JPS6145564A - Polymethyneimine battery - Google Patents

Polymethyneimine battery

Info

Publication number
JPS6145564A
JPS6145564A JP59165691A JP16569184A JPS6145564A JP S6145564 A JPS6145564 A JP S6145564A JP 59165691 A JP59165691 A JP 59165691A JP 16569184 A JP16569184 A JP 16569184A JP S6145564 A JPS6145564 A JP S6145564A
Authority
JP
Japan
Prior art keywords
battery
polymethyneimine
present
electrolyte
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59165691A
Other languages
Japanese (ja)
Inventor
Kazuo Hasumi
蓮見 和夫
Taku Kitamura
卓 北村
Noburu Fujisawa
宣 藤沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Original Assignee
Kawamura Institute of Chemical Research
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, Dainippon Ink and Chemicals Co Ltd filed Critical Kawamura Institute of Chemical Research
Priority to JP59165691A priority Critical patent/JPS6145564A/en
Publication of JPS6145564A publication Critical patent/JPS6145564A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/60Selection of substances as active materials, active masses, active liquids of organic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a high-output high-energy-density battery which has excellent reliability and can be made lighter and thinner by using a polymethyneimine as an active material for the electrode. CONSTITUTION:A polymethyneimine consisting of units each represented by the formula is used to make at least one of the electrodes participating in anodic reaction or cathodic reaction. In the formula, R represents hydrogen, an alkyl group, an allyl group, an amino group or a halogen. Although various polymethyneimines of nonsubstituted or substituted types can be effectively used, nonsubstituted polymethyneimine (-CH=N-) is specially effective. Polymethyneimines can be doped with an electron-accepting or electron-donative dopant before being used for electrodes. By the means mentioned above, it is possible to realize a high-output high-energy-density battery which can be made smaller, lighter and thinner than any conventional battery. Furthermore, this battery can also be used as a secondary battery.

Description

【発明の詳細な説明】 〈産業上利用分野〉 本発明は、全く新規な高出力、高エネルギー電池に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a completely new high output, high energy battery.

近年、エネルギー関連分野、電子機器分野、電気機器分
野における電池の利用が活発化してきていると同時に、
電池の開発研究も盛んである。エネルギー関連分野にお
いては電気自動車の動力源或いは電力貯蔵用として、高
出力の電池が望まれるのに対し、電子機器分野において
は、電子機器の小型化、軽量化に伴い、小型、軽量、更
には薄膜化可能な電池が待ち望まれている。しかし、両
者を同時に満足させる小型、軽量、薄膜化可能な高出力
電池はいまだに存在しない。
In recent years, the use of batteries in energy-related fields, electronic equipment fields, and electrical equipment fields has become more active.
Research and development of batteries is also active. In the energy-related field, high-output batteries are desired as a power source for electric vehicles or for power storage, while in the electronic equipment field, as electronic equipment becomes smaller and lighter, batteries that are smaller, lighter, and even lighter are needed. Batteries that can be made into thin films are eagerly awaited. However, there is still no high-output battery that satisfies both requirements and can be made small, lightweight, and thin.

本発明に係る電池は、これらエネルギー関連分野および
電子機器分野のいずれにも利用可能な高性能電池である
The battery according to the present invention is a high-performance battery that can be used in both of these energy-related fields and electronic device fields.

〈従来の技術およびその問題点〉 エネルギー関連分野においては従来鉛蓄電池、NaS電
池等が用いらn1電子機器の分野においては酸化鉛電池
リチウム電池が各々独立に研究され、−次電池において
市販されているものもある。
<Conventional technology and its problems> Lead-acid batteries, NaS batteries, etc. are conventionally used in the energy-related field, and lead-oxide batteries and lithium batteries have been independently researched in the field of n1 electronic equipment, and have not been commercially available as secondary batteries. There are some.

しかし、従来の電池においては高エネルギー密度、高出
力の点で到底十分なものではないのみならず、小型、軽
量薄膜化の点に於いても満足すべきものではない。
However, conventional batteries are not only completely unsatisfactory in terms of high energy density and high output, but also unsatisfactory in terms of size, weight, and thin film.

