JPS6144466A - Mos type semiconductor device - Google Patents

Mos type semiconductor device

Info

Publication number
JPS6144466A
JPS6144466A JP16514385A JP16514385A JPS6144466A JP S6144466 A JPS6144466 A JP S6144466A JP 16514385 A JP16514385 A JP 16514385A JP 16514385 A JP16514385 A JP 16514385A JP S6144466 A JPS6144466 A JP S6144466A
Authority
JP
Japan
Prior art keywords
electrode
impurity concentration
region
substrate
drain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16514385A
Other languages
Japanese (ja)
Inventor
Minoru Ito
稔 伊藤
Taku Kawahara
卓 河原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP16514385A priority Critical patent/JPS6144466A/en
Publication of JPS6144466A publication Critical patent/JPS6144466A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/762Charge transfer devices
    • H01L29/765Charge-coupled devices
    • H01L29/768Charge-coupled devices with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To inhibit the channel length modulation dependent on drain voltage by a method wherein the substrate impurity concentration of an off-set gate structure is made equal to the impurity concentration of reverse conductivity type under a gate electrode or smaller than that. CONSTITUTION:The surface of a P<-> substrate 4 with the impurity contration NA=10<15>-10<16>atom/cm<3> is provided with N<-> layers 5a, 6a, and 7a with the impurity concentration ND=10<14>-10<16>atom/cm<3>, and the MOS capacitor part is provided with an n<+> layer 8a of high concentration. Gate electrodes are provided on an SiO2 insulation film 9: (n) electrode 1a is connected to the electrode 3a of the MOS capacitor, which are connected to a clock signal line 10, whereas an electrode 1b and a capacitor electrode 3b are connected to a signal line 11, and an electrode 2a to a signal line 12, thus driving a BBD. Selecting the ND at a value approximately the same as that of NA or less than it causes the marked reduction in channel length modulation by the inhibition of the width Wp of a depletion layer spreading over the channel part; therefore, the incomplete transfer efficiency of the BBD device is largely improved.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はオフセットゲート構造のMOS型半導体装置に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a MOS type semiconductor device with an offset gate structure.

従来の技術 MOS型トランジスタは、周知のように、ドレイン・ソ
ース間電流(I on )のドレイン・ソース間電圧(
Vo@)依存性をもっている。第4図は、ゲート電圧(
V、、)一定としたときのV□−工。。
As is well known, in conventional MOS transistors, the drain-source voltage (I on ) of the drain-source current (I on ) is
Vo@) has dependence. Figure 4 shows the gate voltage (
V,,) V□-k when it is constant. .

特性図であり、特性曲線ムが従来例である。このような
ドレイン・ソース間電流のドレイン・ソース間電圧依存
性は、ドレイン電圧に依存して、ドレイン領域からチャ
ンネル領域へ拡がる空乏層幅が変化し、これによる実効
的チャンネル長の変動、いわゆる、チャンネル長変調に
起因するもので8る。そして、このドレイン・ソース間
電流のドレイン・ソース間電圧依存性は、MOS型トラ
ンジスタを電荷転送用のスイッチング素子として利用す
るパケット・ブリゲート・デバイス(以下、BBDと略
す)の場合に、転送電荷の取り残しを生む要因、すなわ
ち、不完全転送効率(αD )を太き(することになる
This is a characteristic diagram, and the characteristic curve M is a conventional example. This dependence of the drain-source current on the drain-source voltage is caused by the fact that the width of the depletion layer extending from the drain region to the channel region changes depending on the drain voltage, resulting in a variation in the effective channel length, so-called. This is due to channel length modulation. The drain-source voltage dependence of this drain-source current can be seen in the case of a packet brigade device (hereinafter abbreviated as BBD) that uses a MOS transistor as a switching element for charge transfer. This increases the factor that causes leftovers, that is, the incomplete transfer efficiency (αD).

