JPS6145712B2 - - Google Patents

Info

Publication number
JPS6145712B2
JPS6145712B2 JP57175376A JP17537682A JPS6145712B2 JP S6145712 B2 JPS6145712 B2 JP S6145712B2 JP 57175376 A JP57175376 A JP 57175376A JP 17537682 A JP17537682 A JP 17537682A JP S6145712 B2 JPS6145712 B2 JP S6145712B2
Authority
JP
Japan
Prior art keywords
alloy
component
anode
water electrolysis
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57175376A
Other languages
Japanese (ja)
Other versions
JPS5967382A (en
Inventor
Yoshio Oda
Takashi Otoma
Eiji Endo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP57175376A priority Critical patent/JPS5967382A/en
Priority to US06/539,952 priority patent/US4498962A/en
Publication of JPS5967382A publication Critical patent/JPS5967382A/en
Publication of JPS6145712B2 publication Critical patent/JPS6145712B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水電解用陽極、特には酸化性環境下に
おいても特性の劣化が極めて小さい、特に低酸素
過電圧特性を有する陽極及びその製法に関する。 低酸素過電圧陽極、特にアルカリ水溶液の水電
解用の陽極として各種のものが提案されている。 アルカリ水溶液の水電解槽で電解により陽極室
からは酸素ガス、陰極室からは水素ガスが製造さ
れることは既によく知られた工業的な水電解法酸
素および水素の製造法である。この電解槽の陽極
としては鉄やニツケルまたはラネーニツケル等が
好ましく用いられる。 しかしこれらの酸素過電圧はさして低いもので
なく、また、ニツケルの場合には過電圧の経時上
昇が認められている。本発明者等はこの現象につ
いて深く追求した結果、電極活性成分であるニツ
ケル表面が水酸化ニツケルあるいは変質すること
により電極活性が低下する(即ち、酸素過電圧が
上昇する)ことを見出したもので、この変質を防
止するのに、ニツケル、コバルト等の第一の成分
とアルミニウム、亜鉛、マグネシウム、シリコン
等の第二の成分とからなる公知の金属粒子に第三
の貴金属、レニウムから選ばれる成分を含有せし
めた合金とすることが著しい効果をもたらすこ
と、及び粒子でなく、同じ合金組成をもつ表面層
をもつ電極も同等の効果を有することを見出し、
本発明を完成したもので、本発明はニツケル及
び/又はコバルトからなる成分X、アルミニウ
ム、亜鉛、マグネシウム、シリコンから選ばれる
成分Y及び貴金属、レニウムから選ばれる成分Z
からなる合金であつて、成分X,Y,Zが第1図
の点A,B,C及びDで囲まれる範囲にある合金
からなる水電解用陽極、電極芯体上に、ニツケル
及び/又はコバルトからなる成分X、アルミニウ
ム、亜鉛、マグネシウム、シリコンから選ばれる
成分Y及び貴金属、レニウムから選ばれる成分Z
からなる合金であつて、成分X,Y,Zが第1図
の点A,B,C及びDで囲まれる範囲にある合金
のの層が設けられてなる低酸素過電圧陽極及びニ
ツケル及び/又はコバルトからなる成分X、アル
ミニウム、亜鉛、マグネシウム、シリコンから選
ばれる成分Y、及び貴金属、レニウムから選ばれ
る成分Zが第4図の点A′,B′,C′及びD′で囲ま
れる範囲にある合金からなる電極活性金属粒子を
メツキ浴中に均一に分散せしめ、電極芯体上に共
電着せしめるか、塗布法、浸漬法、焼付法あるい
は電気メツキ法にて、電極芯体上に一様な上記合
金の層を設けることを特徴とする高耐久性低酸素
過電圧陽極の製法を要旨とするものである。 ここで、貴金属とは、周知の如く、金、銀及び
白金族金属(即ち、白金、ロジウム、ルテニウ
ム、パラジウム、イリジウム)を意味するもので
ある。 ここで、第1図は、ニツケル及び/又はコバル
トからなる成分X、アルミニウム、亜鉛、マグネ
シウム、シリコンから選ばれる成分Y及び貴金
属、レニウムから選ばれる成分Zの三成分ダイア
グラムであつて、本発明陽極における各金属の合
金組成は第1図の点A,B,C及びDで囲まれる
範囲のものであることが必要である。好ましく
は、A,B,E,Fの範囲である。 ここで点A,B,C,Dの(X,Y,Z)成分
の量は重量%で各々、A(99.6,0,0.4)、B
(79.6,20,0.4)、C(40,20,40)、D(40,
0,60)であり、また、点A,B,E,Fの
(X,Y,Z)成分の量は、重量%で各々、A
(99.6,0,0.4)、B(79.6,20,0.4)、E(60,
20,20)、F(80,0,20)である。 本発明の効果は合金組成の1成分として貴金
属、レニウムから選ばれる成分が包含されること
によるものであるが、何故に、これら成分の包含
がニツケルまたはコバルトの水酸化物生成を阻止
しうるのか詳細については未だ解明されていな
い。しかしながら、本発明者等は、これらの成分
の内でも、ロジウム、イリジウムが本発明の効果
を奏するのに最適であるとの知見を得ている。即
ち、金属の内でも、ロジウム、イリジウムを用い
る時には、より厳しい環境条件においてもより長
期にわたつて特段に低い酸素過電圧を維持するこ
とができる。 本発明陽極の合金が第1図のABCDで囲まれる
組成を有することがよいのは、上記範囲以外の組
成の合金では、長期にわたつて酸素化電圧を低く
維持できなかつたり、酸素過電圧自体が初期より
高かつたり、あるいは、貴金属、レニウムの成分
をこの範囲を越えて多量に含有せしめても、期待
される低酸素過電圧や、耐久性はほとんど変らな
いことによる。 上述の合金が粒子の場合、平均粒径は、電極表
面の多孔性度及び後述する電極製造の際の粒子の
分散性にも関係するが、0.1μ〜100μであれば充
分である。 上記範囲中、電極表面の多孔性等の点から、好
ましくは0.9μ〜50μ、更に好ましくは1μ〜30
μである。 更に本発明の合金の層は、電極のより低い酸素
過電圧を達成するため、表面多孔性であることが
好ましい。 この表面多孔性とは、合金が粒子の場合には粒
子の全表面が多孔性であることのみを意味するも
のでなく、前述した金属から成る層より露出した
部分のみが多孔性になつておれば充分であり、ま
た、合金が、例えばメツキ層の如く、電極芯体上
に層状に設けられている場合には、該層が凹凸等
により多孔性となつておればよい。 多孔性の程度は、その程度がかなり大きい程好
ましいが、過度に多孔性にすると粒子の機械的強
度が低下する為多孔度(porosity)が20〜90%に
することが好ましい。上記範囲中更に好ましく
は、35〜85%、特に好ましくは50〜80%である。 なお、上記多孔度とは、公知の水置換法によつ
て測定される値である。多孔性にする方法として
は種々の方法が採用できるが、合金が粒子である
場合でも、そうでない場合でも、例えば成分X,
Y,Zからなる合金から、成分Yの金属の一部又
は全部を除去して多孔性にする方法が好ましい。 かかる場合、成分X,Y,Zが所定割合に均一
に配合された合金を苛性アルカリ処理して、成分
Yの金属の少くとも一部を除去せしめる方法が特
に好ましい。本発明の陽極の場合、必ずしも電解
槽に装着される前に苛性アルカリで処理する必要
はなく、使用される陽極液が苛性アルカリ条件で
あるため、電解中に徐々に成分Yの金属が除去さ
れ、目的の陽極となりうる。 上記金属粒子の組成の組合せとしては各種のも
のが使用でき、その代表的なものとしては、Ni
−Al−Rh,Ni−Al−Ir,Ni−Zn−Rh,Ni−Zn−
Ir,Ni−Si−Rh,Ni−Si−Ir,Co−Al−Rh,Co
−Al−Ir,Co−Zn−Rh,Co−Zn−Ir,Co−Si−
Rh,Co−Si−Ir,Ni−Mg−Rh,Ni−Mg−Ir,
Co−Mg−Rh,Co−Mg−Ir,などが考えられ
る。 この中でも特に好ましい組合せは、Ni−Al−
Rh,Ni−Al−Ir,Co−Al−Rh,Co−Al−Ir,で
ある。 また、苛性アルカリ処理の条件は、出発合金の
組成によつても異るが、後述するような組成の合
金の場合、苛性アルカリ濃度(NaOH換算)10〜
35重量%の10〜50℃水溶液に0.5〜3時間浸漬す
ることが好ましい。この理由は、成分Yはなるべ
く除去しやすくすることを条件として選定したも
のである。 また、成分Zは上記アルカリ処理によつて除去
されないかまたされても少量のものである。 上述の合金が粒子の場合には粒子が金属芯体上
に強固に設けられるための層は、合金粒子を構成
する成分Xと同じ金属であることが好ましい。 かくして、本発明の陽極の電極表面には、多数
の上述の粒子が付着しており、巨視的に見ると、
陽極表面は微多孔性になつている。 また、電極芯体表面を、合金層で一様に被覆し
た場合も同様であるが、合金粒子を用いる場合と
異つて結合剤となる金属層は存在しない。 このように本発明の陽極は、それ自体低い酸素
過電圧を有するニツケル及び/又はコバルトを含
む合金が電極表面を被覆しており、且つ前述した
通り、電極表面が微多孔性になつているため、そ
れだけ電極活性面が大きくなり、これらの相乗効
果によつて、効果的に酸素過電圧の低減を計るこ
とができる。 しかも本発明のうち合金粒子を用いた場合は、
上記金属から成る層によつて、電極表面に強固に
付着しているので、脱落による劣化を受けにく
く、上記低酸素過電圧の持続性が特に優れてい
る。 本発明の電極芯体はその材質として任意の適当
な導電性金属、例えば、Ti,Zr,Fe,Ni,V,
Mo,Cu,Ag,Mn,白金族金属、黒鉛、Crから
選ばれた金属又はこれらの金属から選ばれた合金
が採用し得る。この内Fe合金(Fe−Ni合金、Fe
−Cr合金、Fe−Ni−Cr合金など)、Ni,Ni合金
(Ni−Cu合金、Ni−Cr合金など)、などを採用す
ることが好ましい。特に好ましい電極芯体の材質
は、Ni,Fe−Ni合金、Fe−Ni−Cr合金である。 電極芯体の構造は、使用する電極の構造に合わ
せて任意適宜な形状寸法にすることができる。そ
の形状は、例えば、板状、多孔状、網状(例え
ば、エクスバンドメタルなど)、すだれ状等が採
用でき、これらを平板状、曲板状、筒状にしても
よい。 本発明の層の厚みは、20〜200μであれば充分
で、更に好ましくは25〜150μ、特に好ましくは
30〜100μである。 本発明の電極表面の断面図を第2図及び第3図
に示す。第2図に示されている様に電極芯体1上
に金属から成る層2が中間層4を介して設けら
れ、該層に電極活性金属粒子3が、その層の表面
から露出する様に含まれている。なお、層2中の
粒子の割合は5〜80wt%であることが好まし
く、更に好ましくは10〜50wt%である。電極芯
体と、合金粒子を含む層との間に、Ni,Coから
選ばれた金属から成る中間層を設けることによつ
て、更に本発明の電極の耐久性を向上させること
ができる。かかる中間層は、上記層の金属と同種
又は異種であつても差しつかえないが、かかる中
間層を前述した層との付着性の点からこれらの中
間層及び層の金属は同種のものであることが好ま
しい。中間層の厚みは、機械的強度等の点から5
〜100μであれば充分であり、更に好ましくは20
〜80μ、特に好ましくは30〜50μである。 勿論、上記の如き中間層を設けることは必ずし
も必要ではない。 第3図は電極芯体表面を、一様に合金層で被覆
した場合の本発明陽極の断面図であつて、1は電
極芯体、5は電極活性のある合金の一様な表面
層、6は中間層である。 第2図に示した本発明の電極は、その電極表面
に多数の粒子が露出しているわけであるが、主と
して粒子間の間隙によつて表面層は多孔性となつ
ており、合金成分Yが除去された後の空隙も多孔
性に寄与している。 前述した様に多孔性の度合は、酸素過電圧の低
下にも関連する為多孔性の度合は電気二重層容量
で1000μF/cm2以上であれば充分に目的を達成で
きる。上記範囲中好ましくは2000μF/cm2以上、
特に好ましくは5000μF/cm2以上である。電気二
重層容量は、電解質溶液中に電極を浸漬した場合
に、電極表面近傍に正負のイオンが短い距離を隔
てて相対的に分布して形成される電気二重層の静
電容量であり、詳しくは、実測される微分容量を
