ゛In the ship position confirmation method according to the present invention, a fixed point and a fixed straight line passing through the fixed point are set on the ship, and a predetermined angle is set on the ground side with respect to the horizontal reference line C in the horizontal plane. Set the coordinates and fixed points with coordinate axes, and then measure the distance from fixed point to fixed point, the elevation angle that the straight line connecting the fixed points and the fixed point makes with the horizontal plane, and the horizontal angle that the same line makes with the fixed straight line. At the same time, measure the angle at which the fixed line meets the horizontal reference line,
The position of the ship is confirmed by inputting these angle measurements (fl) into a predetermined calculation formula and calculating the position of the ship on the coordinates.

地上とは、地面・の上のみなら′?1″海面の上を含む
もので、広い意味での地球を示す。
When you say above ground, do you mean only the ground/above it? 1" includes the area above the sea level and represents the earth in a broad sense.

実  施  例 船舶位置確認方法は、第1図に示づJ:うに、船舶(1
)上に定点(A)とこれを通る定直線(l−)を設定す
るとともに、地上(2)側に水平面内において水平基準
線(N)に対して所定の角度(σ)をなす座標軸(X)
をもつ座標と固定点(B)を設定し、ついで定点(A)
から固定点(B)までの距離(l)と、定点(A>と固
定点(B)を結ぶ直線が水平面となす俯仰角(θ)と、
同直線が定直線(L)となす水平角(φ1 )とをそれ
ぞれ測定するとともに、定直線(l−)が水平基準線(
N)となす角度(φ2)を測定し、これらの角測定値(
1)(θ)(φ1)(φ2)を所定の4算式に入力して
座標上に船舶(1)の位置を算出することにより、船舶
(1)の位置を確認するようにしたもの、である。
The method for confirming the ship position is shown in Figure 1.J: Sea urchin, ship (1
), a fixed point (A) and a fixed straight line (l-) passing through it are set on the ground (2) side, and a coordinate axis ( X)
Set the coordinates and fixed point (B), then set the fixed point (A)
The distance (l) from the fixed point (B) to the fixed point (B), the elevation angle (θ) that the straight line connecting the fixed point (A> and the fixed point (B) makes with the horizontal plane,
The horizontal angle (φ1) that the same straight line makes with the fixed line (L) is measured, and the fixed line (l-) is measured with the horizontal reference line (
Measure the angle (φ2) formed with N) and calculate these angle measurements (
1) The position of the ship (1) is confirmed by inputting (θ) (φ1) (φ2) into the specified four formulas and calculating the position of the ship (1) on the coordinates. be.

定点(A>は、船舶(1)の中心点(P)を通る長手方
向中心線上にその中心点(0)から所定距離(a>を隔
てたところにある。定直線(L)は同中心線と一致づる
ようにどる。座標は、地上である岸壁(2)の船舶着岸
点(0)を原点とする空間座標であっ−C,岸壁(2)
にそう線をX軸とし、かつこれに直交するY軸が水平面
内にある。X軸が、水平基準線(N)である北の方位と
所定の角度(σ)をなしている。
The fixed point (A> is located on the longitudinal center line passing through the center point (P) of the ship (1) at a predetermined distance (a>) from the center point (0).The fixed straight line (L) is concentric. Go back to match the line.The coordinates are spatial coordinates whose origin is the ship berthing point (0) of the quay (2) on the ground -C, quay (2)
The horizontal line is the X-axis, and the Y-axis perpendicular to this is in the horizontal plane. The X-axis forms a predetermined angle (σ) with the north direction, which is the horizontal reference line (N).