発明が解決しようとする問題点 ところで、MOS型トランジスタにみられるチャンネル
長変調の現象は、チャンネル長が短くなるほど顕著にな
り、BBDでは、高密度化の障害になる。
Problems to be Solved by the Invention Incidentally, the phenomenon of channel length modulation observed in MOS transistors becomes more pronounced as the channel length becomes shorter, and becomes an obstacle to high density in BBDs.

また、MOS型トランジスタのチャンネル長変調は、オ
フセットゲート構造MOS型トランジスタで、そのオフ
セットゲート部分のドレイン領域を低不純物濃度化する
ことによっても、付随的には抑制される。すなわち、ド
レイン領域の低不純物濃度化により、ドレイン電圧に依
存して拡がる空乏層が低濃度ドレイン領域にも分配され
て、チャンネル領域へ拡がる空乏層幅を抑える効果がる
る。しかしながら、ドレイン領域の不純物濃度を低減し
ても、接合域での空乏層幅がチャンネル領域側で大きく
、かつ、支配的である限り、チャンネル長変調の抑制効
果にも限界があり、大きな効果は期待できない。
In addition, the channel length modulation of a MOS transistor is also suppressed by lowering the impurity concentration in the drain region of the offset gate portion of the MOS transistor with an offset gate structure. That is, by lowering the impurity concentration in the drain region, the depletion layer that expands depending on the drain voltage is distributed to the lightly doped drain region, which has the effect of suppressing the width of the depletion layer expanding toward the channel region. However, even if the impurity concentration in the drain region is reduced, as long as the depletion layer width in the junction region is large and dominant on the channel region side, there is a limit to the effect of suppressing channel length modulation. I can't wait.

問題点を解決するだめの手段 本発明は、ゲート電極とドレイン領域との間にオフセッ
トゲート構造部をそなえ、前記オフセットゲート構造部
の基板不純物濃度を前記ゲート電極下の反対導電型基板
領域の不純物濃度と同等、もしくはそれより低濃度にな
したMO3型半導体装置であり、これによって、上述の
問題点を解決するものである。
Means for Solving the Problems The present invention provides an offset gate structure between a gate electrode and a drain region, and adjusts the substrate impurity concentration of the offset gate structure to that of an opposite conductivity type substrate region under the gate electrode. This is an MO3 type semiconductor device with a concentration equal to or lower than that of the present invention, and thereby solves the above-mentioned problems.

作用 本発明によると、オフセットゲート構造部に延在する実
効ドレイン領域の不純物濃度を、ゲート電極下の反対導
電型基板領域の不純物濃度と同等、もしくはそれより低
濃度になしたことによって、ドレイン電圧に依存して拡
がる空乏層が、チャンネル領域側よりも、低濃度の実効
ドレイン領域内に大きくなり、したがって、ドレイン電
圧依存のチャンネル長変調を格段に抑制することができ
る。
According to the present invention, by making the impurity concentration of the effective drain region extending in the offset gate structure equal to or lower than the impurity concentration of the opposite conductivity type substrate region under the gate electrode, the drain voltage can be increased. The depletion layer, which expands depending on the voltage, becomes larger in the low-concentration effective drain region than in the channel region side, and therefore, drain voltage-dependent channel length modulation can be significantly suppressed.

実施例 第1図は、本発明実施例のオフセットゲート構造M O
Sfi トランジスタを電荷転送用スイッチング素子と
するBBDの断面構造およびその駆動方式を概説するた
めの駆動結線図である。
Embodiment FIG. 1 shows an offset gate structure M O of an embodiment of the present invention.
FIG. 2 is a drive connection diagram outlining the cross-sectional structure and drive method of a BBD using an Sfi transistor as a charge transfer switching element.