示す。 この容量は、電極表面が大きくなると共に大き
くなる。従つて電極表面が多孔性となり電極表面
積が大きくなると、電極表面の電気二重層容量も
大きくなる。よつて、電気二重層容量によつて、
電気化学的に有効な電極表面積即ち電極表面の多
孔性度が判る。 なお、電気二重層容量は、測定時の温度や電解
質溶液の種類、濃度、電極電位等によつても変化
するので、本発明の電気二重層容量は、下記の方
法によつて測定される値を意味する。 試験片(電極)を40wt%NaOH水溶液(25℃)
に浸漬し、試験片の約100倍の見掛け面積をもつ
白金黒付き白金板を対極として押入し、この状態
でのセルインピーダンスをベクトルインピーダン
スメーターで測定して試験片の電気二重層容量を
求める。 電極表面層の具体的な形成手段としては、種々
の手法が採用され、例えば分散メツキ法、溶融塗
布法、焼付法、合金メツキ法、溶融液浸漬法など
が採用される。 合金粒子を用いる場合には、特に分散メツキ法
が、良好に本発明の粒子を付着し得るので好まし
い。 分散メツキ法とは、金属層を形成する金属を含
む水溶液に、一例としてニツケルを主体とする合
金粒子を分散せしめた浴に、電極芯体を陰極とし
て、メツキを行い、電極芯体上に、上記金属と合
金粒子を共電着せしめるものである。なお、更に
詳しく述べれば、浴中で粒子は電場の影響によつ
て粒子はバイボーラとなり陰極表面近傍に接近し
たときメツキの局部的電流密度を増大させ、陰極
に接触したとき通常の金属イオンの還元による金
属メツキにより芯体に共電着するものと考えられ
る。例えば、金属層としてニツケル層を採用する
場合、全塩化ニツケル浴、高塩化ニツケル浴、塩
化ニツケル−酢酸ニツケル浴などが採用しうる。
また、金属層としてコバルト層を採用する場合に
は、全塩化コバルト浴、高塩化コバルト浴、塩化
コバルト−酢酸コバルト浴などが採用しうる。 この場合、浴のPHが重要である。即ち、メツキ
浴中に分散せしめる電極活性金属粒子は、一般に
その粒子表面に酸素が付着していることが多く、
この状態では、金属層との接合が充分でなく、電
極として使用中、粒子の剥落等の生ずることがあ
り、これを防ぐためには、該粒子表面の付着酸素
量を減少させることが必要であり、そのためには
メツキ浴のPHを1.5〜3.0とするのが好ましい。 また、本発明の場合、金属粒子としては、ニツ
ケル及び/又はコバルトからなる成分X、アルミ
ニウム、亜鉛、マグネシウム、シリコンから選ば
れる成分Y及び貴金属、レニウムから選ばれる成
分Zが第4図の点A′,B′,C′及びD′で囲まれる
範囲の合金であることが必要である。 なお、第4図におけるA′,B′,C′,D′の合金
成分(X,Y,Z)は重量%で各々、A′(59.8,
40,0.2)、B′(39.8,60,0.2)、C′(5,60,
35)、D′(12,40,48)である。 さらに好ましい範囲としては、A′,B′,E′,
F′であつて、A′:(59.8,40,0.2)、B′:
(39.8,60,0.2)、E′:(30,60,10)、F′:
(50,40,10)である。。その理由は、この範囲か
らはずれると電着工程での付着量を充分に確保で
きなかつたり、電着できても付着強度が低かつた
り、また、アルカリ易溶金属即ち成分Yの溶解抽
出後の電極触媒としての活性が充分でないなどの
ためである。 あるいはまた、貴金属成分量が本範囲を相当に
越えても、酸素過電圧の低減効果や耐久性が格段
に向上するものではない等のためである。 以上の如く、該粒子の金属層と接触する表面部
分には酸素の付着量の少ないことが粒子の接着強
度の点から好ましいが、一方、取扱い上、電極芯
体に共電着したかかる粒子表面に部分的に酸化被
膜を形成せしめて、安定化せしめておくことが好
ましい。 この様な粒子の浴中での割合は、1g/〜
200g/、特に突1g/〜50g/、更には
1g/〜10g/にしておくことが電極表面に
粒子の付着状態を良好にする意味から好ましい。
また、分散メツキ作業時の温度条件は20〜80℃、
特には30〜60℃、電流密度は1A/dm2〜20A/
dm2、特には1A/dm2〜10A/dm2であること
が好ましい。 なお、メツキ浴には、歪減少用の添加剤、共電
着を助長する添加剤等を適宜加えてもよいことは
もちろんである。 この外前述したように、電極芯体と粒子を含む
金属層との間に中間層を設ける場合は、電極芯体
をまずNiメツキ又はCoメツキ等をほどこしその
後前述した分散メツキ法、溶融噴霧法の手段でそ
の上に粒子を含む金属層を形成する。 かかる場合のメツキ浴としては上述した種々の
メツキ浴が採用できる。 このようにして、電極芯体上に、金属層を介し
て本発明の粒子が付着した電極が得られる。 次に、電極芯体上に一様な電極活性のある該合
金層を設ける具体的手段について説明する。 この具体的手段は前述の通り、塗布法、浸漬
法、焼付法、電気メツキ法等が考えられる。 塗布法は、第4図に示される合金の細いロツド
ないし粉末を溶融スプレーする方法が好ましい。
この溶融スプレーは、溶融被覆法で通常に用いら
れるプラズマスプレー装置、酸素−水素炎あるい
は酸素−アセチレン炎スプレー装置等を用いるこ
とができる。 浸漬法は、上記合金の溶融液に電極芯体を浸漬
し、該芯体上に該合金の被覆層を形成せしめる方
法であつて、合金溶融液の温度は該合金の融点の
50〜200℃高い温度がよい。Ni−Al−Rhの場合は
融点が約1500℃であるので1600℃程度で浸漬、引
上げによつて電極芯体上に合金被覆層を形成せし
めるとよい。 焼付法は、あらかじめ調製された100μ以下の
粒径をもつ微粉状粒子を適当な高分子化合物、特
に水溶性高分子水溶液を結合剤にして電極芯体に
塗布したのち加熱して結合剤を焼成揮散せしめる
とともに粒子を焼結し、かつ基板に固着せしめる
方法である。通常融点よりも100〜300℃低い温度
で実施するのがよく、加圧下で焼結することが好
ましい。 電気メツキ法は、成分X,Y,Zが第4図に示
される範囲にある金属の塩の溶液(望ましくは水
溶液)を調製し、これに電極芯体を陰極として浸
漬し、電気メツキを行なう、いわゆる合金メツキ
法である。ただし、YがAl,Mgの場合には本方
法は採用できず、YがZnの場合に可能である。
メツキ条件は通例の条件を採用すればよく、例え
ば、NiSO4・7H2O,ZnSO4,KReO4
(NH42SO4の混合溶液をPH=4.0に設定して電流
密度約1A/dm2、温度約60℃でメツキすること
によりNi−Zn−Reの合金層を形成し得る。 このようにして得られた低酸素過電圧陽極の表
面に非電子伝導性物質を付着させることも有効で
ある。 本発明陽極を、アルカリ水溶液の水電解用陽極
として用いる場合、陽極液中に珪酸イオンが存在
することがあり、これらが陽極上で放電し、シリ
カが陽極上に析出することがある。この場合、陽
極の活性表面が失われ、酸素過電圧が上昇するこ
とになる。 このような放電析出を防止するために、例えば
フツ素含有樹脂(例えばPTFE等)のような非電
子電導性物質を本発明陽極上、更には、陽極表面
に突出している金属粒子上に付着させておくこと
が有効である。このための具体的な手段としては
特願昭56−126921号に開示される如き方法が好ま
しく採用されうる。 かくして、得られる陽極は、その後必要に応
じ、苛性アルカリ処理(例えば苛性アルカリ水溶
液に浸漬する)して、合金粒子中の成分Yの金属
の少なくとも一部を溶出除去せしめ、該粒子又は
電極表面層を多孔性にする。 かかる場合の条件は前述の通りである。 又、前述した成分X,Y,Zの合金を採用した
場合、上述したような苛性アルカリ処理を行なう
ことが好ましいが、かかる合金を付着した電極を
苛性アルカリ処理をせず、そのまま電解層に取り
付け、実際に電解を行ないつつアルカリ処理を行
つてもよい。 かかる場合、電解の過程で成分Yの金属が溶出
し、陽極の過電圧が低下する。ただし、該溶出し
た成分Yの金属イオンによつて、生成苛性アルカ
リ水溶液が若干汚染されるが、一般には問題とな
ることはない。 本発明の電極は固体電解質法またはイオン脱法
アルカリ水溶液水電解用の陽極として採用できる
ことはもちろんであるが、この外、多孔性隔膜
(例えばアスペスト隔膜)を用いたアルカリ水溶
液の水電解用の陽極としても採用し得る。 次に本発明の実施例を挙げて説明する。 実施例 1〜12 表1に示す組成を有する合金粉末(200メツシ
ユバス)を調製し、これを実施例1〜10、14〜16
については、特開昭54−112785号公報の実施例12
に従い、また、実施例11〜13については同公報の
実施例12のNiCl2・6H2OをCoCl2・6H2O(濃度
300g/)に、Ni板陽極をCo板陽極にそれぞれ
変えたメツキ方法に基づく分散メツキ法(ただ
し、メツキ後の展開処理温度は50℃とした)によ
つて低酸素過電圧電極を製造した。 得られた電極上の金属粒子を一部剥離して、そ
の組成を調べた。その結果を第1表に併記した。 ついで、これらの電極を、陰極をニツケル製エ
キスバンドメタルとし、含フツ素系陽イオン交換
膜(旭硝子(株)製CF=CF2とCF2=CFO(CF23
COOCH3との共重合体、イオン交換容量
1.45meq/g樹脂)をイオン交換膜とするアルカ
リ水電解用陽極として用い、水電解試験15%
KOH、110℃、電流密度70A/dm2で行つた。酸
素過電圧を測定した結果を表1に示す。
The present invention relates to an anode for water electrolysis, and more particularly to an anode having extremely low deterioration in characteristics even in an oxidizing environment, particularly an anode having low oxygen overvoltage characteristics, and a method for manufacturing the same. Various types of low oxygen overvoltage anodes have been proposed, particularly as anodes for water electrolysis of alkaline aqueous solutions. Oxygen gas is produced from the anode chamber and hydrogen gas is produced from the cathode chamber by electrolysis in a water electrolyzer containing an alkaline aqueous solution, which is already a well-known industrial water electrolysis method for producing oxygen and hydrogen. As the anode of this electrolytic cell, iron, nickel, Raney nickel, or the like is preferably used. However, these oxygen overvoltages are not particularly low, and in the case of nickel, it has been observed that the overvoltage increases over time. As a result of our deep investigation into this phenomenon, the present inventors discovered that the electrode activity decreases (that is, the oxygen overvoltage increases) when the surface of nickel, which is an active component of the electrode, becomes nickel hydroxide or changes in quality. In order to prevent this deterioration, a third noble metal, a component selected from rhenium, is added to known metal particles consisting of a first component such as nickel or cobalt and a second component such as aluminum, zinc, magnesium, or silicon. It was discovered that an alloy containing the same alloy has a remarkable effect, and that an electrode having a surface layer with the same alloy composition instead of particles has the same effect.
