JPS6144275A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS6144275A
JPS6144275A JP16593284A JP16593284A JPS6144275A JP S6144275 A JPS6144275 A JP S6144275A JP 16593284 A JP16593284 A JP 16593284A JP 16593284 A JP16593284 A JP 16593284A JP S6144275 A JPS6144275 A JP S6144275A
Authority
JP
Japan
Prior art keywords
cooler
frost
refrigerator
air
fin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16593284A
Other languages
Japanese (ja)
Inventor
幸弘 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP16593284A priority Critical patent/JPS6144275A/en
Publication of JPS6144275A publication Critical patent/JPS6144275A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/06Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation
    • F25D2317/065Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return
    • F25D2317/0653Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass with forced air circulation characterised by the air return through the mullion

Landscapes

  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Defrosting Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ファンにて庫内を間接冷却する冷蔵庫に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a refrigerator whose interior is indirectly cooled by a fan.

従来例の構成とその問題点 従来、冷蔵庫に使用しているフィンチューブ型の冷却器
に於いては、庫内を冷却した冷気が戻る冷却器の吸込口
側が他の部分に比較し、集中的に着霜し、風路面積が狭
くなる。それ故、冷却器の吸込口側風速が落ち、風路抵
抗は著しく増加し、冷却器を通過する風量は急激に減少
して冷却効率が著しく低下するものであった。
Conventional structure and its problems In the conventional fin-tube type cooler used in refrigerators, the intake side of the cooler where the cold air that cooled the inside of the refrigerator returns is concentrated compared to other parts. frost forms on the ground, and the air passage area becomes narrower. Therefore, the air velocity at the suction port of the cooler decreases, the air path resistance increases significantly, and the amount of air passing through the cooler rapidly decreases, resulting in a significant decrease in cooling efficiency.

壕だ、上記理由の為、冷却器の除霜時に於いて、吸込口
側の一ケ所に集中した霜が冷却器下部に落下する為、箱
取効果が悪くなり、除霜用の加熱管は熱量の大きいもの
を必要とし、省エネルギーに反するという問題点を有し
ていた。
For the reason mentioned above, when defrosting the cooler, the frost concentrated in one place on the suction port side falls to the bottom of the cooler, which worsens the boxing effect, and the heating pipe for defrosting is This has the problem of requiring a large amount of heat, which goes against energy conservation.

発明の目的 本発明は、かかる従来の問題点を解消するものであり、
冷却効率の向上を図り、除霜時の省電力に寄与する冷蔵
庫を提供する事を目的とする。
OBJECT OF THE INVENTION The present invention solves these conventional problems,
The purpose is to provide a refrigerator that improves cooling efficiency and contributes to power savings during defrosting.

発明の構成 この目的を達成する為、本発明は蛇行状に折曲された冷
媒管と、この冷媒管に直交状に配設した放熱フィンとよ
り成るフィンチューブ型冷却器を設け、その中央部に対
向してバイパス風路を形成し、このバイパス風路を開閉
せしめるダンパー機構を具備し、冷却器両端部に着霜し
た頃に前記ダンパーを開く様にしたものである。
Structure of the Invention In order to achieve this object, the present invention provides a fin-tube type cooler consisting of a meandering refrigerant pipe and radiation fins arranged orthogonally to the refrigerant pipe. A bypass air passage is formed opposite to the cooler, and a damper mechanism is provided to open and close the bypass air passage, and the damper is opened when frost forms on both ends of the cooler.

実施例の説明 以下本発明の一実施例を添付図面に従い説明する。第1
図において、1は冷蔵庫本体で冷凍室2と冷蔵室3と区
画壁4により形成されている。前記冷凍室2の背面には
、フィンチューブ型の冷却器6が縦長に設けられ、その
前面に仕切板6が」二面及び底面一杯にわたって設けら
れている。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. 1st
In the figure, reference numeral 1 denotes a refrigerator body, which is formed by a freezing chamber 2, a refrigerating chamber 3, and a partition wall 4. A fin-tube type cooler 6 is vertically provided on the back side of the freezer compartment 2, and a partition plate 6 is provided on the front side of the refrigerator compartment 2 over two sides and the entire bottom surface.

また区画壁4には、一端を冷却器5の通風入口側に、他
端を冷凍室2及び冷蔵室3側にそれぞれ連通する吸込口
13及び14を有するダクト部7が形成されている。8
は冷却器6で冷やされた冷気を冷凍室2.冷蔵室3内へ
強制的に循環させるファンである。
Further, the partition wall 4 is formed with a duct portion 7 having suction ports 13 and 14 that communicate with the ventilation inlet side of the cooler 5 at one end and communicate with the freezer compartment 2 and refrigerator compartment 3 at the other end, respectively. 8
The cold air cooled by the cooler 6 is sent to the freezer compartment 2. This is a fan that forcibly circulates the air into the refrigerator compartment 3.