BBDは周知のように、同一基板上に配置はれたMOS
型トランジスタのゲートとドレイン間に1!荷蓄積容量
を形成し、そnぞれのMOS型トランジスタのソースと
ドレインを順次直列縦続接続し、一つおきのMOS型ト
ランジスタのゲートをそれぞれ連結した構造を有してお
り、二相の互いに逆位相のクロックによって連続的に電
荷転送を行なう。
As is well-known, BBD is a MOS transistor arranged on the same substrate.
1 between the gate and drain of the type transistor! It has a structure in which the sources and drains of each MOS transistor are successively connected in series to form a load storage capacitor, and the gates of every other MOS transistor are connected to each other. Charge transfer is performed continuously using clocks with opposite phases.

この図で、単位のMOS型トランジスタは、第1ゲート
電極1&と第2ゲート電極2&とを持っニゲート電極構
造、いわゆる、四極構造であり、MOS型電荷蓄積容量
が第1ゲート電極1&と第2ゲート電極2龜との間に配
置され、その一方の電極3aが第1ゲート電極1亀に接
続されている。
In this figure, the unit MOS type transistor has a two-gate electrode structure, a so-called quadrupole structure, having a first gate electrode 1& and a second gate electrode 2&, and a MOS type charge storage capacitor has a first gate electrode 1& and a second gate electrode 2&. One of the electrodes 3a is connected to the first gate electrode 1.

また、基板側の各領域は、アクセプタ不純物濃度が約1
01”〜1016原子/CノのP−基板40表面部分に
、ドナー不純物濃度か約1014〜1016原子/dの
第1N−領域6&、第2「領域6&および第3N−領域
71Lを配設し、MOS型電荷蓄積容量部分には高濃度
N1域8亀を設け、さらに、基板表面には絶縁膜(通常
、5i(h)9をそなえている。なお、図中の各構成部
分の符号1〜8に付した添字a、l)は、それぞれ、各
単位の電荷転送素子を区分するためのものである。
In addition, each region on the substrate side has an acceptor impurity concentration of about 1
A first N-region 6&, a second N-region 6&, and a third N-region 71L having a donor impurity concentration of approximately 1014 to 1016 atoms/d are provided on the surface portion of the P-substrate 40 having a donor impurity concentration of approximately 1014 to 1016 atoms/d. , a high concentration N1 region 8 is provided in the MOS type charge storage capacitor part, and an insulating film (usually 5i(h) 9) is provided on the substrate surface. The subscripts a and l) attached to 8 are for classifying each unit of charge transfer element.

このBBDの駆動方式は、第1のクロック信号g9に−
の単位の第1ゲート電極11LおよびMO3O3型電荷
蓄積容量極3&を接続し、第2のクロック信号源10に
次の単位の第1ゲート電極1bおよびMO3型電荷蓄積
容量の電極3bを接続し、さらに直流電#X11を各単
位の第2ゲート電極2&、・・・2nに接続して、順次
、電荷転送動作を行うものである。
This BBD driving method is based on the first clock signal g9.
The first gate electrode 11L of the next unit and the MO3O3 type charge storage capacitor electrode 3& are connected, the first gate electrode 1b of the next unit and the MO3 type charge storage capacitor electrode 3b are connected to the second clock signal source 10, Further, a DC current #X11 is connected to the second gate electrodes 2&, . . . 2n of each unit, and a charge transfer operation is performed sequentially.

ここで、チャンネル長変調の程度について説明する。ま
ず、チャンネル基板部分のP形不純物(アクセプタ)m
度をNム、ドレイン拡散領域のN形不純物(ドナー)′
a度をND、 P形基板に拡がる空乏層幅をWp、 N
形拡散領域内に拡がる空乏層幅をWnとし、N、をろる
一定値とした場合の、W、、W。
Here, the degree of channel length modulation will be explained. First, P-type impurity (acceptor) m in the channel substrate part
N type impurity (donor) in the drain diffusion region
The degree a is ND, the width of the depletion layer spreading in the P type substrate is Wp, N
W, , W, where Wn is the width of the depletion layer extending within the shaped diffusion region, and N is a constant value.