The present invention has been completed, and the present invention consists of a component X consisting of nickel and/or cobalt, a component Y selected from aluminum, zinc, magnesium, and silicon, and a component Z selected from noble metals and rhenium.
An anode for water electrolysis consisting of an alloy in which the components X, Y, and Z are in the range surrounded by points A, B, C, and D in FIG. 1, on the electrode core, nickel and/or Component X consisting of cobalt, Component Y selected from aluminum, zinc, magnesium, and silicon, and Component Z selected from noble metals and rhenium.
A low oxygen overvoltage anode comprising a layer of an alloy consisting of nickel and/or nickel, in which the components X, Y, and Z are in the range surrounded by points A, B, C, and D in FIG. Component X consisting of cobalt, component Y selected from aluminum, zinc, magnesium, and silicon, and component Z selected from precious metals and rhenium are in the range surrounded by points A', B', C', and D' in Figure 4. Electrode active metal particles made of a certain alloy are uniformly dispersed in a plating bath and co-electrodeposited onto the electrode core, or coated onto the electrode core by coating, dipping, baking, or electroplating. The gist of the present invention is a method for manufacturing a highly durable low oxygen overvoltage anode characterized by providing a layer of the above-mentioned alloy. As is well known, the term "noble metal" refers to gold, silver, and platinum group metals (ie, platinum, rhodium, ruthenium, palladium, and iridium). Here, FIG. 1 is a three-component diagram of a component X consisting of nickel and/or cobalt, a component Y selected from aluminum, zinc, magnesium, and silicon, and a component Z selected from noble metals and rhenium, which is an anode of the present invention. It is necessary that the alloy composition of each metal is within the range surrounded by points A, B, C, and D in FIG. Preferably, the range is A, B, E, F. Here, the amounts of (X, Y, Z) components at points A, B, C, and D are A(99.6, 0, 0.4) and B, respectively, in weight%.
(79.6, 20, 0.4), C (40, 20, 40), D (40,
0,60), and the amounts of (X, Y, Z) components at points A, B, E, F are respectively A
(99.6, 0, 0.4), B (79.6, 20, 0.4), E (60,
20, 20), F(80, 0, 20). The effects of the present invention are due to the inclusion of a component selected from noble metals and rhenium as one component of the alloy composition, but why does the inclusion of these components prevent the formation of hydroxides of nickel or cobalt? The details have not yet been clarified. However, the present inventors have found that among these components, rhodium and iridium are most suitable for achieving the effects of the present invention. That is, among metals, when rhodium and iridium are used, an especially low oxygen overvoltage can be maintained for a longer period of time even under harsher environmental conditions. The reason why it is preferable for the alloy of the anode of the present invention to have a composition surrounded by ABCD in Fig. 1 is because an alloy with a composition outside the above range may not be able to maintain a low oxygenation voltage over a long period of time, or the oxygen overvoltage itself may be too high. This is because the expected low oxygen overvoltage and durability will hardly change even if the content of the noble metal or rhenium component is increased from the initial level or exceeds this range. When the above-mentioned alloy is in the form of particles, the average particle size is related to the porosity of the electrode surface and the dispersibility of the particles during electrode manufacture, which will be described later, but a range of 0.1 μm to 100 μm is sufficient. In the above range, preferably 0.9μ to 50μ, more preferably 1μ to 30μ from the viewpoint of porosity of the electrode surface, etc.
μ. Furthermore, the layer of the alloy of the invention is preferably superficially porous in order to achieve a lower oxygen overpotential of the electrode. This surface porosity does not only mean that the entire surface of the particle is porous when the alloy is a particle; it also means that only the portion exposed from the metal layer described above becomes porous. In addition, when the alloy is provided in a layered manner on the electrode core, such as a plating layer, it is sufficient that the layer is porous due to unevenness or the like. As for the degree of porosity, it is preferable that the degree is quite large, but if the degree of porosity is excessively large, the mechanical strength of the particles decreases, so it is preferable that the porosity is 20 to 90%. Within the above range, it is more preferably 35 to 85%, particularly preferably 50 to 80%. Note that the above-mentioned porosity is a value measured by a known water displacement method. Various methods can be used to make the alloy porous, but regardless of whether the alloy is in the form of particles or not, for example, component
A preferred method is to remove part or all of the metal component Y from an alloy consisting of Y and Z to make it porous. In such a case, it is particularly preferable to treat an alloy in which components X, Y, and Z are uniformly blended in predetermined proportions with caustic alkali treatment to remove at least a portion of the metal component Y. In the case of the anode of the present invention, it is not necessarily necessary to treat it with caustic alkali before installing it in the electrolytic cell, and since the anolyte used is under caustic alkaline conditions, the metal of component Y is gradually removed during electrolysis. , can serve as the desired anode. Various composition combinations of the above metal particles can be used, and a typical example is Ni.