そして前記冷却器6け、第2図の如く蛇行状に折曲され
た冷媒管10とこの冷媒管10と並設され、内部にヒー
タを備えた加熱管11と、これら両管10,11と直交
状に配設された放熱ファンヤ 12とより形成されている。
The six coolers include a refrigerant pipe 10 bent in a meandering manner as shown in FIG. It is formed by a heat dissipation fan 12 arranged orthogonally.

次に第3図は、前記ダクト部の要部斜視図であり、中心
部の冷蔵室ダク)7aとその両端の冷凍室ダクト7bと
より成る。そして前記冷却器5の中央部に対向してバイ
パス風路9を形成させ、かつこれを開閉せしめるダンパ
ー機構16(モータ等15cでカム16bを駆動し、ダ
ンパー15aを開閉する)を具備している。
Next, FIG. 3 is a perspective view of the essential parts of the duct section, which consists of a refrigerator compartment duct 7a at the center and freezer compartment ducts 7b at both ends thereof. A damper mechanism 16 (a motor or the like 15c drives a cam 16b to open and close a damper 15a) is provided to form a bypass air passage 9 facing the center of the cooler 5 and to open and close it. .

この構成に於いて、通常冷却運動時は、前記バイパス風
路9は閉じており、冷蔵室内循環冷気は冷蔵室ダクト7
aから冷却器5の中央部を通り、冷凍室内循環冷気は冷
凍室ダクl−7bから主に冷却器の両端部を通る。そし
て冷却器上部のファン8にて冷凍室内2に吐出され、そ
の一部は冷蔵室3へ吐出する。
In this configuration, during normal cooling motion, the bypass air passage 9 is closed, and the cold air circulating in the refrigerator compartment is passed through the refrigerator compartment duct 7.
The cold air circulated in the freezer compartment passes through the central part of the cooler 5 from the freezer compartment duct 1-7b and mainly passes through both ends of the cooler. The air is then discharged into the freezer compartment 2 by the fan 8 at the top of the cooler, and a portion of it is discharged into the refrigerator compartment 3.

次に第4図は第1図のA −A’断面であり、冷蔵室内
を冷却した冷気が戻る冷却器6の吸込口側Aが他の部分
に比較し集中的に着霜が始まり、冷却器5の吸込側風速
が速い、風量は急激に減少する。
Next, Fig. 4 is a cross section taken along line A-A' in Fig. 1, and shows that frost formation begins more intensively on the suction port side A of the cooler 6, where the cold air that has cooled the refrigerator compartment returns, compared to other parts. The air speed on the suction side of the device 5 is high, and the air volume decreases rapidly.

そこで、冷却器下部に着霜が進行し、60%程度目詰り
状態で霜センサ−16が着霜を検出し、ダンパー15a
を開くことによりバイパス風路9に冷気を流し、冷却器
上部の熱交換を提進する。そ5べ−7 して前記ダンパー機構16のカム16bが一回転し、冷
却器中央部が完全に目詰まり状態となる頃に、再びダン
パー15aが閉じ(この時、冷却器中央部は均一に着霜
し、はぼ100%目詰りである。)冷凍室2の戻り冷気
のみならず冷蔵室3の戻り冷気も風路抵抗の小さい冷却
器の両端部を通過し始める。
Therefore, frost builds up in the lower part of the cooler, and when it is about 60% clogged, the frost sensor 16 detects frost, and damper 15a
By opening it, cold air flows through the bypass air passage 9 and promotes heat exchange in the upper part of the cooler. Then, when the cam 16b of the damper mechanism 16 rotates once and the center of the cooler is completely clogged, the damper 15a closes again (at this time, the center of the cooler is evenly distributed). (Frost has formed and the container is almost 100% clogged.) Not only the return cold air from the freezer compartment 2 but also the return cold air from the refrigerator compartment 3 begins to pass through both ends of the cooler where the air path resistance is low.

この様にして、冷却器全体の着霜量の均一化が図れ、冷
却器の吸込側風速を落す事なく風量も一定に保つ事がで
きる。
In this way, the amount of frost formed on the entire cooler can be made uniform, and the air volume can be kept constant without reducing the air speed on the suction side of the cooler.

第6図に本発明の冷却運転、ダンパー(駆動装置)箱取
りの時間に対する作動状態を示す。
FIG. 6 shows the operating state of the cooling operation of the present invention and the damper (drive device) unboxing time versus time.