固定点(B)はY軸上にあって、原点(0)より所定距
離(b)を隔てている。第2図に示すように、上記角測
定値(1)(0)(φ1)(φ2)のうち、定点(△)
から固定点(P)までの距離(lと、定点(A)と固定
点(B)を結ぶ直線が水平面となす俯仰角(○)と、同
直線が定着線(L)となす水平面(φ1 )とを測定す
るために、定点(A>には距離測定装置(3)が、固定
点(B)には距離測定用反射プリズム(4)および追尾
用反射プリズム(5)がそれぞれ配置されている。また
、定着線(シ)が水平基準線(N)となす角度(φ2)
の測定は、中心点(P)に配置されたジャイロ・コンパ
ス(6)によってなされる。このジャイロ・コンパス(
6)は、船舶(1)に常備されているものでよく、この
方法を実施するために追加装備する必要はない。さらに
船舶(1)には、後述する計算式を記憶さUたコンピュ
ータ(7)と、iI算結果を表示するための表示装置(
8)とが装備されている。
The fixed point (B) is on the Y axis and is spaced a predetermined distance (b) from the origin (0). As shown in Figure 2, among the angle measurement values (1) (0) (φ1) (φ2), fixed points (△)
The distance (l) from the fixed point (P) to the fixed point (P), the angle of elevation (○) that the straight line connecting the fixed point (A) and the fixed point (B) makes with the horizontal plane, and the horizontal plane (φ1) that the same straight line makes with the anchoring line (L). ), a distance measuring device (3) is placed at a fixed point (A>), and a distance measuring reflective prism (4) and a tracking reflective prism (5) are placed at a fixed point (B). Also, the angle (φ2) between the anchoring line (C) and the horizontal reference line (N) is
The measurement is made by a gyro compass (6) placed at the center point (P). This gyro compass (
6) may be permanently stocked on the ship (1), and there is no need for additional equipment to implement this method. Furthermore, the ship (1) includes a computer (7) that stores calculation formulas to be described later, and a display device (7) for displaying the results of the calculation.
8) Equipped with.

距離測定装置(3)は、第3図および第4図に示すよう
に、船舶(1)に揺動自在に支持されかつ距離測定m1
(9)および追尾機構(10)を有する本体(11)と
、本体(11)の姿勢を制御する4ノ一ボ機構(12)
と、本体(11)の傾斜角度を検出する角度検出器(1
3)とからなる。距離測定装置(9)は、図示しない距
離測定用光線発生器を有し、光線発生器から距離測定用
プリズム(4)に向かって光線を発射し、同プリズム(
4)から発射した光線を受光して発射光と反射光の位相
差により距離を算出するようにしたものであり、これに
よって定点(△)から固定点(B)までの距離<1)が
測定される。発射光および反射光の光軸は本体(11)
の中心線(M)と一致させられている。追尾機構(10
)は、第5図に詳しく示すように追尾用光線発生器(1
4)および受光器(15)を備えている。光線発生器(
14)は、本体(11)の中心線CM)上に配置された
凸レンズ(16)と、同中心線(M ) lであって凸
レンズ(16)の後方直近に配置された光源(17)と
からなる。このように光源(17)が凸レンズ(16)
の焦点(F)でない位置に配置されているために、凸レ
ンズ(16)を通過した光源は、本体(11)の中心線
(M)と一致した中心軸をもつ分散光源どなる。その幅
を第4図に(α)で示す。受光器(15)は第6図に示
すように4分割受光ダイオード(18)からなるもので
、凸レンズ(16)の焦点(F)のやや後方に配置され
ている。実線で示すように受光器(15)の中心に反射
光線像が現われる場合は、各ダイオード(18)の出力
が同一となり、鎖線で示すようにその中心からずれた位
置に反射光線像が現われる場合は、各ダイオード(18
)の出力が不均一となる。前考の場合は本体(11)の
中心線(M)すなわち発射光線の中心軸と反射光線軸と
にずれが無いときであり、降車の場合はその両軸にずれ
が生じた場合である。
As shown in FIGS. 3 and 4, the distance measuring device (3) is swingably supported by the ship (1) and is capable of measuring distance m1.
(9), a main body (11) having a tracking mechanism (10), and a 4-no-Ichibo mechanism (12) that controls the attitude of the main body (11).
and an angle detector (1) that detects the inclination angle of the main body (11).
3). The distance measuring device (9) has a distance measuring light beam generator (not shown), and emits a light beam from the light beam generator toward the distance measuring prism (4).
4) The device receives the light beam emitted from the sensor and calculates the distance based on the phase difference between the emitted light and the reflected light.This allows the distance from the fixed point (△) to the fixed point (B) to be measured (<1). be done. The optical axis of the emitted light and reflected light is the main body (11)
The center line (M) of Tracking mechanism (10
) is a tracking beam generator (1) as shown in detail in Figure 5.
4) and a light receiver (15). Ray generator (
14) is a convex lens (16) placed on the center line CM) of the main body (11), a light source (17) placed on the same center line (M)l, and immediately behind the convex lens (16). Consisting of In this way, the light source (17) is connected to the convex lens (16)
Since the light source is located at a position other than the focal point (F) of the main body (11), the light source that has passed through the convex lens (16) becomes a dispersed light source whose central axis coincides with the center line (M) of the main body (11). Its width is indicated by (α) in FIG. As shown in FIG. 6, the light receiver (15) consists of a four-part light receiving diode (18), and is arranged slightly behind the focal point (F) of the convex lens (16). When the reflected light image appears at the center of the light receiver (15) as shown by the solid line, the output of each diode (18) is the same, and when the reflected light image appears at a position shifted from the center as shown by the chain line. is each diode (18
) output becomes uneven. In the case described above, there is no deviation between the center line (M) of the main body (11), that is, the central axis of the emitted beam and the axis of the reflected beam, and in the case of getting off the vehicle, there is a deviation in both axes.