−Al−Rh, Ni−Al−Ir, Ni−Zn−Rh, Ni−Zn−
Ir, Ni−Si−Rh, Ni−Si−Ir, Co−Al−Rh, Co
−Al−Ir, Co−Zn−Rh, Co−Zn−Ir, Co−Si−
Rh, Co−Si−Ir, Ni−Mg−Rh, Ni−Mg−Ir,
Possible examples include Co-Mg-Rh, Co-Mg-Ir, etc. Among these, a particularly preferable combination is Ni-Al-
Rh, Ni-Al-Ir, Co-Al-Rh, Co-Al-Ir. The conditions for caustic treatment vary depending on the composition of the starting alloy, but in the case of alloys with the compositions described below, the caustic alkali concentration (NaOH equivalent) is 10 to 10.
It is preferable to immerse it in a 35% by weight aqueous solution at 10 to 50°C for 0.5 to 3 hours. The reason for this is that component Y was selected on the condition that it should be removed as easily as possible. Further, component Z is not removed by the alkali treatment, or even if it is removed, it is only a small amount. When the above-mentioned alloy is in the form of particles, the layer for firmly providing the particles on the metal core is preferably made of the same metal as component X constituting the alloy particles. Thus, a large number of the above-mentioned particles are attached to the electrode surface of the anode of the present invention, and when viewed macroscopically,
The anode surface is microporous. The same applies to the case where the surface of the electrode core body is uniformly coated with an alloy layer, but unlike the case where alloy particles are used, there is no metal layer serving as a binder. Thus, in the anode of the present invention, the electrode surface is coated with an alloy containing nickel and/or cobalt, which itself has a low oxygen overvoltage, and as described above, the electrode surface is microporous. The active surface of the electrode becomes larger accordingly, and the synergistic effect of these makes it possible to effectively reduce the oxygen overvoltage. Moreover, in the case of using alloy particles in the present invention,
Since the layer made of the metal is firmly attached to the electrode surface, it is less susceptible to deterioration due to falling off, and the durability of the low oxygen overvoltage is particularly excellent. The electrode core of the present invention may be made of any suitable conductive metal, such as Ti, Zr, Fe, Ni, V,
A metal selected from Mo, Cu, Ag, Mn, platinum group metals, graphite, and Cr, or an alloy selected from these metals can be used. Of these, Fe alloy (Fe-Ni alloy, Fe
-Cr alloy, Fe-Ni-Cr alloy, etc.), Ni, Ni alloy (Ni-Cu alloy, Ni-Cr alloy, etc.), etc. are preferably used. Particularly preferable materials for the electrode core are Ni, Fe-Ni alloy, and Fe-Ni-Cr alloy. The structure of the electrode core can be made into any suitable shape and size depending on the structure of the electrode used. The shape may be, for example, plate-like, porous, net-like (for example, expanded metal), or slat-like, and these may be flat, curved, or cylindrical. The thickness of the layer of the present invention is sufficient if it is 20 to 200μ, more preferably 25 to 150μ, particularly preferably
It is 30-100μ. Cross-sectional views of the electrode surface of the present invention are shown in FIGS. 2 and 3. As shown in FIG. 2, a layer 2 made of metal is provided on the electrode core 1 via an intermediate layer 4, and electrode active metal particles 3 are provided in the layer so as to be exposed from the surface of the layer. include. The proportion of particles in layer 2 is preferably 5 to 80 wt%, more preferably 10 to 50 wt%. By providing an intermediate layer made of a metal selected from Ni and Co between the electrode core and the layer containing alloy particles, the durability of the electrode of the present invention can be further improved. Such an intermediate layer may be of the same type or a different type from the metal of the above-mentioned layer, but from the viewpoint of adhesion between the intermediate layer and the above-mentioned layer, these intermediate layers and the metals of the layer are of the same type. It is preferable. The thickness of the intermediate layer is 5.
~100μ is sufficient, more preferably 20
~80μ, particularly preferably 30-50μ. Of course, it is not always necessary to provide the intermediate layer as described above. FIG. 3 is a cross-sectional view of the anode of the present invention in which the surface of the electrode core is uniformly coated with an alloy layer, in which 1 is the electrode core, 5 is a uniform surface layer of an alloy with electrode activity, 6 is the middle layer. The electrode of the present invention shown in Fig. 2 has a large number of particles exposed on the electrode surface, but the surface layer is porous mainly due to the gaps between the particles, and the alloy component Y The voids left behind after removal also contribute to porosity. As mentioned above, the degree of porosity is also related to the reduction in oxygen overpotential, so that the purpose can be sufficiently achieved if the degree of porosity is 1000 μF/cm 2 or more in electric double layer capacity. Within the above range, preferably 2000 μF/cm 2 or more,