ここで例えば冷蔵室温度10℃(飽和蒸気圧9.21a
rffHg)冷凍室温度−18℃(飽和蒸気圧0、94
111WHq )  に設定し、冷却器表面温度を一2
6℃(飽和蒸気圧0.47mHg)と仮定するとに相当
する水分が固化し、霜となって冷却器6に6ベー7 付着する。壕だ一般に、風路抵抗は風速の2乗に比例し
、風速は風量が一定であれば通風面積に反比例する事が
公知である。
Here, for example, the temperature of the refrigerator room is 10°C (the saturated vapor pressure is 9.21a)
rffHg) Freezer room temperature -18℃ (saturated vapor pressure 0,94
111WHq) and set the cooler surface temperature to -2.
Assuming that the temperature is 6° C. (saturated vapor pressure 0.47 mHg), water equivalent to 6° C. solidifies and forms frost, which adheres to the cooler 6. It is generally known that the wind resistance is proportional to the square of the wind speed, and that the wind speed is inversely proportional to the ventilation area if the air volume is constant.

然るに、通常冷却運転時は、前記バイパス風路9は閉じ
ており、冷蔵室内循環冷気は冷蔵室ダクト7aを通過し
た後、主として冷却器6の中央部を通り、冷凍室内循環
冷気は冷凍室ダク)7bを通過し、主として冷却器6の
両端部を通る。そして冷却器上部のファン8にて、冷凍
室内に吐出され、その一部は冷蔵室3へ吐出する様、風
路を形成し間接冷却している。
However, during normal cooling operation, the bypass air passage 9 is closed, and the cold air circulating in the refrigerator compartment passes through the refrigerator compartment duct 7a and then mainly through the center of the cooler 6, and the cold air circulating in the freezer compartment passes through the freezer compartment duct 7a. ) 7b, and mainly passes through both ends of the cooler 6. The air is then discharged into the freezer compartment by a fan 8 at the top of the cooler, and a part of it is discharged into the refrigerator compartment 3, forming an air path for indirect cooling.

この時、前述した通り、冷却器6に付着する霜量は冷蔵
室分が冷凍案分より極めて多い為、冷蔵室内を冷却した
冷気が戻る冷却器6の吸込口側が他の部分に比較し集中
的に着霜が始まる。そこで例えば60%目ず捷り状態で
霜センサ−16が着霜を検出し、ダンパー15aを一定
時間開とさせる事により、バイパス風路9に冷気を流し
、冷却器6の上部により熱交換を促進し冷却効率を妨げ
る事がない。次にある一定時間を過ぎると前記ダン7ベ
ー。
At this time, as mentioned above, the amount of frost that adheres to the cooler 6 is much larger in the refrigerator compartment than in the frozen part, so the cold air that has cooled the refrigerator compartment is concentrated on the suction port side of the cooler 6, where it returns compared to other parts. Frost begins to form. For example, when the frost sensor 16 detects frost formation at 60% frost, the damper 15a is opened for a certain period of time, allowing cold air to flow through the bypass air passage 9 and heat exchange through the upper part of the cooler 6. It promotes cooling and does not impede cooling efficiency. Next, after a certain period of time, the Dan 7 be.

パー15aが再び閉となり、冷凍室2の戻り冷気のみな
らず冷蔵室3の戻り冷気も風路抵抗の小さい冷却器5の
両端部を通過し始める。
The par 15a is closed again, and not only the return cold air from the freezer compartment 2 but also the return cold air from the refrigerator compartment 3 begins to pass through both ends of the cooler 5, which has a small air path resistance.

この様にして、冷却器全体の着霜量の均一化が図れ、冷
却効率を低下させる事がなく、それ故に霜取効果も優れ
るものである。
In this way, the amount of frost formed on the entire cooler can be made uniform, the cooling efficiency is not reduced, and therefore the frost removal effect is also excellent.