く問題点を解決するだめの手段〉 そこで本発明者らは、これらの問題点を解決すべく鋭沼
検討した結果、本発明の全く新規な構成からなる電池を
几いれば以上の問題点全同時に解決できることを見出し
本弘明の電池は、小型、軽量、薄膜化可能な新規の高出
力電汗である。また、本発明は従来の電池に比べ保存性
、長期イ1頼性の点でも優れた電池構成と電池構造を提
供するもの−ある。
The inventors of the present invention have made extensive studies to solve these problems, and have found that if they create a battery with a completely new configuration of the present invention, all of the above problems can be solved. At the same time, Hiroaki Moto discovered that he could solve these problems, and his battery is a new high-output electrolyte that can be made smaller, lighter, and thinner. Furthermore, the present invention provides a battery configuration and structure that is superior in storage stability and long-term reliability compared to conventional batteries.

本発明の電池はポリメチンイミンを電極活物質とした、
軽量化、薄膜化可能な、高エネルギー密度、高出力電池
であって、しかも信頼性の点で特に優れた電池を提供す
る。
The battery of the present invention uses polymethine imine as an electrode active material.
To provide a high energy density, high output battery which can be made lighter and thinner, and which is particularly excellent in terms of reliability.

本発明の主たる特徴は、該ポリマーが軽量であると同時
に薄膜形成能をも有しているため、小型、軽量、薄膜化
可能な高出力電池になる。さらには、従来の鉛、ニッケ
ル、カドニウム等を活物質とした系の様に、活物質表面
の金属イオンの溶解析出反応を利用するものとは異な広
本発明の電池は、電解質から解離生成するイオンがポリ
メチンイミンに対するイオンドーパントとして電気化学
的にドープ、脱ドープすることKよシミ池として機能す
る。
The main feature of the present invention is that the polymer is lightweight and at the same time has the ability to form a thin film, resulting in a high-output battery that can be made small, lightweight, and thin. Furthermore, unlike conventional systems using lead, nickel, cadmium, etc. as active materials, which utilize dissolution precipitation reactions of metal ions on the surface of the active material, the battery of the present invention dissociates and generates metal ions from the electrolyte. The ions act as ion dopants for polymethine imine and function as stain ponds by electrochemically doping and dedoping.

従って、活物質がその表面のみに止まらず、内部まで利
用されるため、高エネルギー密度電池となる。
Therefore, the active material is utilized not only on the surface but also inside the battery, resulting in a high energy density battery.

又、本発明の電池は、その機構、構造から明らかな様に
一次電池はもとよシ、二次電池として特に優れた性能を
発揮する。
Further, as is clear from its mechanism and structure, the battery of the present invention exhibits particularly excellent performance not only as a primary battery but also as a secondary battery.

本発明は、電極と電解質全主要構成要素とする電池にお
いて、アノード反応またはカソード反応に関与する電極
の少くとも一方の電極が、 弐 % C=N+(式中、
Rは、水素、アルキル基、アリール基、アミン基または
ハロゲンf、意禾する)で示される実質的繰返し単位f
fi有するポリメチンイミンで作成された電池に関する
The present invention provides a battery in which electrodes and an electrolyte are all main components, and at least one of the electrodes involved in an anode reaction or a cathode reaction has 2% C=N+ (in the formula,
R is a substantial repeating unit f, represented by hydrogen, an alkyl group, an aryl group, an amine group, or a halogen f,
The present invention relates to a battery made of polymethineimine having fi.

本発明で用いられるポリメチンイミンは、一般にトリア
ジン化合物の開環重合により行なわれる。代表的な方法
としては、Die Makromolekulare 
:Chemie 第175巻]’1751−1760頁
に記載のごとく、トリアジン化合物とルイス酸の錯体全
製造し、これ全熱分解する方法が挙げら扛る。
Polymethineimine used in the present invention is generally produced by ring-opening polymerization of a triazine compound. A typical method is Die Makromolekulare.
As described in Chemie Vol. 175], pages 1751-1760, there is a method in which a complex of a triazine compound and a Lewis acid is completely prepared and the complex is completely thermally decomposed.