また受光器(15)は鎖線で示すように凸レンズ(16
)の焦点(「)の前方に配置されていてもよい。
In addition, the light receiver (15) has a convex lens (16) as shown by the chain line.
) may be placed in front of the focal point (``).

各反射プリズム(4)(5)は、第3図および第4図に
示すように上下各位置の水平面内において所定半径を有
する円周にそってそれぞれ3つずつ並べられてい−る。
As shown in FIGS. 3 and 4, three reflecting prisms (4) and (5) are arranged along a circumference having a predetermined radius in a horizontal plane at each upper and lower position.

1個の反射プリズム(4)(5)の光線有効入射角度は
約±20度であるから、3個の反射プリズム(4)(5
)を合わせると、全体の光線イi効入射角度(B)は約
±60度となる。
Since the effective angle of incidence of light rays on one reflecting prism (4) (5) is about ±20 degrees, three reflecting prisms (4) (5)
), the total effective incidence angle (B) of the rays becomes approximately ±60 degrees.

追尾用光線発生器(14)から分散光線を発射づる。そ
の発射光線は角追尾用ブリスム(5)によって反射され
る。その反射光のうち、いずれかのプリズム(5)から
の反Q=1光を受光器(15)に受光する。Jると受光
器(15)には上述したj、うに発射光線の中心軸と反
射光線軸のずれに応じた信号が出力される。この出力信
号をリーボ+ffi構’(12)に入力し、その出力が
零となるように本体(11)の姿勢をフィードバック制
御する。これによって発射光線の中心軸ど反射光線軸が
一致さけられる。発射光線の中心軸は本体(1つ)の中
心k (M )と一致しており、その中心線(M)は距
離測定i構(9)の発射光および反射光の光軸と一致し
ているから、発射光線軸は距離測定用反射プリズム(4
)を追尾する。このように、距離測定機構(9)の発射
光線軸は常時距離測定用反則プリズム(4)を追尾して
いるから、角度検出器(13)によって本体(11)の
傾斜角度を検出することにより、定点(A)と固定点(
B)を結ぶ直線が水平面となす俯仰角(θ)と、同直線
が定直線(シ)となす水平角(φ1)とをそれぞれ測定
することができる。
A dispersion beam is emitted from a tracking beam generator (14). The emitted beam is reflected by the angular tracking brism (5). Among the reflected lights, the anti-Q=1 light from one of the prisms (5) is received by the light receiver (15). At J, a signal corresponding to the deviation between the center axis of the emitted light beam and the axis of the reflected light beam is outputted to the photoreceiver (15). This output signal is input to the Rivo+ffi structure (12), and the attitude of the main body (11) is feedback-controlled so that the output becomes zero. This prevents the central axis of the emitted light beam from being coincident with the axis of the reflected light beam. The central axis of the emitted light beam coincides with the center k (M) of the main body (one), and the center line (M) coincides with the optical axis of the emitted light and reflected light of the distance measuring structure (9). Therefore, the axis of the emitted light beam is connected to a reflective prism for distance measurement (4
). In this way, since the emission beam axis of the distance measuring mechanism (9) is always tracking the distance measuring foul prism (4), by detecting the inclination angle of the main body (11) with the angle detector (13), , fixed point (A) and fixed point (
It is possible to measure the angle of elevation (θ) that the straight line connecting B) makes with the horizontal plane, and the horizontal angle (φ1) that the straight line makes with the fixed straight line (SH).