発明の効果 上記実施例から明らかな様に本発明は、蛇行状に折曲さ
れた冷媒管と、この冷媒管に直交状に配設した放熱フィ
ンとより成るフィンチューブ型冷却器を設け、かつ前記
放熱フィンの中央部に対向してバイパス風路を形成しか
つ、前記冷却器の着霜状態に応じて前記バイパス風路を
開閉せしめるダンパー機構を具備した事により、冷却効
率の向上を図り、冷却器の除霜時に於いて、吸込口側の
一ケ所に集中した霜が冷却器下部に落下する事なく霜取
効果に優れた着霜時の省電力に寄与する。
Effects of the Invention As is clear from the above embodiments, the present invention provides a fin-tube type cooler consisting of a meandering refrigerant pipe and radiation fins disposed orthogonally to the refrigerant pipe, and A bypass air passage is formed opposite to the central portion of the heat dissipation fin, and a damper mechanism is provided that opens and closes the bypass air passage depending on the frosting state of the cooler, thereby improving cooling efficiency. When defrosting a cooler, the frost concentrated in one place on the suction port side does not fall to the lower part of the cooler, contributing to power saving during frosting with excellent defrosting effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例にかかるフィンチューブ型冷
却器を備えた冷蔵庫の側断面図、第2図は同フィンチュ
ーブ型冷却器の部分斜視図、第3図は第1図の要部断面
図、第4図は第1図の八−A′断面図、第6図は動作説
明図である。 6・・・・・冷却器、8・ ・ファン、9・・・バイパ
ス風路、10・・・・・冷媒管、12・・・・放熱フィ
ン、16・・・・・・ダンパー機構。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名区 
                 区−代
FIG. 1 is a side sectional view of a refrigerator equipped with a fin-tube cooler according to an embodiment of the present invention, FIG. 2 is a partial perspective view of the fin-tube cooler, and FIG. 4 is a sectional view taken along line 8-A' in FIG. 1, and FIG. 6 is an explanatory diagram of the operation. 6... Cooler, 8... Fan, 9... Bypass air path, 10... Refrigerant pipe, 12... Radiation fin, 16... Damper mechanism. Name of agent: Patent attorney Toshio Nakao and 1 other person
ward-dai

Claims (1)

【特許請求の範囲】[Claims] 蛇行状に折曲された冷媒管と、この冷媒管に直交状に配
設した放熱フィンとより成るフィンチューブ型冷却器を
設け、前記冷却器の上部にファンを設けると共に、前記
放熱フィンの中央部に対向してバイパス風路を形成し、
かつ、前記冷却器の着霜状態に応じて前記バイパス風路
を開閉せしめるダンパー機構を具備して成る冷蔵庫。
A fin-tube type cooler is provided, which consists of a refrigerant pipe bent in a meandering shape and radiation fins arranged orthogonally to the refrigerant pipe, and a fan is provided at the top of the cooler, and a fan is provided in the center of the radiation fin. A bypass air path is formed opposite to the
The refrigerator further includes a damper mechanism that opens and closes the bypass air passage depending on the frosting state of the cooler.
JP16593284A 1984-08-08 1984-08-08 Refrigerator Pending JPS6144275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16593284A JPS6144275A (en) 1984-08-08 1984-08-08 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16593284A JPS6144275A (en) 1984-08-08 1984-08-08 Refrigerator

Publications (1)

Publication Number Publication Date
JPS6144275A true JPS6144275A (en) 1986-03-03

Family

ID=15821749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16593284A Pending JPS6144275A (en) 1984-08-08 1984-08-08 Refrigerator

Country Status (1)

Country Link
JP (1) JPS6144275A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682044A (en) * 1991-12-21 1994-03-22 Gold Star Co Ltd Cooking data change device of automatic cooking equipment
JP2011174651A (en) * 2010-02-24 2011-09-08 Mitsubishi Electric Corp Refrigerator and refrigerating cycle device
JP2012215380A (en) * 2012-06-21 2012-11-08 Mitsubishi Electric Corp Refrigerator and refrigerating cycle device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0682044A (en) * 1991-12-21 1994-03-22 Gold Star Co Ltd Cooking data change device of automatic cooking equipment
JP2011174651A (en) * 2010-02-24 2011-09-08 Mitsubishi Electric Corp Refrigerator and refrigerating cycle device
JP2012215380A (en) * 2012-06-21 2012-11-08 Mitsubishi Electric Corp Refrigerator and refrigerating cycle device

Similar Documents

Publication Publication Date Title
JPH10300316A (en) Refrigerator having freezer
JPS6144275A (en) Refrigerator
JPS6211276B2 (en)
JP3003820B2 (en) Freezer refrigerator
US3522712A (en) Snow free forced air refrigerator
JP3040198B2 (en) Refrigeration heat exchanger
JPH0124550Y2 (en)
JPS6235589B2 (en)
JP3130804B2 (en) Cooling storage
CN220648723U (en) Refrigerating box with novel evaporator structure
JPH0442705Y2 (en)
KR100331806B1 (en) device for cooling compressor in the refrigerator
JPH07167548A (en) Freezer and refrigerator
JPS597868A (en) Refrigerator
JPS60617Y2 (en) refrigerator
JP3345187B2 (en) refrigerator
JPH1038446A (en) Cooling storage
JPS5824132Y2 (en) refrigerated case
JPH1194438A (en) Refrigerator
JPS61168770A (en) Refrigerator
JPH01260280A (en) Cold storage device provided with air-conditioning function
JPH05306853A (en) Heat exchanger
JPH0248787Y2 (en)
JPS6024914B2 (en) refrigerator
JPS6186557A (en) Refrigerator