Particularly preferably, it is 5000 μF/cm 2 or more. Electric double layer capacity is the capacitance of an electric double layer formed when positive and negative ions are relatively distributed over a short distance near the electrode surface when the electrode is immersed in an electrolyte solution. indicates the actually measured differential capacity. This capacitance increases as the electrode surface becomes larger. Therefore, when the electrode surface becomes porous and the electrode surface area increases, the electric double layer capacity of the electrode surface also increases. Therefore, due to the electric double layer capacity,
The electrochemically effective electrode surface area, that is, the degree of porosity of the electrode surface can be determined. In addition, since the electric double layer capacity changes depending on the temperature at the time of measurement, the type of electrolyte solution, the concentration, the electrode potential, etc., the electric double layer capacity of the present invention is the value measured by the following method. means. Test piece (electrode) in 40wt% NaOH aqueous solution (25℃)
A platinum plate with black platinum, which has an apparent area approximately 100 times that of the test piece, is inserted as a counter electrode, and the cell impedance in this state is measured using a vector impedance meter to determine the electric double layer capacity of the test piece. Various methods can be used to specifically form the electrode surface layer, such as a dispersion plating method, a melt coating method, a baking method, an alloy plating method, and a molten liquid immersion method. In the case of using alloy particles, the dispersion plating method is particularly preferable because the particles of the present invention can be attached well. In the dispersion plating method, plating is performed using an electrode core as a cathode in an aqueous solution containing the metal forming the metal layer, in which alloy particles mainly composed of nickel, for example, are dispersed. The above metal and alloy particles are co-electrodeposited. In more detail, the particles in the bath become bibolar due to the influence of the electric field, and when they approach the cathode surface, they increase the local current density of the plating, and when they come into contact with the cathode, they undergo the usual reduction of metal ions. It is thought that the metal plating is co-electrodeposited on the core body. For example, when a nickel layer is used as the metal layer, a total nickel chloride bath, a high nickel chloride bath, a nickel chloride-nickel acetate bath, etc. can be used.
When a cobalt layer is used as the metal layer, a total cobalt chloride bath, a high cobalt chloride bath, a cobalt chloride-cobalt acetate bath, etc. can be used. In this case, the pH of the bath is important. That is, the electrode-active metal particles dispersed in the plating bath generally have oxygen attached to their surfaces;
In this state, the bond with the metal layer is not sufficient, and particles may peel off during use as an electrode. To prevent this, it is necessary to reduce the amount of oxygen attached to the surface of the particles. For this purpose, it is preferable that the plating bath has a pH of 1.5 to 3.0. In the case of the present invention, the metal particles include a component X made of nickel and/or cobalt, a component Y selected from aluminum, zinc, magnesium, and silicon, and a component Z selected from noble metals and rhenium at point A in FIG. It is necessary that the alloy be in the range surrounded by ', B', C' and D'. In addition, the alloy components (X, Y, Z) of A', B', C', and D' in Fig. 4 are expressed as A' (59.8, 59.8,
40, 0.2), B' (39.8, 60, 0.2), C' (5, 60,
35), D′(12, 40, 48). More preferable ranges include A′, B′, E′,
F′, A′: (59.8, 40, 0.2), B′:
(39.8, 60, 0.2), E′: (30, 60, 10), F′:
(50, 40, 10). . The reason for this is that if it deviates from this range, it may not be possible to secure a sufficient amount of adhesion during the electrodeposition process, or even if electrodeposition is possible, the adhesion strength may be low. This is because the activity as an electrode catalyst is not sufficient. Alternatively, even if the amount of the noble metal component considerably exceeds this range, the oxygen overvoltage reduction effect and durability will not be significantly improved. As described above, it is preferable from the viewpoint of adhesive strength of the particles that the amount of oxygen attached to the surface portion of the particles that comes into contact with the metal layer is small. It is preferable to form an oxide film partially on the material to stabilize it. The proportion of such particles in the bath is 1 g/~
It is preferable to set the amount to 200 g/, particularly 1 g/ to 50 g/, and more preferably 1 g/ to 10 g/, in order to improve the adhesion of particles to the electrode surface.
In addition, the temperature conditions during dispersion plating work are 20 to 80℃,
Especially at 30 to 60℃, current density is 1A/dm 2 to 20A/
dm2 , especially 1 A/ dm2 to 10 A/ dm2 . It goes without saying that additives for reducing strain, additives for promoting co-electrodeposition, etc. may be added to the plating bath as appropriate. In addition, as mentioned above, when providing an intermediate layer between the electrode core and the metal layer containing particles, the electrode core is first plated with Ni or Co, and then the above-mentioned dispersion plating method or melt spraying method is used. A metal layer containing particles is formed thereon by means of. As the plating bath in such a case, the various plating baths mentioned above can be employed. In this way, an electrode is obtained in which the particles of the present invention are attached to the electrode core via a metal layer. Next, specific means for providing the alloy layer having uniform electrode activity on the electrode core will be explained. As mentioned above, specific methods for this may include a coating method, a dipping method, a baking method, an electroplating method, and the like. The coating method is preferably a method of melting and spraying a fine rod or powder of the alloy as shown in FIG.
