JPS6144413A - Manufacture of iron core in electric apparatus - Google Patents

Manufacture of iron core in electric apparatus

Info

Publication number
JPS6144413A
JPS6144413A JP16607384A JP16607384A JPS6144413A JP S6144413 A JPS6144413 A JP S6144413A JP 16607384 A JP16607384 A JP 16607384A JP 16607384 A JP16607384 A JP 16607384A JP S6144413 A JPS6144413 A JP S6144413A
Authority
JP
Japan
Prior art keywords
iron core
heat treatment
core
wound
magnetic field
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16607384A
Other languages
Japanese (ja)
Inventor
Terushi Katsuyama
勝山 昭史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP16607384A priority Critical patent/JPS6144413A/en
Publication of JPS6144413A publication Critical patent/JPS6144413A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PURPOSE:To avoid degradation of magnetic characteristics during heat treatment by previously making a bundling tape which will become a bundling reinforcement layer during the operation of an electric apparatus adhered closely to the external surface of an iron core which is wound or laminated to a required shape wound iron core or laminated iron core with a thin plate amorphous magnetic alloy while heat-treated in magnetic field. CONSTITUTION:A notch 17 and a hole 2 for inserting a coil 4 for generating magnetic field are provided in the outer circumference of a bobbin 11 and a thin plate amorphous magnetic alloy iron core 3 is wound outside of the bobbin 11. The iron core 3 is heat-treated in the magnetic field generated by making a current flow in the coil 4 and in this case, before the heat treatment, a bundling tape layer 20 which will become a bundling reinforcement layer during operation is made adhere closely to the outside of the iron core 3. Among the tape layer 20, such as a glass tape is used at the corner and a bundling tape is used for a linear part tape layer. These tapes are wound through the notch 17. This enables recovery of magnetic characteristics due to heat treatment without degradation.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は非晶質磁性合金の薄帯を用いた電気機器用鉄心
、ことに靜止銹導電器用鉄心の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to a method for manufacturing an iron core for electrical equipment using a thin ribbon of an amorphous magnetic alloy, and in particular to a method for manufacturing an iron core for anti-rusting conductors.

〔従来技術とその問題点〕[Prior art and its problems]

電気機器の鉄心材料としては従来けい素鋼板(al−F
e合金の圧延材)が使用されているが、近年鉄損がけい
素鋼板のそれのに〜〆と低損失な非晶質磁性合金たとえ
ばけい素、はう素糸(Sl−B系)合金帯が開発され、
i!電気機器鉄心の応用研究が盛んに進められている。
Conventionally, silicon steel sheets (AL-F) have been used as iron core materials for electrical equipment.
In recent years, low-loss amorphous magnetic alloys such as silicon and boron thread (Sl-B series) alloys have been used. Obi was developed,
i! Applied research on electrical equipment cores is actively underway.

非晶質磁性合金は溶湯を超急冷する方法で製造されるた
め、厚さ20〜40−の薄帯状素材(以下非晶質帯とよ
ぶ)しか得られないのが実情である。また非晶質帯は低
損失という利点がある反面、曲げや圧縮等の機械的歪を
加えると鉄損や磁化力等の磁気特性が著しく低下するこ
とが知られている。しかし、一旦磁気特性が低下した非
晶質帯を直流磁界中で熱処理して歪みを除去すると再び
すぐれた磁気特性を回復するという性質がおることが知
られておシ、したがって電気機器の鉄心の製造工程には
磁界中熱処理工程を組込むことが一般的に行われている
Since amorphous magnetic alloys are manufactured by ultra-quenching a molten metal, the reality is that only thin strip-shaped materials (hereinafter referred to as amorphous strips) with a thickness of 20 to 40 mm can be obtained. Furthermore, although an amorphous band has the advantage of low loss, it is known that when mechanical strain such as bending or compression is applied, magnetic properties such as core loss and magnetizing force are significantly reduced. However, it is known that once an amorphous band whose magnetic properties have deteriorated is heat treated in a DC magnetic field to remove distortion, it will regain its excellent magnetic properties. It is common practice to incorporate a heat treatment process in a magnetic field into the manufacturing process.