のND/N、依存性は第8図のようになる。同図による
と N6 /”A≧10’C1時17)上記空乏層[W
p= ”+を基準とした場合、ND/N、= 10では
Np−094、N、/N、= 1ではW p 鴇o−7
、ND/N−0,1ではWp亀0.3 、No /Nム
=o、oiではWp;0.1となる。したかって、Nゎ
がNえの10倍以上の高い不純物濃度の場合は、Wpの
減少の度合が非常に小さく、HDをN。
The ND/N dependence of is shown in FIG. According to the same figure, when N6/”A≧10’C1 17) The above depletion layer [W
When p = ``+'' is the standard, ND/N, = 10 is Np-094, N, /N, = 1 is W p o-7
, ND/N-0,1, Wp=0.3, and No/N=o, oi, Wp;0.1. Therefore, when the impurity concentration of N is 10 times higher than that of N, the degree of decrease in Wp is very small, and HD is reduced to N.

と同程度もしくはそれ以下にした場合は、Npは著しく
減少される。すなわち、NDをN、と同程度もしくはそ
れ以下にすれば、チャンネル部に拡がる空乏層幅が抑制
され、チャンネル長変調が著しく減少し、かくして、α
Dが大幅に改善されることを意味し、ている。
If the value is equal to or lower than , Np will be significantly reduced. In other words, if ND is made equal to or less than N, the width of the depletion layer expanding in the channel region is suppressed, and the channel length modulation is significantly reduced.
This means that D is significantly improved.

第3図は、P形高抵抗の基板として、アクセプタ不純物
濃度が10Is原子/i未満の、いわゆる、(P−)基
板4′を用いて、これに、第1図と同様の各N−領域S
L、81L、T&I7b 、BL、8bを形成するとと
もに、第1ゲート電極および第2ゲート電極のそれぞれ
の直下の基板表面には、P形不純物を約101’〜10
16原子/dの範囲で導入量を制御したP−領域13を
設けたものである。
In FIG. 3, a so-called (P-) substrate 4' with an acceptor impurity concentration of less than 10 Is atoms/i is used as a P-type high-resistance substrate, and each N- region similar to that in FIG. S
L, 81L, T&I7b, BL, 8b are formed, and P-type impurities are added to the substrate surface directly under each of the first gate electrode and the second gate electrode at approximately 101' to 10.
A P- region 13 is provided, the amount of which is introduced is controlled within the range of 16 atoms/d.

各電極構成ならびに駆動方式は、第1図示の実施例装置
と同じである。この構造によると、P形基板に一段と高
抵抗の(P−)基板4′を用いているために、各H−領
域形成のだめのN形不純物低濃度拡散工程で、同不純物
濃度を精度よく制御して導入することができ、したがっ
て、N、/Nムを第1図に示すものの場合より、ざらに
精度よく、安定して、一段と好ましい小さな値にするこ
とができる。
The configuration of each electrode and the driving method are the same as those of the embodiment shown in the first figure. According to this structure, since the (P-) substrate 4', which has a higher resistance than the P-type substrate, is used, the impurity concentration can be precisely controlled in the low-concentration N-type impurity diffusion step before forming each H- region. Therefore, N,/N can be set to a more preferable small value with greater precision and stability than in the case shown in FIG.

なお、第4図のVD、−X。、特性図中の特性曲線Bは
、本発明の実施例装置の場合の典型的特性を示し、従来
例の特性曲線人とくらべて明らかなように、ドレイン・
ソース間電流(IDII )のドレイン・ソース間電圧
(Vow)に対する依存性が小さく、したがって、本発
明実施例のMOS型トランジスタはチャンネル長変調の
微小なものが実現される。
In addition, VD, -X in FIG. , Characteristic curve B in the characteristic diagram shows the typical characteristics of the device according to the embodiment of the present invention, and as is clear from the characteristic curve of the conventional example, the drain
The dependence of the source-to-source current (IDII) on the drain-to-source voltage (Vow) is small, so that the MOS transistor of the embodiment of the present invention can achieve minute channel length modulation.