ポリメチンイミンは、上記の如く無置換体、置換体など
種々のものが有効であるが、特に無置換のポリメチンイ
ミン−%CI(=Nすが有効である。
As mentioned above, various types of polymethine imine are effective, such as unsubstituted and substituted forms, but unsubstituted polymethine imine-%CI (=N) is particularly effective.

ポリメチンイミンはあらかじめ電子受容性ドーピング剤
又は電子供与性ドーピング剤によりドープして、電極と
して使用することが可能である。
Polymethineimine can be doped in advance with an electron-accepting doping agent or an electron-donating doping agent and used as an electrode.

電子受容性ドーピング剤としては)・ロゲン及び種々の
ルイス酸性物質がある。具体的にはノ・ロゲンとしてC
打砦打、等があり、ルイス酸性物質としては、A8F!
 s  5bFS%及ヒCl02e1DF、e、BF4
eノ陰イオン等カ挙ケラレル。
Examples of electron-accepting doping agents include rogens and various Lewis acidic substances. Specifically, C as No.
There are many types of Lewis acidic substances such as A8F!
s5bFS% and HCl02e1DF, e, BF4
E-anions, etc.

電子供与性ドーピング剤としてNa、Ll等のアルカリ
金属及びこれらのす7タレン錯体及びNa中、Li中、
Bu4N十等の陽イオンがある。しかし、これらに限定
されることもなく、ポリアセチレンのドーパントとして
通常知られているものも使用可能である。
As an electron-donating doping agent, alkali metals such as Na and Ll and their 7-talene complexes, in Na, in Li,
There are cations such as Bu4N. However, the dopant is not limited to these, and commonly known dopants for polyacetylene can also be used.

これらのドーピング濃度は必要に応じて選択できる。ド
ーピング方法は、前記ポリメチンイミン金ドーパント蒸
気と気相で接触させる方法、電気化学的ドーピング法等
があり、特に限定されない。
These doping concentrations can be selected as required. The doping method is not particularly limited, and includes a method of contacting the polymethineimine gold dopant vapor in a gas phase, an electrochemical doping method, and the like.

本発明の電池は、前記ポリメチンイミンを正負極活物質
の一方又は双方に用いる。前記ポリメチンイミン金一方
の活物質にのみ用いた場合、他方の活物質は金属、例え
ばリチウム、ナトリウムのごときアルカリ金属、白金、
金のごとき電解液に不活性な金属、または有機ポリマー
例えばポリアセチレン、ポリフェニレン等が使用でさる
The battery of the present invention uses the polymethine imine as one or both of the positive and negative electrode active materials. When the polymethine imine gold is used as only one active material, the other active material is a metal, such as an alkali metal such as lithium or sodium, platinum,
Metals inert to the electrolyte, such as gold, or organic polymers such as polyacetylene, polyphenylene, etc. may be used.

以上の正、負側活物質は、l、Ni、ステンレス、カー
ボンフィルム等の導電性支持体(たとえば金属箔)上に
設けてもよいし、ポリエステルフィルム、テフロン(登
録商標)、ガラス等の絶縁体上に設けてもよい。
The above positive and negative side active materials may be provided on a conductive support (for example, metal foil) such as L, Ni, stainless steel, or carbon film, or may be provided on an insulating support such as polyester film, Teflon (registered trademark), or glass. It may also be placed on the body.

本発明の電池は、敢充電が繰返される二次電池の場合に
は、電解質が解離して生成するドーパントイオンが電気
化学的にドープ脱ドープすることによシ機能する。従っ
て本発明で用いる電解質は、溶媒中で解離する陰イオン
と陽イオンの塩である。
In the case of a secondary battery that is repeatedly charged, the battery of the present invention functions by electrochemical doping and dedoping of dopant ions generated by dissociation of the electrolyte. Therefore, the electrolyte used in the present invention is a salt of an anion and a cation that dissociates in a solvent.