第8図および第9図は熱処理前後の磁気特性の変化を示
す小形試験片による特性線図で、第8図は試験片の曲率
半径対鉄損性性、第9図は曲率半径対励磁実効電流特性
で本願発明者等の実験結果を示すものでちる0図の場合
、厚さ25 m、 Ifj425mの非晶質帯を平均半
径6〜26wmの筒状に約2m厚さKなるよう巻回した
小形試験片を作シ、熱処理前の磁気特性(図中点線で示
す)を求めたのち、所定の熱処理を行ない、熱処理後の
磁気特性(図中実線で示す)を求めたもので、基礎実験
として熱処理後の試験片の取扱いに細心の注意をはらう
ことKよりeも良好な回復特性を得たものでおる0図に
おいて、熱処理前の鉄損および励磁実効電流はそれぞれ
曲率半径に逆比例して増加する傾向を示し、非晶質帯に
加えられた曲げ歪により磁気特性が著しく低下すること
を示しているか熱処理後の鉄損および励磁実効電流にそ
れぞれ曲率半径に無関係なフラットな特性を示し、熱処
理によう磁気特性が回復する性質がすぐれていることを
示している。ちなみに磁束密度が12テスラ■における
熱処理後の鉄損は約0.08W/に9を示している。
Figures 8 and 9 are characteristic diagrams of small test pieces showing changes in magnetic properties before and after heat treatment. In the case of Figure 0, which shows the experimental results of the present inventors in terms of current characteristics, an amorphous band with a thickness of 25 m and Ifj of 425 m is wound into a cylindrical shape with an average radius of 6 to 26 wm to a thickness of about 2 m and K. A small test piece was prepared, the magnetic properties before heat treatment (shown by the dotted line in the figure) were determined, and then the prescribed heat treatment was performed and the magnetic properties after heat treatment (shown by the solid line in the figure) were determined. Pay close attention to the handling of the test piece after heat treatment as an experiment.In Figure 0, better recovery characteristics were obtained than for K and e.The core loss and excitation effective current before heat treatment are each inversely proportional to the radius of curvature. The bending strain applied to the amorphous band shows a tendency to increase, indicating that the magnetic properties are significantly degraded.The iron loss and excitation effective current after heat treatment each have flat characteristics that are independent of the radius of curvature. This shows that the magnetic properties are excellently recovered by heat treatment. Incidentally, the iron loss after heat treatment at a magnetic flux density of 12 tesla is approximately 0.08 W/9.

第10図から第13図は従来方法による方形リング状巻
鉄心の製造方法を説明するための構造図で、第10図は
磁界中熱処理工程における鉄心の平面図、第11図は第
10図の側断面図、第12図は磁界中熱処理工程終了後
の緊縛工程を示す鉄心の千両図、第16図は第12図の
側断面図である。第10〜11図において1もアルミニ
ウム等の非磁性金属板からなる巻枠、2は巻枠1に形成
されたコイル挿通用の孔、3は非晶質帯を巻枠に緊密に
巻回してなる巻鉄心、4は直流磁界発生用のコイルで耐
熱絶縁被覆を有する導体を巻枠1の孔2を利用して複数
回巻回したものである。このように形成された被加工体
は熱処理用の高温炉に搬入され、鉄心の磁路方向く所定
磁束密度の磁界を発生させた状態で磁界中熱処理が行わ
れる。磁界中熱処理工程を終シ冷却された鉄心は炉外に
取)出され、コイル4および巻枠1が取シ外される。
10 to 13 are structural diagrams for explaining the manufacturing method of a rectangular ring-shaped wound core by a conventional method. FIG. 10 is a plan view of the core in a heat treatment process in a magnetic field, and FIG. 12 is a side sectional view of the iron core showing the binding step after the heat treatment step in a magnetic field, and FIG. 16 is a side sectional view of FIG. 12. In Figures 10 and 11, 1 is also a winding frame made of a non-magnetic metal plate such as aluminum, 2 is a hole formed in the winding frame 1 for inserting the coil, and 3 is an amorphous band tightly wound around the winding frame. The wound iron core 4 is a coil for generating a DC magnetic field, and is made by winding a conductor having a heat-resistant insulation coating a plurality of times using the hole 2 of the winding frame 1. The workpiece thus formed is carried into a high-temperature furnace for heat treatment, and heat treatment is performed in a magnetic field in a state where a magnetic field of a predetermined magnetic flux density is generated in the direction of the magnetic path of the iron core. After completing the magnetic field heat treatment process, the cooled core is taken out of the furnace, and the coil 4 and winding frame 1 are removed.