、  船舶(1)の位置は、これを中心点(P)が代表
する。第1図において、中心点(P)の座標(X、Y)
はっぎの式で現わされる。
, The position of the ship (1) is represented by the center point (P). In Figure 1, the coordinates (X, Y) of the center point (P)
It is expressed by Haggi's formula.

X=−/cos e−cos(φ+ −1,+a)+ 
a cos(φ2  Q’l     =(1)Y−/
cosθ−5in(φ1〜φ2+σ)+ a 5in(
φ2  (7)  b   =(2>また、定直線(L
)がX軸寸なわら岸壁(2)にそう線となづ゛角度をφ
とすると、 φ=φ2−σ    ・・・(3) と表わさ、れる。なお、上記(1)〜(3)式において
、X軸は船首側を正、Y「110.i海側を正、φ、θ
、およびθ、は峙計方向を正どする。さらに、上記(1
)〜(3)式によって弾出されたX、Yおよびφの時間
偏差を割算することにより、船舶(1)の速度および中
心点(P、 )のまわりの角速度を算出することがてき
る。
X=-/cos e-cos(φ+ -1, +a)+
a cos(φ2 Q'l = (1)Y-/
cosθ-5in(φ1~φ2+σ)+a 5in(
φ2 (7) b = (2> Also, the fixed straight line (L
) is the X-axis dimension, and the angle at which it forms a line with the quay (2) is φ
Then, it is expressed as φ=φ2−σ (3). In addition, in the above equations (1) to (3), the X axis is positive on the bow side, Y'110.i is positive on the sea side, φ, θ
, and θ correct the counter direction. Furthermore, the above (1
) ~ (3) By dividing the time deviations of ejected X, Y, and φ, the speed of the ship (1) and the angular velocity around the center point (P, ) can be calculated. .

第7図は、船舶位置を確認するための機器のブロック図
であって、上述の角測定値(1)(θ)(φ1 )(φ
2)に定点(A>および固定点(B)などの地理的情報
を加えた入力情報を]ンピー2−タ(7)に入力する過
程から、コンビコータ(7)によって算出された船舶(
1)の位置および速度などの出力情報を表示装置く8)
に表示するまでの過程を示す。表示装置(8)に上記出
力情報を表示するときに、船舶(1)の位置および速度
に船舶(1)の外形状などを付加するようにしてもよい
FIG. 7 is a block diagram of equipment for confirming the ship's position, and shows the angle measurement values (1) (θ) (φ1) (φ
From the process of inputting the input information obtained by adding geographical information such as fixed point (A> and fixed point (B) to 2) into the computer (7), the ship (7) calculated by the combi coater (7)
1) Output information such as position and speed is displayed on a display device 8)
The process of displaying the image on the screen is shown below. When displaying the output information on the display device (8), the outer shape of the ship (1), etc. may be added to the position and speed of the ship (1).