陰イオンドーパントとしては、例えばニー、Br−1C
lスF”−1(JO4”−1DF6−1A S Fs−
1A ts F4−1SO,CF、−1BF4−′、B
Cl2−1N03−1POF、−1CN−1stpy、
CH3Co八C,HへCO;、cmsc、H45o;%
shy;、SO,−等がある。
Examples of anion dopants include Ni, Br-1C
1S F”-1 (JO4”-1DF6-1A S Fs-
1A ts F4-1SO, CF, -1BF4-', B
Cl2-1N03-1POF, -1CN-1stpy,
CH3Co8C,H to CO;, cmsc, H45o;%
Shy;, SO, -, etc.

n型ドーピングを行なうのに適した陽イオンドーパント
Y%S・、Be、 AI、 Zr%Ti等の金属の陽イ
オンドーパントート、特に好ましくは、Na”、Li+
イオン及び一般式 R4−xMI Hz 又はRsM2
(式中、RはC1からC1゜のアルキル基、例えばフェ
ニル、ハロフェニル、アルキルフェニル等のアリールM
syrruN。
Cation dopants suitable for carrying out n-type doping Cation dopant totes of metals such as Y%S., Be, AI, Zr%Ti, particularly preferably Na'', Li+
Ion and general formula R4-xMI Hz or RsM2
(In the formula, R is a C1 to C1° alkyl group, such as aryl M such as phenyl, halophenyl, alkylphenyl)
syrruN.

2%As、M2はO又はS%XはO又は1を表わす。)
で示される例えばテトラアルキルアンモニウムイオン、
テトラアルキルホスホニクムイオン、テトラアルキルア
ルソニウムイオン、トリアルキルオキンニウムイオン、
トリアルキルスルホニウムイオン等である。
2%As, M2 represents O or S%X represents O or 1. )
For example, a tetraalkylammonium ion represented by
Tetraalkylphosphonicum ion, tetraalkyl arsonium ion, trialkyloquinnium ion,
These include trialkylsulfonium ions.

これらドーパントのうち、特に電極に付与する導電性の
幅が広く、そのため所望の導電性の選択性の範囲が広い
点で好ましいのは、陰オンドーパントとしてはCl O
s−5DF6−1AsF、−1AsF4−1so、CF
、−及びBF、−であシ、又陽イオンドーパントとして
はテトラアルキルアンモニウム及びLt+である。
Among these dopants, ClO is preferable as the anionic dopant because it imparts a wide range of conductivity to the electrode and therefore provides a wide range of selectivity for desired conductivity.
s-5DF6-1AsF, -1AsF4-1so, CF
, - and BF, - and the cationic dopants are tetraalkylammonium and Lt+.

電解質は、一般に電解質に対して不活性で、イオンドー
パントが電極に泳動を許す様な水あるいは適当な有機極
性@媒に溶解して用いる。
The electrolyte is generally used dissolved in water or a suitable organic polar medium that is inert to the electrolyte and allows the ionic dopant to migrate to the electrode.

有機極性溶媒としてはスルフオラン、アセトニトリル、
テトラヒドロフラン、プロピレンカーボネート等が挙げ
られ、電解質濃度は0.01〜IOMが適当でおる。
Organic polar solvents include sulfolane, acetonitrile,
Tetrahydrofuran, propylene carbonate, etc. are mentioned, and the electrolyte concentration is suitably 0.01 to IOM.

避らに本発明の電池の基本構成及び基本構造に、通常の
電池でよく用いらnるセパレーター、シールド技術、バ
ッキング技術等を応用することができる。
Instead, it is possible to apply separators, shielding techniques, backing techniques, etc., which are often used in ordinary batteries, to the basic configuration and basic structure of the battery of the present invention.

また本発明の電池は、好適には前述したように充放電を
くり返し行える二次電池である。充電方法は、放電終了
時に印加電圧3〜1ov2加えて行な9とよい。
Further, the battery of the present invention is preferably a secondary battery that can be repeatedly charged and discharged as described above. The charging method is preferably 9 by adding an applied voltage of 3 to 1 ov2 at the end of discharging.