この状態においては非晶質体が硬くもろくなるがわりに
形状安定性が増すので、巻枠1を取シ外しても方形リン
グ状の形状を保持することができる。
In this state, although the amorphous body becomes hard and brittle, its shape stability increases, so that even if the winding frame 1 is removed, the rectangular ring shape can be maintained.

したがって第12〜13図に示すように鉄心6を傷つけ
ないよう、変形させないよう細心の注意をはらいながら
たとえばガラステープ等の耐熱性の緊縛テープ6を巻回
し、緊縛テープ層5を形成する。このように鉄心3を緊
縛テープ層5にょシ緊縛することKより、非晶質帯が相
互に密接して相互に摩擦応力が作用するために、鉄心6
の形状をより安定に保持することができる。
Therefore, as shown in FIGS. 12 and 13, a heat-resistant binding tape 6 such as glass tape is wound around the iron core 6, taking great care not to damage or deform it, thereby forming the binding tape layer 5. By binding the iron core 3 to the binding tape layer 5 in this way, the amorphous bands are in close contact with each other and frictional stress acts on each other, so that the iron core 6
can hold its shape more stably.

第14図は従来方法によって製作された巻鉄心の磁束密
度対鉄損および励磁実効電流特性で、発明者等の実験に
よって得られたものである0巻鉄心としては、厚さ25
μ惰9幅5o■の5i−B系非晶質帯約2.74を用い
て第10〜11図のような方形リング状の鉄心を前述の
製造方法によって製作し、′i4素5E囲気中で直流8
00 A/mの磁界を加えつつ400℃2時間の磁界中
熱処理を行い、コイル4および巻枠1を取り外したのち
ガラステープを用いて緊縛テープ層5t−形成し、5 
QHgの交流磁気特性を求めたものである0図において
12(T)Kおける鉄損は0.IW/#を示し、第8図
の小形試験片における0、08W/#という値に対して
ほぼ25%鉄損が増加しておシ、小形試験片について得
られた程の回復特性が変圧器鉄心に対しては得られ難い
という問題点が明らかになった。
Figure 14 shows the magnetic flux density vs. iron loss and excitation effective current characteristics of a wound core manufactured by the conventional method.
A rectangular ring-shaped iron core as shown in Figs. DC 8
Heat treatment was performed in a magnetic field at 400°C for 2 hours while applying a magnetic field of 00 A/m, and after removing the coil 4 and the winding frame 1, a bonding tape layer 5t was formed using glass tape.
In Figure 0, which shows the AC magnetic characteristics of QHg, the iron loss at 12(T)K is 0. IW/#, and the iron loss increased by approximately 25% compared to the value of 0.08W/# for the small test piece in Figure 8. It became clear that the problem was that it was difficult to obtain this for iron cores.

〔発明の目的〕[Purpose of the invention]

本発明は前述の状況に鑑みてなされたもので、磁界中熱
処理により磁気特性に良好な回復性が得られ、かつ熱処
理加工終了後に再び磁気特性が低下する危険性の少ない
電気機器鉄心の°製造方法を提供することを目的とする
The present invention has been made in view of the above-mentioned circumstances, and is intended to manufacture electrical equipment iron cores that have good recovery properties in their magnetic properties through heat treatment in a magnetic field and that have little risk of the magnetic properties decreasing again after the heat treatment is completed. The purpose is to provide a method.

〔発明の要点〕[Key points of the invention]