発明の効果 この発明によれば、冒頭で述べた従4来技術の問題点を
ツベで解消することができる。すなわら、 あらかじめ設定した座標上に船舶の位置を算出するため
の情報として、定点と固定点の間で測定される距前、俯
仰角および水平角と、これらに加えて定点を通る定直線
が水平基準線となす角度を測定して得られたものを用い
ており、同定直線が水平基準線になす角度は船舶の11
路に相当するものであって、これは通富船舶に装備して
いるジャイロ・コンパスなどによって測定することがで
きるために、上述の角情報を19るためには、定点に測
定装置4丁とと、固定点に反射プリズムなどをそれぞれ
1つずつ配置するだ【ブでよいから、測定機器の数が少
なくてすむ。
Effects of the Invention According to the present invention, the problems of the prior art described at the beginning can be completely solved. In other words, the information used to calculate the ship's position on preset coordinates includes the range, elevation angle, and horizontal angle measured between fixed points, as well as a fixed straight line passing through the fixed points. The angle that the identified straight line makes with the horizontal reference line is measured, and the angle that the identified straight line makes with the horizontal reference line is the 11
This corresponds to the angle of the road, and can be measured using a gyro compass installed on a Tsutomi ship, so in order to obtain the above angle information, four measuring devices at fixed points are required. The number of measuring instruments can be reduced because one reflective prism or the like can be placed at each fixed point.

さらに、上述の各情報は船舶がわですへて19られるか
ら、船舶が″岸壁から遠く離れていても船舶の位置を確
認することができ、しかしその情報には定点と固定点を
結ぶ直線が水平面となす俯仰角が含まれているために、
座標上に船舶の位置を正確に算出することができる。
Furthermore, since each of the above-mentioned information is acquired as the ship moves away, it is possible to confirm the ship's position even if the ship is far away from the quay, but the information does not include straight lines connecting fixed points. Because it includes the angle of elevation with respect to the horizontal plane,
The position of the ship can be accurately calculated on the coordinates.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図から第7図はこの発明の実施例を示し、第1図は
船舶の位置関係を示すグラフ、第2図は測定樫器の配r
を示す平面図、第3図は距−1測定装置の配置構成を示
す概略側面図、第4図は、同平面図、第5図は同装置の
追尾機構の概略配向構成図、第6図は受光器の正面図、
第7図はブロック図である。 第8図および第9図は、それぞれ従来例を示す第2図相
当の平面図である。 (1)・・・船舶、(2)・・・地上(岸壁)、(A)
・・・定点、(L)・・・定直線、(N)・・・水平基
準線、(X)・・・座標軸、(σ)・・・角度(岸壁の
向き)、(f3)・・・固定点、(θ)・・・俯仰角、
(φI)・・・水平角、(φ2)・・・角度(船舶針路
)。 第2図 第8図 第4図 第5図 第6図
1 to 7 show embodiments of the present invention, FIG. 1 is a graph showing the positional relationship of ships, and FIG. 2 is a graph showing the arrangement of measuring instruments.
3 is a schematic side view showing the arrangement of the distance-1 measuring device, FIG. 4 is a plan view of the same, FIG. 5 is a schematic orientation configuration diagram of the tracking mechanism of the device, and FIG. is the front view of the receiver,
FIG. 7 is a block diagram. 8 and 9 are plan views corresponding to FIG. 2, respectively, showing a conventional example. (1)...Ship, (2)...Ground (quay), (A)
... Fixed point, (L) ... Fixed straight line, (N) ... Horizontal reference line, (X) ... Coordinate axis, (σ) ... Angle (direction of quay), (f3) ...・Fixed point, (θ)...Angle of elevation,
(φI)...Horizontal angle, (φ2)...Angle (ship course). Figure 2 Figure 8 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 船舶(1)上に定点(A)とこれを通る定直線(L)を
設定するとともに、地上(2)側に水平面内において水
平基準線(N)に対して所定の角度(σ)をなす座標軸
(X)をもつ座標と固定点(B)を設定し、ついで定点
(A)から固定点(B)までの距離(l)と、定点(A
)と固定点(B)を結ぶ直線が水平面となす俯仰角(Θ
)と、同直線が定直線(L)となす水平角(φ_1)と
をそれぞれ測定するとともに、定直線(L)が水平基準
線(N)となす角度(φ_2)を測定し、これらの角測
定値(l)(Θ)(φ_1)(φ_2)を所定の計算式
に入力して座標上に船舶(1)の位置を算出することに
より、船舶(1)の位置を確認するようにした船舶位置
確認方法。
Set a fixed point (A) and a fixed straight line (L) passing through the fixed point (A) on the ship (1), and make a predetermined angle (σ) with respect to the horizontal reference line (N) in the horizontal plane on the ground (2) side. Set the coordinates with the coordinate axis (X) and the fixed point (B), then set the distance (l) from the fixed point (A) to the fixed point (B) and the fixed point (A).
) and the fixed point (B), the angle of elevation (Θ
) and the horizontal angle (φ_1) that the same line makes with the fixed line (L), and also measure the angle (φ_2) that the fixed line (L) makes with the horizontal reference line (N), and calculate these angles. The position of the ship (1) can be confirmed by inputting the measured values (l) (Θ) (φ_1) (φ_2) into a predetermined calculation formula and calculating the position of the ship (1) on the coordinates. How to confirm ship position.
JP16868284A 1984-08-10 1984-08-10 Confirming method of ship position Granted JPS6145981A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16868284A JPS6145981A (en) 1984-08-10 1984-08-10 Confirming method of ship position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16868284A JPS6145981A (en) 1984-08-10 1984-08-10 Confirming method of ship position