For this melt spray, a plasma spray device, an oxygen-hydrogen flame spray device, an oxygen-acetylene flame spray device, etc., which are commonly used in the melt coating method, can be used. The immersion method is a method in which an electrode core is immersed in a molten liquid of the above-mentioned alloy to form a coating layer of the alloy on the core, and the temperature of the molten alloy is below the melting point of the alloy.
A temperature 50 to 200℃ higher is better. In the case of Ni-Al-Rh, the melting point is about 1500°C, so it is preferable to form an alloy coating layer on the electrode core by dipping and pulling at about 1600°C. In the baking method, pre-prepared fine powder particles with a particle size of 100μ or less are applied to the electrode core using a suitable polymer compound, especially a water-soluble polymer aqueous solution as a binder, and then heated to bake the binder. This method involves volatilizing the particles, sintering the particles, and fixing them to the substrate. Sintering is usually carried out at a temperature 100 to 300°C lower than the melting point, and preferably sintered under pressure. In the electroplating method, a solution (preferably an aqueous solution) of a metal salt having components X, Y, and Z in the range shown in Figure 4 is prepared, and the electrode core is immersed as a cathode in this solution, and electroplating is performed. This is the so-called alloy plating method. However, this method cannot be adopted when Y is Al or Mg, but is possible when Y is Zn.
For plating conditions, usual conditions may be used; for example, NiSO 4 7H 2 O, ZnSO 4 , KReO 4 ,
A Ni-Zn-Re alloy layer can be formed by plating a mixed solution of (NH 4 ) 2 SO 4 at a current density of about 1 A/dm 2 and a temperature of about 60° C. with pH set to 4.0. It is also effective to attach a non-electronically conductive substance to the surface of the thus obtained low oxygen overvoltage anode. When the anode of the present invention is used as an anode for water electrolysis of an alkaline aqueous solution, silicate ions may be present in the anolyte, and these may discharge on the anode and silica may be deposited on the anode. In this case, the active surface of the anode will be lost and the oxygen overpotential will increase. In order to prevent such discharge precipitation, a non-electronically conductive substance such as a fluorine-containing resin (such as PTFE) is attached on the anode of the present invention and furthermore on the metal particles protruding from the anode surface. It is effective to keep it. As a specific means for this purpose, a method as disclosed in Japanese Patent Application No. 126921/1988 can be preferably adopted. The anode thus obtained is then treated with caustic alkali (e.g., immersed in an aqueous caustic solution) as necessary to elute and remove at least a portion of the metal of component Y in the alloy particles, and remove the particles or the electrode surface layer. to make it porous. The conditions in such a case are as described above. In addition, when an alloy of the above-mentioned components X, Y, and Z is adopted, it is preferable to perform the caustic alkali treatment as described above. Alternatively, alkaline treatment may be performed while actually performing electrolysis. In such a case, the metal of component Y is eluted during the electrolysis process, and the overvoltage of the anode is reduced. However, although the aqueous caustic alkaline solution produced is slightly contaminated by the eluted metal ions of component Y, this generally does not pose a problem. The electrode of the present invention can of course be used as an anode for electrolysis of aqueous alkaline solutions using a solid electrolyte method or an ion removal method, but can also be used as an anode for water electrolysis of aqueous alkaline solutions using a porous diaphragm (for example, Aspest diaphragm). can also be adopted. Next, examples of the present invention will be described. Examples 1-12 An alloy powder (200 mesh bath) having the composition shown in Table 1 was prepared and used in Examples 1-10, 14-16.
For details, see Example 12 of Japanese Patent Application Laid-open No. 112785/1985.
In addition, for Examples 11 to 13, NiCl 2 6H 2 O in Example 12 of the same publication was replaced with CoCl 2 6H 2 O (concentration
A low oxygen overvoltage electrode was manufactured using a dispersion plating method based on a plating method in which the Ni plate anode was replaced with a Co plate anode (however, the development temperature after plating was 50° C.). A part of the metal particles on the obtained electrode was peeled off and its composition was investigated. The results are also listed in Table 1. Next, these electrodes were constructed using a fluorine-containing cation exchange membrane (manufactured by Asahi Glass Co., Ltd., CF = CF 2 and CF 2 = CFO (CF 2 ) 3 -, with the cathode made of nickel-made expanded metal).
Copolymer with COOCH 3 , ion exchange capacity
1.45meq/g resin) was used as an anode for alkaline water electrolysis with an ion exchange membrane, and the water electrolysis test was 15%.
The test was carried out using KOH, 110° C., and a current density of 70 A/dm 2 . Table 1 shows the results of measuring oxygen overvoltage.