本発明の方法は、熱処理加工後の鉄心の磁気特性に充分
な回復性が得られない理由が、熱処理加工終了後に行う
コイルおよび巻枠の取外し作業および緊縛テープ層の被
着作業において非晶質帯に応力が加わシ、熱処理により
ぜい弱化した非晶質帯にクラック、欠は落ち、変歪等が
生ずるためであることを突き止め、熱処理加工を行う前
に緊縛テープ層による鉄心の締め着は加工を行うよう製
造方法を構成することによシ、緊縛テープ層の被着工程
で鉄心に加わる歪を熱処理加工によシ除去するとともに
、巻枠およびコイルの取シ外し作業時には緊縛テープ層
を機械的保強層あるいは滑り層として活用して磁気特性
の低下を防止するようKしたものである。
The reason why the method of the present invention is not able to obtain sufficient recovery properties in the magnetic properties of the iron core after heat treatment is that the amorphous material is removed during the removal of the coil and winding frame and the application of the bonding tape layer after the heat treatment. It was discovered that stress was applied to the band, causing cracks, chips, and deformation in the weakened amorphous band due to heat treatment. By configuring the manufacturing method to perform processing, the strain applied to the core during the process of applying the bonding tape layer can be removed by heat treatment, and the bonding tape layer can be removed during the removal work of the winding frame and coil. K is used as a mechanical reinforcing layer or a slipping layer to prevent deterioration of magnetic properties.

〔発明の実施例〕[Embodiments of the invention]

以下本発明を実施例に基づいて説明する。 The present invention will be explained below based on examples.

第1図から第4図は本発明の実施例を示す方形リング状
の巻鉄心の製造方法の説明図で、第1図は磁界中熱処理
加工を行う時点における被加工体の平面図、第2図は第
1図の側断面図、第6図は加工を終了し九鉄心の平面図
、第4図は第6図の側断面図である0図において、11
は非磁性金属板等からなる巻枠、2は巻枠11に形成さ
れたコイル4の挿通孔、17は巻枠11の外周の平面部
分に形成された切欠部、18は鉄心3の角部を緊縛する
角部緊縛テープ層、19は鉄心乙の直線部分を緊縛する
直線部緊縛テープ層、20は角部および直線部緊縛テー
プ層18.19からなる鉄心の緊縛テープ層である。
1 to 4 are explanatory diagrams of a method for manufacturing a rectangular ring-shaped wound core according to an embodiment of the present invention. FIG. 1 is a plan view of a workpiece at the time of heat treatment in a magnetic field, The figure is a side sectional view of Fig. 1, Fig. 6 is a plan view of nine iron cores after machining, and Fig. 4 is a side sectional view of Fig. 6.
2 is a winding frame made of a non-magnetic metal plate, etc.; 2 is an insertion hole for the coil 4 formed in the winding frame 11; 17 is a notch formed in the flat part of the outer periphery of the winding frame 11; and 18 is a corner of the iron core 3. A corner binding tape layer 19 binds the straight portion of the iron core B, a straight portion binding tape layer 20 binds the straight portion of the iron core B, and a numeral 20 represents a binding tape layer of the iron core consisting of the corner portion and straight portion binding tape layers 18 and 19.

つぎに鉄心の製造方法としては、非晶質帯の巻きはじめ
に巻枠11の角部に角部緊縛テープ層18となるべきた
とえば所定の長さのガラステープをはさみ込み、その上
に非晶質帯を所定回数巻回して巻鉄心6を形成する。非
晶質帯の巻回作業が終了した時点で、前記巻枠の角部に
介装した緊縛テープにより鉄心6の角部を緊縛して角部
緊縛テープ層18を形成する。つぎに緊縛テープを巻枠
11の切欠部17に挿通しつつ鉄心3の直線部分に巻回
し、直線部緊縛テープ層19を形成する。
Next, as a method for manufacturing the iron core, at the beginning of winding the amorphous band, a glass tape of a predetermined length, for example, which will become the corner binding tape layer 18, is sandwiched in the corner of the winding frame 11, and then the amorphous band is A wound core 6 is formed by winding the band a predetermined number of times. When the winding work of the amorphous band is completed, the corners of the iron core 6 are bound by the binding tape interposed at the corners of the winding frame to form the corner binding tape layer 18. Next, the binding tape is passed through the notch 17 of the winding frame 11 and wound around the straight portion of the iron core 3 to form the straight portion binding tape layer 19.