〈発明の効果〉 本発明の電池は、ポリメチンイミン又はドーピングでれ
たポリメチンイミンを活物質として用いることにより、
従来にない小形、軽量、薄型化可能な高出力高エネルギ
ー密度電池を実現することができた。
<Effects of the Invention> The battery of the present invention uses polymethine imine or doped polymethine imine as an active material.
We were able to create a high-output, high-energy-density battery that is smaller, lighter, and thinner than ever before.

さらに、二次電池としての使用も可能であることから本
発明の効果は著しい。
Furthermore, since it can also be used as a secondary battery, the effects of the present invention are remarkable.

〈実施例さ 本発明を実施例にもとづき、以下に具体的に説明するが
、本発明はこれらの実施例に限定されるものではない。
<Examples> The present invention will be specifically explained below based on Examples, but the present invention is not limited to these Examples.

実施例1゜ 攪拌装置、連流冷却器を付した3つロフラスコにトリア
ジン10gと塩化亜鉛209とジエチルエーテル200
0#I/を加え、窒素下で2時間還流する。この溶液を
ゆっくシ室温まで冷却し、生成した白色微結晶kF遇す
る。この微結晶全ジエチルエーテル500m+7で3回
洗浄した後乾燥すると、トリアジン・塩化亜鉛錯体29
.31−得た。このトリアジン・塩化亜鉛錯体をアルゴ
ン芥囲気下230”Cに加熱するとポリメチンイミン9
8gを得た。
Example 1 10 g of triazine, 209 g of zinc chloride, and 209 g of diethyl ether were placed in a three-bottle flask equipped with a stirring device and a continuous flow condenser.
Add 0#I/ and reflux under nitrogen for 2 hours. The solution was slowly cooled to room temperature and the white microcrystals formed were dissolved. After washing the microcrystals three times with 500 m of total diethyl ether and drying, the triazine/zinc chloride complex 29
.. 31-obtained. When this triazine/zinc chloride complex is heated to 230"C under an argon atmosphere, polymethinimine 9
8g was obtained.

このポリメチンイミンを乳鉢で測かく粉砕後、200k
g/crIt1の圧力で加圧成形することにより径25
M、厚さ0.1 rtmの円形のペレットヲ作成した。
After measuring and pulverizing this polymethine imine in a mortar, 200k
Diameter 25 by pressure molding at a pressure of g/crIt1
A circular pellet with a thickness of 0.1 rtm was prepared.

このベレット金正極とし、負極にリチウムを用い、電解
液として1.0M Li(JO,のプロピレンカーボネ
ート溶液を用い、二次電池を構成した。
A secondary battery was constructed using this pellet gold positive electrode, lithium for the negative electrode, and a propylene carbonate solution of 1.0M Li (JO) as the electrolyte.

実施例2 実施例1の方法で作成したポリメチンイミンの径25m
厚さ0.1頭の円形のベレット金正極及び負極に用い、
電解液としてLiPF、のテトラヒドロフラン溶液を用
い二次電池を構成した。
Example 2 Polymethineimine prepared by the method of Example 1 had a diameter of 25 m.
Circular gold pellets with a thickness of 0.1 head are used for the positive and negative electrodes,
A secondary battery was constructed using a tetrahydrofuran solution of LiPF as an electrolyte.

実施例3 J、 Am、 Chem、 Soe、第291巻第10
0−104頁(1964年)記載の方法によシベンゼン
の酸化的カチオン重合によシ合成したポリ(フェニレン
)の粉末t−200ky/rrt”の圧力成形すること
によシ、径25間、厚さ0.1mの円形のベレットヲ作
成した。この円形のベレット金正極に、実施例1の方法
で作成したポリメチンイミンのペレットを負極として二
次電池を構成して、電解液としてL I A s F。
Example 3 J, Am, Chem, Soe, Vol. 291, No. 10
0-104 (1964), a powder of poly(phenylene) synthesized by oxidative cationic polymerization of cybenzene was pressure-molded with a diameter of 25 mm and a thickness of 200 ky/rrt. A circular pellet with a length of 0.1 m was prepared.A secondary battery was constructed by using the polymethineimine pellet prepared by the method of Example 1 as a negative electrode on the circular pellet gold positive electrode, and LIAsF was used as the electrolyte. .