【表】【table】

【表】 比較例 1〜2 比較例1については特開昭54−112785号公報の
実施例12に従い、比較例2については同公報の実
施例12中のNiCl2・6H2OをCoCl2・6H2O(濃度
300g/)に、Ni板陽極をCo板陽極にそれぞれ
かえたメツキ方法にもとずき、Ni−AlおよびCo
−Al合金粉末分散メツキ電極を製造した。 得られた電極上の金属粒子を一部剥離して、そ
の組成を調べた。その結果を表2に併記した。実
施例1〜12と同一条件下で水電解試験を行つた。
その結果を表2に示す。 比較例 3〜6 合金粉末の組成を表2の比較例3〜6に変えた
こと以外は実施例と同様にして陽極を製作した。
そして実施例と同様にして行つた水電解試験の結
果を表2に示した。 比較例3および4は第3成分を多量に添加して
も特段の性能向上は見られないことが示される。
比較例5および6は原料粉末の金属組成が好適範
囲をはずれているため、酸素過電圧が当初より高
いことが示される。
[Table] Comparative Examples 1 to 2 Comparative Example 1 was carried out according to Example 12 of JP-A-54-112785, and Comparative Example 2 was prepared by replacing NiCl 2 6H 2 O in Example 12 of the same publication with CoCl 2 . 6H 2 O (concentration
300g/), Ni-Al and Co
-A plating electrode with dispersed Al alloy powder was manufactured. A part of the metal particles on the obtained electrode was peeled off and its composition was investigated. The results are also listed in Table 2. A water electrolysis test was conducted under the same conditions as in Examples 1 to 12.
The results are shown in Table 2. Comparative Examples 3 to 6 Anodes were manufactured in the same manner as in the example except that the composition of the alloy powder was changed to Comparative Examples 3 to 6 in Table 2.
Table 2 shows the results of a water electrolysis test conducted in the same manner as in the examples. Comparative Examples 3 and 4 show that no particular performance improvement is observed even when a large amount of the third component is added.
In Comparative Examples 5 and 6, the metal composition of the raw material powder was outside the preferred range, so the oxygen overvoltage was higher than originally.

【表】 実施例 13〜16 実施例2、実施例4、実施例7および実施例11
の電極を陽極として、陰極にニツケル製エキスバ
ンドメタルを用い、隔膜としてエチレンと四フツ
化エチレンの共重合体のクロス(旭硝子社製
COP目開き約100メツシユ)を5枚重ねたものと
し、電極の加速耐久性試験を行つた。電流密度を
500A/dm2、試験日数を15日とした。試験後、
電流密度70A/dm2における酸素過電圧の上昇を
調べた。実施例の番号順に+10mV,0mV,+
5mV,+5mVであつた。 比較例 7〜8 比較例1、比較例2の電極につき実施例13〜16
と同様の電極加速耐久性試験を行つた。酸素過電
圧の上昇値はそれぞれ+60mV,+70mVであつ
た。
[Table] Examples 13 to 16 Example 2, Example 4, Example 7, and Example 11
The electrode was used as an anode, the cathode was made of nickel expanded metal, and the diaphragm was made of ethylene and tetrafluoroethylene copolymer cloth (manufactured by Asahi Glass Co., Ltd.).
Accelerated durability tests were conducted on the electrode using five stacked COP sheets (approximately 100 meshes). current density
500A/dm 2 , and the number of test days was 15 days. After the exam,
The increase in oxygen overpotential at a current density of 70 A/dm 2 was investigated. +10mV, 0mV, + in numerical order of examples
It was 5mV and +5mV. Comparative Examples 7-8 Examples 13-16 for the electrodes of Comparative Examples 1 and 2
The same electrode acceleration durability test was conducted. The increased values of oxygen overvoltage were +60 mV and +70 mV, respectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、X=Ni又はCo,Y=Al,Zn,Mg又
はSi,Z=貴金属又はレニウムの3成分からなる
ダイヤグラムで点A,B,C,Dで囲まれる範囲
の組成は本発明陽極の電極活性のある合金の組成
を示す。第2図は、本発明の電極の一例の表面部
分断面図、第3図は、本発明の電極の他の例の表
面部分断面図を夫々示す。第4図は、X=Ni又
はCo,Y=Al,Zn,Mg又はSi,Z=貴金属又は
レニウムの3成分からなるダイヤグラムで点
A′,B′,C′,D′で囲まれる範囲の組成は、本発
明方法に使用される電極活性のある合金の組成範
囲を示す。
Figure 1 is a diagram consisting of three components: X = Ni or Co, Y = Al, Zn, Mg or Si, and Z = noble metal or rhenium. The composition of the alloy with electrode activity for the anode is shown. FIG. 2 is a partial cross-sectional view of the surface of one example of the electrode of the present invention, and FIG. 3 is a partial cross-sectional view of the surface of another example of the electrode of the present invention. Figure 4 is a diagram consisting of three components: X = Ni or Co, Y = Al, Zn, Mg or Si, and Z = noble metal or rhenium.
The composition ranges enclosed by A', B', C', and D' indicate the composition range of the electrode active alloy used in the method of the present invention.

Claims (1)