さらに巻枠11の孔2を介してコイル4を巻回する。こ
のようKして形成された被加工体は熱処理炉に搬入され
、磁界中熱処理加工が行われ、各種加工歪が除去される
ことKより、磁気特性が改善(回復)するとともK、非
晶質帯が硬化して鉄心乙の剛性が増すとともに緊縛テー
プ層による緊縛力が作用して隣接する非晶質帯相互の摩
擦抵抗が増し、鉄心6の形状安定性を著しく強化するこ
とができる。したがってこの状態でコイル4および巻枠
11を順次取シ外しても鉄心3に巻枠11によって規制
された形状を保持させることがでIムまた第3〜4図の
ように鉄心3には緊nテープ層20がすでに被着されて
いるので、非晶質帯に機械的損傷を与えることなくコイ
ル4および巻枠11を取シ外すことができ、かつ従来方
法のように熱処理加工終了後に緊縛テープ層20を形成
する工程がないので、熱処理により回復した磁気特性を
損うことなく緊縛テープ層20を備えた鉄心3を得るこ
とができる。
Further, the coil 4 is wound through the hole 2 of the winding frame 11. The workpiece formed by K in this way is carried into a heat treatment furnace, where it is heat-treated in a magnetic field, and various processing strains are removed. As the amorphous bands harden and the rigidity of the iron core 6 increases, the binding force by the binding tape layer acts to increase the frictional resistance between adjacent amorphous bands, and the shape stability of the iron core 6 can be significantly strengthened. Therefore, even if the coil 4 and the winding frame 11 are sequentially removed in this state, the iron core 3 can maintain the shape regulated by the winding frame 11. Also, as shown in FIGS. Since the n-tape layer 20 has already been applied, the coil 4 and the winding frame 11 can be removed without mechanically damaging the amorphous band, and it is possible to remove the coil 4 and the winding frame 11 without mechanically damaging the amorphous band. Since there is no step of forming the tape layer 20, the iron core 3 provided with the binding tape layer 20 can be obtained without impairing the magnetic properties recovered by heat treatment.

なお上述の実施例は非晶質帯を用い九を鉄心を例にして
説明したが、非晶質帯をコ字状、E字状。
In the above embodiment, an amorphous band is used and an iron core is used as an example. However, the amorphous band may be U-shaped or E-shaped.

短備状に加工したものを積層する積み鉄心の製造方法と
しても適用可能なことはいうまでもないことでちる。
It goes without saying that this method can also be applied as a manufacturing method for stacked iron cores, in which iron cores processed into short pieces are laminated.

第5図は前述の実施例の製造方法によって製作された方
形リング状巻鉄心の磁気特性線図である。
FIG. 5 is a magnetic characteristic diagram of a rectangular ring-shaped wound core manufactured by the manufacturing method of the above-described embodiment.

製作された巻鉄心の形状寸法および磁界中熱処理加工条
件は第14図についてすでに説明したものと同一とした
0図中点線で示した特性曲線は従来の製造方法による第
14図の特性曲線をそのまま転記したものであり1図中
実線で示した特性曲線は本発明の製造方法による鉄心の
磁気特性を示すものである0図において実線の鉄損曲線
21は点線で示す(従来法)鉄損曲線22よシ低い値を
示し、かつ実線の励磁実効電流曲線23も点線(従来法
)曲線24より低い値を示している。この結果により、
本発明の製造方法が、磁界中熱処理による磁気特性の回
復効果をよシ多く保持した鉄心を提供できるものである
ことを実証することができる。ちなみに電気機器鉄心に
おいて最も重視される鉄損に着目して第8図の基礎実験
結果と第5図の曲線21および22とを比較すると、磁
束密度1.2(笥における鉄損は基礎実験で0.08W
/AI’。
The shape and dimensions of the manufactured wound core and the processing conditions for heat treatment in a magnetic field are the same as those already explained in Fig. 14.The characteristic curve shown by the dotted line in Fig. 0 is the same as the characteristic curve in Fig. 14 obtained by the conventional manufacturing method. The characteristic curve shown by the solid line in Figure 1 shows the magnetic characteristics of the iron core according to the manufacturing method of the present invention. In Figure 0, the solid line iron loss curve 21 is the iron loss curve shown by the dotted line (conventional method). 22, and the solid excitation effective current curve 23 also shows a lower value than the dotted (conventional method) curve 24. With this result,
It can be demonstrated that the manufacturing method of the present invention can provide an iron core that retains much of the recovery effect of magnetic properties caused by heat treatment in a magnetic field. By the way, when we focus on iron loss, which is the most important factor in electrical equipment cores, and compare the basic experiment results in Figure 8 with curves 21 and 22 in Figure 5, we find that the magnetic flux density is 1.2 (the iron loss in the iron core is 0.08W
/AI'.