のスルフオラン浴液全使用し、二次電池を構成した。A secondary battery was constructed using all of the sulforane bath solution.

実施例4 実1tTr例1で作成したポリメチンイミンのベレット
金正極及び負極に用い、電解液として33 u 4 N
 Cl 04 の1Mアセトニトリル溶溶液用用て二次
電池を構成した。
Example 4 Actual 1tTr Polymethineimine pellets prepared in Example 1 were used for the positive and negative electrodes, and 33 u 4 N was used as the electrolyte.
A secondary battery was constructed using a 1M acetonitrile solution of Cl 04 .

Claims (1)

【特許請求の範囲】 1、電極と電解質を主要構成要素とする電池において、
アノード反応またはカソード反応に関与する電極の少く
とも一方の電極が、 ▲数式、化学式、表等があります▼ (式中、Rは、水素、アルキル基、アリール基、アミノ
基またはハロゲンを意味する) で示される実質的繰返し単位を有するポリメチンイミン
で作成された電池。 2、実質的繰返し単位が▲数式、化学式、表等がありま
す▼で示される特許請求の範囲第1項記載の電池。
[Claims] 1. In a battery whose main components are an electrode and an electrolyte,
At least one of the electrodes involved in the anode reaction or cathode reaction has a ▲mathematical formula, chemical formula, table, etc.▼ (wherein R means hydrogen, an alkyl group, an aryl group, an amino group, or a halogen) A battery made of polymethineimine having a substantial repeating unit. 2. The battery according to claim 1, in which the substantial repeating unit is represented by ▲a mathematical formula, a chemical formula, a table, etc.▼.
JP59165691A 1984-08-09 1984-08-09 Polymethyneimine battery Pending JPS6145564A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59165691A JPS6145564A (en) 1984-08-09 1984-08-09 Polymethyneimine battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59165691A JPS6145564A (en) 1984-08-09 1984-08-09 Polymethyneimine battery

Publications (1)

Publication Number Publication Date
JPS6145564A true JPS6145564A (en) 1986-03-05

Family

ID=15817208

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59165691A Pending JPS6145564A (en) 1984-08-09 1984-08-09 Polymethyneimine battery

Country Status (1)

Country Link
JP (1) JPS6145564A (en)

Similar Documents

Publication Publication Date Title
Yuan et al. Membranes in non-aqueous redox flow battery: A review
CN107768741B (en) Eutectic electrolyte and application thereof in secondary zinc battery
US5273840A (en) Methide salts, formulations, electrolytes and batteries formed therefrom
JP2862238B2 (en) Ion conductive material
US3922174A (en) Electrochemical cell
US5589291A (en) Stabilized rechargeable cell in MSE
TW546864B (en) High-energy, rechargeable, electrochemical cells with gel polymer electrolytes
CN106384844B (en) Non-nucleophilic double salt system magnesium battery electrolytes, preparation method and application
JPH0454350B2 (en)
WO1993009092A1 (en) Bis(perfluorosulphonyl)methanes, process for preparing same and uses thereof
JP2759479B2 (en) All-solid-state lithium secondary battery
Yamaguchi et al. Lithium tetrakis (haloacyloxy) borate: An easily soluble and electrochemically stable electrolyte for lithium batteries
JPS5931780A (en) Ionic compound, ion conductive substance and electric cell
Dong et al. Single‐Ion Conducting Polymer Electrolyte for Superior Sodium‐Metal Batteries
JPS6145564A (en) Polymethyneimine battery
JP3139072B2 (en) Battery
JPS61203565A (en) Secondary battery and its electrode
JP3503657B2 (en) Battery using ion-conductive polymer compound
JP2001015166A (en) Ion conductive element and lithium ion secondary battery using the same
JPS61206170A (en) Secondary battery and its electrode
CN111261930B (en) Aluminum ion battery solid electrolyte solution and battery
JPH02193999A (en) Polyphosphagen and use of same polyphosphagen
Farda et al. Journal of Composites and Compounds
JP5220323B2 (en) Ionic polymer, and electrolyte and electrochemical device using the same
WO2024059937A1 (en) Metallated catechol derivatives useful for lithium battery electrodes