以上の実施例では、NチャンネルMOS型トランジスタ
を用いたBBDについて説明を行なったが、Pチャンネ
ルMOSトランジスタを用いたBBDでも同様な効果が
得られること社明らかである。
In the above embodiments, a BBD using an N-channel MOS transistor has been described, but it is obvious that a similar effect can be obtained with a BBD using a P-channel MOS transistor.

また、三極構造BBDや四極構造BBDのみならず、そ
の他のαDを改善する方法といっしょに用いることによ
り、いっそう効果を発揮する。
Further, the effect can be further exhibited by using not only the triode structure BBD and the quadrupole structure BBD but also other methods for improving αD.

発明の効果 本発明によると、ゲート電極とドレイン領域との間のオ
フセットゲート構造部における基板領域、すなわち、同
オフセットゲート構造部下に延在する低濃度ドレイン領
域の不純物濃度を、ゲート電極下の反対導電型基板領域
、すなわち、チャンネル領域の不純物濃度と同等、もし
くはそれより低濃度になしたことによって、MOS型半
導体装置のドレイン電圧に依存して生じるドレイン領域
・チャンネル領域間接合の空乏層幅が、チャンネル領域
側よりも、ドレイン領域内で大きくなり、また、ドレイ
ン電圧の変動に応じて、同空乏層幅が変動する場合も、
チャンネル領域内での空乏層幅の変動がきわめて小さく
抑えられるという格別や効果を奏し、MO3型半導体装
置の動作安定化に大きく寄与することができる。
Effects of the Invention According to the present invention, the impurity concentration of the substrate region in the offset gate structure between the gate electrode and the drain region, that is, the low concentration drain region extending under the offset gate structure, is reduced to By making the impurity concentration equal to or lower than that of the conductive substrate region, that is, the channel region, the width of the depletion layer at the junction between the drain region and the channel region, which occurs depending on the drain voltage of the MOS semiconductor device, can be reduced. , is larger in the drain region than in the channel region, and the width of the depletion layer changes depending on the fluctuation of the drain voltage.
This has the special effect of suppressing fluctuations in the width of the depletion layer within the channel region to an extremely small level, and can greatly contribute to stabilizing the operation of the MO3 type semiconductor device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明適用の実施例BEDの断面図壱40口菰
客;、第2図は接合空乏層幅のドナー(NO)/アクセ
プタ(N^)比に対する依存性特性図、第3図は本発明
適用の他の実施例BBDの断面図す駆増##;、第4図
はドレイン・ソース間電流(工ゎS)−ドレイン・ソー
ス間電圧(V□)特性図で8る。 1a、1b・・・・・・第1ゲート電極、2& l 2
n・・・・第2ゲート電極、3a、3b・・・・・・M
O3型電荷蓄積用容量電極、4・・・・・・P−基板、
151L 、 8& 1γ&、7b・・・・・・N−領
域、aa 、 ab・・・・・・N+領領域9・・・・
・・絶縁膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第2
図 第 3 図 第 4 図 os
Fig. 1 is a cross-sectional view of a BED according to an embodiment of the present invention; Fig. 2 is a characteristic diagram of the dependence of the junction depletion layer width on the donor (NO)/acceptor (N^) ratio; Fig. 3 4 is a cross-sectional view of a BBD according to another embodiment of the present invention, and FIG. 4 is a drain-source current (S) vs. drain-source voltage (V□) characteristic diagram. 1a, 1b...first gate electrode, 2 & l 2
n...Second gate electrode, 3a, 3b...M
O3 type charge storage capacitor electrode, 4...P-substrate,
151L, 8&1γ&, 7b...N- region, aa, ab...N+ region 9...
...Insulating film. Name of agent: Patent attorney Toshio Nakao and 1 other person 2nd
Figure 3 Figure 4 Figure os

Claims (2)