従来法で0.IW/岬、発明の方法で0.09 W/A
f となり、本発明の製造方法により基礎実験で得られ
九鉄損により近づけることができるとともに、従来の製
造方法に比べて鉄損をほぼ10%低減することができる
0 with the conventional method. IW/Misaki, 0.09 W/A in the method of invention
f, which can be brought closer to the 9 iron loss obtained in basic experiments by the manufacturing method of the present invention, and can also reduce the iron loss by approximately 10% compared to the conventional manufacturing method.

なお、第5図においては重量約2.7却の方形リング状
巻鉄心について従来法との磁気特性の比較を行ったが、
鉄心重量がさらに増加した場合、製造工程において鉄心
に加わる応力および歪みが増加するので、本発明の製造
方法による磁気特性の改善効果がよシ一層大きくなるも
のと期待される。
In addition, in Fig. 5, the magnetic properties were compared with the conventional method for a rectangular ring-shaped wound core with a weight of about 2.7 mm.
If the weight of the core increases further, the stress and strain applied to the core during the manufacturing process will increase, so it is expected that the effect of improving magnetic properties by the manufacturing method of the present invention will be even greater.

第6〜7図は本発明の異なる実施例を示す製造方法の説
明図で、円形リング状の巻鉄心の磁界中熱処理加工にお
ける状態を示したものである。
FIGS. 6 and 7 are explanatory diagrams of a manufacturing method showing different embodiments of the present invention, and show the state of heat treatment in a magnetic field of a circular ring-shaped wound core.

鉄心が円形リング状である場合、方形リング状鉄心と異
なり枠場を取)外しても鉄心が変形することがなく円形
リング状を保持するので、鉄心63を巻枠から外したの
ち緊縛テープ層6oおよびコイル4を被着し、磁界中熱
処理加工を行ない、その後コイル4を取り除くことKよ
シ、緊縛テープ層60が被着された円形リング状の巻鉄
心を得ることができる。この場合、熱処理後に巻枠のな
い状態でコイル4を取り除く工程があることが方形リン
グ状コイルの製造方法と異なるが、緊縛テープ層が機械
的補強層として機能するので、コイル4を取シ除いたの
ちさらに緊縛テープ層の被着工程がおる従来の製造方法
に比べて遥かに良好な磁気特性の回復性を保持すること
ができる。
When the iron core is in the shape of a circular ring, unlike the rectangular ring-shaped iron core, the core does not deform and maintains its circular ring shape even if the frame is removed. 6o and the coil 4 are applied, heat treatment is performed in a magnetic field, and then the coil 4 is removed, thereby obtaining a circular ring-shaped wound core on which the binding tape layer 60 is applied. In this case, the method for manufacturing the rectangular ring-shaped coil differs in that there is a step of removing the coil 4 without the winding frame after heat treatment, but since the binding tape layer functions as a mechanical reinforcing layer, the coil 4 is removed. Much better recovery of the magnetic properties can be maintained than in the conventional manufacturing method, which requires a subsequent step of applying a binding tape layer.