【特許請求の範囲】 1 ニツケル及び/又はコバルトからなる成分
X、アルミニウム、亜鉛、マグネシウム、シリコ
ンから選ばれる成分Y及び貴金属、レニウムから
選ばれる成分Zからなる合金であつて、成分X,
Y,Zが第1図の点A,B,C及びDで囲まれる
範囲にある合金からなる水電解用陽極。 A:X=99.6wt%,Y=0wt%,Z=0.4wt% B:X=79.6wt%,Y=20wt%,Z=0.4wt% C:X=40wt%,Y=20wt%,Z= 40wt% D:X=40wt%,Y=0wt%,Z= 60wt% 2 電極芯体上に、ニツケル及び/又はコバルト
からなる成分X、アルミニウム、亜鉛、マグネシ
ウム、シリコンから選ばれる成分Y及び貴金属、
レニウムから選ばれる成分Zからなる合金であつ
て、成分X,Y,Zが第1図の点A,B,C及び
Dで囲まれる範囲にある合金の層が設けられてな
る水電解用陽極。 A:X=99.6wt%,Y=0wt%,Z=0.4wt% B:X=79.6wt%,Y=20wt%,Z=0.4wt% C:X=40wt%,Y=20wt%,Z= 40wt% D:X=40wt%,Y=0wt%,Z= 60wt% 3 合金の層が、該合金の粒子の一部が電極芯体
上に設けられた層の表面に露出して形成されたも
のである特許請求の範囲第2項の水電解用陽極。 4 ニツケル及び/又はコバルトからなる成分
X、アルミニウム、亜鉛、マグネシウムから選ば
れる成分Y、及び貴金属、レニウムから選ばれる
成分Zが第4図の点A′,B′,C′及びD′で囲まれ
る範囲にある合金からなる電極活性金属粒子をメ
ツキ浴中に均一に分散せしめ、電極芯体上に共電
着せしめるか、塗布法、浸漬法、焼付法あるいは
電気メツキ法にて、電極芯体上に一様な上記合金
の層を設けることを特徴とする水電解用陽極の製
法。 A′:X=59.8wt%,Y=40wt%,Z=0.2wt% B′:X=39.8wt%,Y=60wt%,Z=0.2wt% C′:X=5wt%,Y=60wt%,Z= 35wt% D′:X=12wt%,Y=40wt%,Z= 48wt% 5 塗布法が該合金粒子を電極芯体上にスプレー
する方法である特許請求の範囲第4項の水電解用
陽極の製法。 6 浸漬法が該合金の溶融液に電極芯体を浸漬す
る方法である特許請求の範囲第4項の水電解用陽
極の製法。 7 電気メツキ法が合金メツキ法である特許請求
の範囲第4項の水電解用陽極の製法。 8 メツキ浴が成分Xと同種の金属イオンを含む
特許請求の範囲第4項の水電解用陽極の製法。 9 メツキ浴がPH1.5〜3.0である特許請求の範囲
第4項又は第8項の水電解用陽極の製法。 10 共電着、浸漬法、塗付法、焼付法ないし電
気メツキ法で設けられた合金の層をNaOH濃度10
〜35%、温度10〜50℃の苛性ソーダ水溶液中で
0.5〜3時間処理する特許請求の範囲第4項の水
電解用陽極の製法。
[Scope of Claims] 1. An alloy consisting of a component X consisting of nickel and/or cobalt, a component Y selected from aluminum, zinc, magnesium, and silicon, and a component Z selected from noble metals and rhenium, wherein the component X,
An anode for water electrolysis made of an alloy in which Y and Z are in the range surrounded by points A, B, C, and D in FIG. A: X=99.6wt%, Y=0wt%, Z=0.4wt% B: X=79.6wt%, Y=20wt%, Z=0.4wt% C: X=40wt%, Y=20wt%, Z= 40wt% D: X = 40wt%, Y = 0wt%, Z = 60wt% 2 On the electrode core, component X consisting of nickel and/or cobalt, component Y selected from aluminum, zinc, magnesium, silicon, and noble metal,
An anode for water electrolysis, which is provided with a layer of an alloy consisting of a component Z selected from rhenium, in which the components X, Y, and Z are in the range surrounded by points A, B, C, and D in Figure 1. . A: X=99.6wt%, Y=0wt%, Z=0.4wt% B: X=79.6wt%, Y=20wt%, Z=0.4wt% C: X=40wt%, Y=20wt%, Z= 40wt% D: X = 40wt%, Y = 0wt%, Z = 60wt% 3 An alloy layer was formed with some of the alloy particles exposed on the surface of the layer provided on the electrode core. The anode for water electrolysis according to claim 2, which is a water electrolysis anode. 4 Component X consisting of nickel and/or cobalt, component Y selected from aluminum, zinc, and magnesium, and component Z selected from noble metals and rhenium are surrounded by points A', B', C', and D' in Figure 4. Electrode active metal particles made of an alloy within the range of 100% are uniformly dispersed in a plating bath, and co-electrodeposited onto the electrode core, or by coating, dipping, baking, or electroplating. A method for producing an anode for water electrolysis, characterized in that a uniform layer of the above-mentioned alloy is provided thereon. A′: X=59.8wt%, Y=40wt%, Z=0.2wt% B′: X=39.8wt%, Y=60wt%, Z=0.2wt% C′: X=5wt%, Y=60wt% , Z = 35wt% D': X = 12wt%, Y = 40wt%, Z = 48wt% 5. Water electrolysis according to claim 4, wherein the coating method is a method of spraying the alloy particles onto the electrode core. Manufacturing method for anodes. 6. The method for producing an anode for water electrolysis according to claim 4, wherein the immersion method is a method of immersing the electrode core in a molten liquid of the alloy. 7. The method for producing an anode for water electrolysis according to claim 4, wherein the electroplating method is an alloy plating method. 8. The method for producing an anode for water electrolysis according to claim 4, wherein the plating bath contains metal ions of the same type as component X. 9. The method for producing an anode for water electrolysis according to claim 4 or 8, wherein the plating bath has a pH of 1.5 to 3.0. 10 An alloy layer provided by co-electrodeposition, dipping, painting, baking or electroplating with a NaOH concentration of 10
~35% in caustic soda aqueous solution at temperature 10-50℃
The method for producing an anode for water electrolysis according to claim 4, wherein the treatment is performed for 0.5 to 3 hours.
JP57175376A 1982-07-10 1982-10-07 Anode for water electrolysis and its production Granted JPS5967382A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP57175376A JPS5967382A (en) 1982-10-07 1982-10-07 Anode for water electrolysis and its production
US06/539,952 US4498962A (en) 1982-07-10 1983-10-07 Anode for the electrolysis of water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57175376A JPS5967382A (en) 1982-10-07 1982-10-07 Anode for water electrolysis and its production

Publications (2)

Publication Number Publication Date
JPS5967382A JPS5967382A (en) 1984-04-17
JPS6145712B2 true JPS6145712B2 (en) 1986-10-09

Family

ID=15995016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57175376A Granted JPS5967382A (en) 1982-07-10 1982-10-07 Anode for water electrolysis and its production

Country Status (1)

Country Link
JP (1) JPS5967382A (en)

Also Published As

Publication number Publication date
JPS5967382A (en) 1984-04-17

Similar Documents

Publication Publication Date Title
US4498962A (en) Anode for the electrolysis of water
JPS6136591B2 (en)
JPS5948872B2 (en) Electrolytic cathode and its manufacturing method
US4470893A (en) Method for water electrolysis
JPS6145711B2 (en)
US5035790A (en) Highly durable cathode with low hydrogen overvoltage and method for producing the same
JPS60159184A (en) Anode for electrolyzing water
EP0222911B1 (en) Highly durable low-hydrogen overvoltage cathode and a method of producing the same
JPH0257159B2 (en)
US4877508A (en) Highly durable cathode of low hydrogen overvoltage and method for manufacturing the same
JPS6145712B2 (en)
JPS6145713B2 (en)
JPS6125790B2 (en)
JP2610937B2 (en) High durability low hydrogen overvoltage cathode
JPS5925940A (en) Low overvoltage cathode having high durability and its production
KR820000886B1 (en) Process for preparing electrode
JPS6136590B2 (en)
JPS58133387A (en) Cathode having low hydrogen overvoltage and preparation thereof
JPS6123278B2 (en)
JPS6067687A (en) Highly durable low hydrogen overvoltage cathode and preparation thereof
JPS5943552B2 (en) Ion exchange membrane, electrode assembly and manufacturing method thereof
JPS5846553B2 (en) Method of manufacturing activated electrodes
JPS6344833B2 (en)
JPS5943553B2 (en) Ion exchange membrane, electrode assembly and manufacturing method thereof
JPH0250992A (en) High-durability low hydrogen overvoltage cathode and manufacture thereof