Publications (2)

Publication Number Publication Date
JPS6145981A true JPS6145981A (en) 1986-03-06
JPH028667B2 JPH028667B2 (en) 1990-02-26

Family

ID=15872519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16868284A Granted JPS6145981A (en) 1984-08-10 1984-08-10 Confirming method of ship position

Country Status (1)

Country Link
JP (1) JPS6145981A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098185A (en) * 1988-06-15 1992-03-24 Japan Industrial Land Development Co., Ltd. Automatic tracking type measuring apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5098185A (en) * 1988-06-15 1992-03-24 Japan Industrial Land Development Co., Ltd. Automatic tracking type measuring apparatus

Also Published As

Publication number Publication date
JPH028667B2 (en) 1990-02-26

Similar Documents

Publication Publication Date Title
US5973788A (en) System for point-by-point measuring of spatial coordinates
US5110202A (en) Spatial positioning and measurement system
US4926050A (en) Scanning laser based system and method for measurement of distance to a target
US5893214A (en) Measuring ball reflector
US4709580A (en) Retroflective attitude determining system
EP0971207B1 (en) Surveying instrument having a plumbing device
JP2005502053A5 (en)
US4373808A (en) Laser doppler attitude measurement
US8827469B2 (en) Two-sided reflector and two-sided target object
CN109343072A (en) Laser range finder
JPS5953484B2 (en) Leveling device for measuring various points on the terrain
EP0340632B1 (en) Position locating apparatus for an underwater moving body
US5046259A (en) Underwater measuring systems and methods
RU2347252C1 (en) Method and device of determination of astronomical azimuth
US4306806A (en) Gun tube orientation sensor; target mirror
US6123427A (en) Arrangement for retroreflection of a ray using triple prisms
JPS6145981A (en) Confirming method of ship position
JPH0718703B2 (en) Three-dimensional surveying equipment
JPH02216393A (en) Aircraft docking guidance device
JP2728332B2 (en) Automatic position / posture measuring device for moving objects
JP2728326B2 (en) Automatic position / posture measuring device for moving objects
JPS59206709A (en) Measuring method of position having moving measuring point at intermediate
JPH0327050B2 (en)
JPS6126602B2 (en)
JPH0340803B2 (en)