〔発明の効果〕〔Effect of the invention〕

本発明は前述のように1機械的ストレスにより磁気特性
が低下しやすい非晶質磁性帯を用いた鉄心の製造方法を
、電気機器鉄心の機械的補強層あるいは絶縁層となるべ
き緊縛テープ層を形成したのち磁界中熱処理加工を行う
よう構成した。その結果、従来の製造方法において熱処
理加工を行ったのち緊縛テープ層を被着するととKより
鉄心に与えていた機械的ストレスが排除され、熱処理に
よシ回復した磁気特性を保持した鉄心を提供することが
できる。また熱処理加工後に行われる巻枠や磁界発生コ
イルの取り除き作業においては、すでに緊縛テープ層が
被着されているために鉄心の形状安定性が強化されてい
ることと、非晶質帯のひび割れや欠は落ち等の損傷を防
ぐ保μ層とじての作用によシ磁気特性の低下を防止でき
る利点が得られる。さらに上述の作用効果を総合して従
来の製造方法で得られる鉄心の鉄損に比べ約10%鉄損
の少ない鉄心を提供することができ、したがって電気機
器の低損失化に貢献することができる。
As mentioned above, the present invention provides a method for manufacturing an iron core using an amorphous magnetic band whose magnetic properties tend to deteriorate due to mechanical stress, and a bonding tape layer to be a mechanical reinforcing layer or an insulating layer for an electric equipment iron core. After formation, it was configured to undergo heat treatment in a magnetic field. As a result, when the bonding tape layer is applied after heat treatment in the conventional manufacturing method, the mechanical stress applied to the core by K is eliminated, and the core retains the magnetic properties recovered by heat treatment. can do. In addition, when removing the winding frame and magnetic field generating coil after heat treatment, the shape stability of the core is strengthened because the binding tape layer has already been applied, and cracks in the amorphous band can be avoided. It has the advantage of preventing deterioration of magnetic properties by acting as a μ-retaining layer that prevents damage such as chipping and falling. Furthermore, by combining the above-mentioned effects, it is possible to provide an iron core with approximately 10% less iron loss than the iron loss of iron cores obtained by conventional manufacturing methods, thus contributing to lower loss in electrical equipment. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の製造方法における磁界中熱処
理工程における被加工体の平面図、第2図は第1図の側
断面図、第3図は前記実施例の製造方法における加工終
了時点の状態を示す鉄心の平面図、第4図は第6図の側
断面図、第5図は実施例の製造方法による鉄心の磁気特
性線図、第6図は本発明の異なる実施例の製造方法にお
いて磁界中熱処理加工時の被加工体の状況を示す平面は
第7図は第6図の側断面図、第8図および第9図は基礎
実験における熱処理効果を示す鉄損対曲率半径特性綜図
、および励磁実効電流対曲率半径特性線図、第10図お
よび第11図は従来方法による熱処理時の被加工体の形
状を示す平面図およびその側断面図、第12図および第
13図は従来方法における緊縛テープ層の被着工程を示
す平面図および側断面図、第14図は従来方法で製作さ
れた鉄心の磁気特性を示す特性線図である。 1.11・・・巻枠、2・・・孔、5・・・方形リング
状の鉄心、4・・・磁界発生用コイル、5.20.30
・・・緊縛テープ層、6・・・緊縛テープ、17・・・
切欠部、18・・・角部緊縛テープ層、19・・・直線
部緊縛テープ層、36・・・円形リング状の鉄心。
FIG. 1 is a plan view of the workpiece in the magnetic field heat treatment step in the manufacturing method of the embodiment of the present invention, FIG. 2 is a side sectional view of FIG. 1, and FIG. 3 is the completed processing in the manufacturing method of the embodiment. 4 is a side sectional view of FIG. 6, FIG. 5 is a magnetic characteristic diagram of the iron core according to the manufacturing method of the embodiment, and FIG. 6 is a diagram of the core according to the manufacturing method of the embodiment. Figure 7 is a side cross-sectional view of Figure 6 showing the state of the workpiece during heat treatment in a magnetic field in the manufacturing method, and Figures 8 and 9 are iron loss versus radius of curvature showing heat treatment effects in basic experiments. The characteristic diagram, excitation effective current vs. curvature radius characteristic diagram, FIGS. 10 and 11 are a plan view and side sectional view showing the shape of the workpiece during heat treatment by the conventional method, and FIGS. 12 and 13. The figures are a plan view and a side sectional view showing the process of applying a binding tape layer in a conventional method, and FIG. 14 is a characteristic diagram showing the magnetic properties of an iron core manufactured by a conventional method. 1.11... Winding frame, 2... Hole, 5... Rectangular ring-shaped iron core, 4... Coil for magnetic field generation, 5.20.30
... Bondage tape layer, 6... Bondage tape, 17...
Notch portion, 18... Corner bonding tape layer, 19... Straight portion bonding tape layer, 36... Circular ring-shaped iron core.