【特許請求の範囲】[Claims] (1)ゲート電極とドレイン領域との間にオフセットゲ
ート構造部をそなえ、前記オフセットゲート構造部の基
板領域不純物濃度を前記ゲート電極下の反対導電型基板
領域の不純物濃度と同等、もしくはそれより低濃度にな
したMOS型半導体装置。
(1) An offset gate structure is provided between the gate electrode and the drain region, and the impurity concentration of the substrate region of the offset gate structure is equal to or lower than the impurity concentration of the substrate region of the opposite conductivity type under the gate electrode. MOS type semiconductor device with high concentration.
(2)オフセットゲート構造部の基板領域不純物濃度が
10^1^4〜10^1^6原子/cm^3およびゲー
ト電極下の反対導電型基板領域の不純物濃度が10^1
^5〜10^1^6原子/cm^3に、それぞれ、選定
された特許請求の範囲第1項記載のMOS型半導体装置
(2) The impurity concentration in the substrate region of the offset gate structure is 10^1^4 to 10^1^6 atoms/cm^3 and the impurity concentration in the substrate region of the opposite conductivity type under the gate electrode is 10^1.
The MOS type semiconductor device according to claim 1, in which the atoms are selected to be ^5 to 10^1^6 atoms/cm^3, respectively.
JP16514385A 1985-07-26 1985-07-26 Mos type semiconductor device Pending JPS6144466A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16514385A JPS6144466A (en) 1985-07-26 1985-07-26 Mos type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16514385A JPS6144466A (en) 1985-07-26 1985-07-26 Mos type semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP18089181A Division JPS5882567A (en) 1981-11-10 1981-11-10 Charge transfer device

Publications (1)

Publication Number Publication Date
JPS6144466A true JPS6144466A (en) 1986-03-04

Family

ID=15806705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16514385A Pending JPS6144466A (en) 1985-07-26 1985-07-26 Mos type semiconductor device

Country Status (1)

Country Link
JP (1) JPS6144466A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917978A (en) * 1972-04-10 1974-02-16
JPS5289475A (en) * 1976-01-21 1977-07-27 Hitachi Ltd Four electrodes fet transistor
JPS5882567A (en) * 1981-11-10 1983-05-18 Matsushita Electronics Corp Charge transfer device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917978A (en) * 1972-04-10 1974-02-16
JPS5289475A (en) * 1976-01-21 1977-07-27 Hitachi Ltd Four electrodes fet transistor
JPS5882567A (en) * 1981-11-10 1983-05-18 Matsushita Electronics Corp Charge transfer device

Similar Documents

Publication Publication Date Title
US5016066A (en) Vertical power MOSFET having high withstand voltage and high switching speed
JPH0714009B2 (en) MOS type semiconductor memory circuit device
JPH0456472B2 (en)
JP2555366B2 (en) Current source with process selectable temperature coefficient
JPS6252469B2 (en)
JPS6180858A (en) Power mosfet
JPS6144466A (en) Mos type semiconductor device
JPH03160761A (en) Semiconductor device
US4761679A (en) Complementary silicon-on-insulator lateral insulated gate rectifiers
JPH0669094B2 (en) Field effect transistor
JPH07147400A (en) Semiconductor device
JPH0666467B2 (en) Semiconductor device
JPS60175459A (en) Semiconductor device
JP2956181B2 (en) Semiconductor device having resistance element
JP2544417B2 (en) Semiconductor integrated circuit device
JP2751658B2 (en) Semiconductor device
JPH0786596A (en) Semiconductor device and manufacture thereof
JPH0812917B2 (en) Method of operating MIS transistor and MIS transistor
JPS63187664A (en) Semiconductor device
JPS61203679A (en) Mos transistor of high withstand voltage
JPS6355976A (en) Field effect semiconductor device
JPH02102575A (en) Semiconductor device
US20020149038A1 (en) Semiconductor device
JPS61113269A (en) Semiconductor device
JP2002343971A (en) Semiconductor device