Claims (1)

【特許請求の範囲】 1)薄帯状の非晶質磁性合金を巻回あるいは積層して所
定の形状の巻鉄心あるいは積み鉄心を形成したのち、磁
界中熱処理を行う製造方法において、電気機器が運転中
に鉄心の緊縛補強層となるべき緊縛テープ層を前記鉄心
の外周面に密接して被着したのち、前記磁界中熱処理加
工を行うことを特徴とする電気機器鉄心の製造方法。 2)特許請求の範囲第1項記載のものにおいて、鉄心が
方形リング状の巻鉄心であり、この巻鉄心に内接する巻
枠の外周の平面部に切欠部が設けられ、前記巻鉄心を形
成後当該切欠部を介して前記鉄心の直線部分に緊縛テー
プが巻回されるとともに、前記巻枠の角部にあらかじめ
介装された緊縛テープにより前記鉄心の角部が緊縛され
ることにより緊縛テープ層が形成されることを特徴とす
る電気機器鉄心の製造方法。
[Claims] 1) In a manufacturing method in which a thin ribbon-shaped amorphous magnetic alloy is wound or laminated to form a wound core or stacked core of a predetermined shape, and then heat treatment is performed in a magnetic field, the electrical equipment is operated. 1. A method of manufacturing an electrical equipment iron core, comprising: closely adhering a binding tape layer to be a binding reinforcing layer of the iron core to the outer circumferential surface of the iron core, and then subjecting the iron core to heat treatment in a magnetic field. 2) In the product described in claim 1, the iron core is a rectangular ring-shaped wound core, and a notch is provided in a flat part of the outer periphery of a winding frame inscribed in this wound core to form the wound core. After that, the binding tape is wound around the straight part of the iron core through the notch, and the corner of the iron core is bound by the binding tape that has been inserted in advance at the corner of the winding frame, thereby creating a binding tape. A method for manufacturing an electrical equipment core, characterized in that layers are formed.
JP16607384A 1984-08-08 1984-08-08 Manufacture of iron core in electric apparatus Pending JPS6144413A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16607384A JPS6144413A (en) 1984-08-08 1984-08-08 Manufacture of iron core in electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16607384A JPS6144413A (en) 1984-08-08 1984-08-08 Manufacture of iron core in electric apparatus

Publications (1)

Publication Number Publication Date
JPS6144413A true JPS6144413A (en) 1986-03-04

Family

ID=15824477

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16607384A Pending JPS6144413A (en) 1984-08-08 1984-08-08 Manufacture of iron core in electric apparatus

Country Status (1)

Country Link
JP (1) JPS6144413A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155137U (en) * 1986-03-26 1987-10-02
WO1991010244A1 (en) * 1990-01-05 1991-07-11 Scherrer, Fernand Toric-type transformer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62155137U (en) * 1986-03-26 1987-10-02
JPH053622Y2 (en) * 1986-03-26 1993-01-28
WO1991010244A1 (en) * 1990-01-05 1991-07-11 Scherrer, Fernand Toric-type transformer
FR2656951A1 (en) * 1990-01-05 1991-07-12 Scherrer Fernand TORQUE TYPE TRANSFORMER.

Similar Documents

Publication Publication Date Title
US6873239B2 (en) Bulk laminated amorphous metal inductive device
US6552639B2 (en) Bulk stamped amorphous metal magnetic component
US7011718B2 (en) Bulk stamped amorphous metal magnetic component
US20040212269A1 (en) Selective etching process for cutting amorphous metal shapes and components made thereof
JP5143978B2 (en) Bulk amorphous metal magnetic components
JPS585968B2 (en) Manufacturing method of ultra-low iron loss unidirectional electrical steel sheet
US6744342B2 (en) High performance bulk metal magnetic component
EP0401805B1 (en) Magnetic core
JPS6394608A (en) Wound core for low iron-loss transformer
JPS58175654A (en) Manufacture of laminated bonded amorphous alloy band and iron core
JPS6144413A (en) Manufacture of iron core in electric apparatus
KR20200118202A (en) Grain-oriented electrical steel sheet
JPH10256066A (en) Winding core with improved iron loss characteristic and its manufacturing method
JPS6214408A (en) Amorphous magnetic alloy wound core
JPH06231986A (en) Manufacture of three-phase wound core transformer
JPH0213923B2 (en)
JP3948113B2 (en) Soft magnetic ribbon
JPS6174314A (en) Manufacture of transformer core
JPH0615705B2 (en) High silicon iron plate with excellent workability
JPH03130321A (en) Production of wound core reduced in core loss
JPS6243114A (en) Manufacture of wound core
JPS63205904A (en) Manufacture of stationary induction electric apparatus
JPS63114207A (en) Method for working iron core of amorphous alloy thin belt
JPS61174612A (en) Manufacture of iron core
JPS6153712A (en) Manufacture of transformer iron core