JPS6144259A - Air conditioner - Google Patents

Air conditioner

Info

Publication number
JPS6144259A
JPS6144259A JP16572684A JP16572684A JPS6144259A JP S6144259 A JPS6144259 A JP S6144259A JP 16572684 A JP16572684 A JP 16572684A JP 16572684 A JP16572684 A JP 16572684A JP S6144259 A JPS6144259 A JP S6144259A
Authority
JP
Japan
Prior art keywords
heat exchanger
air conditioner
refrigerant
solenoid valve
indoor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16572684A
Other languages
Japanese (ja)
Other versions
JPH0621727B2 (en
Inventor
弘章 松嶋
坂爪 秋郎
博樹 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59165726A priority Critical patent/JPH0621727B2/en
Publication of JPS6144259A publication Critical patent/JPS6144259A/en
Publication of JPH0621727B2 publication Critical patent/JPH0621727B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は空気調和機に係り、特に1台の室外ユニットに
複数台の室内ユニットを順次並列に接続してなる多室冷
暖房用の空気調和機に関するものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an air conditioner, and particularly to an air conditioner for heating and cooling multiple rooms, which is constructed by sequentially connecting a plurality of indoor units in parallel to one outdoor unit. It is related to.

〔発明の背景〕[Background of the invention]

従来、多室冷暖房用の空気調和機では、単室運転の場合
と、多室運転の場合とでは、冷凍サイクル内の適正冷媒
量が異なるので、単室・多室運転に拘らず、常に高効率
で冷凍サイクルを運転することができず、また、運転停
止中の熱交換器内に液冷媒が滞留して冷媒不足をもたら
すなどの欠点があった。これらを解消するだめに、各室
内ユニットに均圧管を取り付けたものが知られている(
%開昭58−8959.実開昭57−179076)。
Conventionally, in air conditioners for multi-room heating and cooling, the appropriate amount of refrigerant in the refrigeration cycle is different for single-room operation and multi-room operation. The refrigeration cycle cannot be operated efficiently, and the liquid refrigerant remains in the heat exchanger when the operation is stopped, resulting in a refrigerant shortage. In order to solve these problems, it is known that pressure equalization pipes are attached to each indoor unit (
% Kaisho 58-8959. Utility Model 179076 (1976).

しかし、各室内ユニットに均圧管を設けると、構造が複
雑にガリ、また制御量が増加するという改善すべき問題
点があった。
However, when each indoor unit is provided with a pressure equalizing pipe, there are problems that need to be improved, such as a complicated structure and an increase in the amount of control.

〔発明の目的〕[Purpose of the invention]

本発明は、上記した従来技術の問題点を改善して、構造
が簡単で、単室・多室運転に拘らず、冷凍サイクル内の
冷媒量が常に適正である空気調和機の提供を、その目的
とするものである。
The present invention improves the problems of the prior art described above, and provides an air conditioner that has a simple structure and always maintains an appropriate amount of refrigerant in the refrigeration cycle, regardless of whether it is operated in a single room or in multiple rooms. This is the purpose.

〔発明の概要〕[Summary of the invention]

本発明に係る空気調和機の構成は、少なくとも、圧縮機
、四方切換え弁、室外側熱交換器を有する室外ユニット
の前記四方切換え弁から出た配管の圧縮機側分岐点と、
前記室外側熱交換器から出た゛      配管の室外
911分岐点との間に、少なくとも、室内側熱交換器、
減圧器を有する複数台の室内ユニットを順次並列に接続
してなる空気調和機において、室内側熱交換器の途中位
置に電磁弁を設けるようにしたものである。
The configuration of the air conditioner according to the present invention includes at least a compressor, a four-way switching valve, and a branch point on the compressor side of a pipe extending from the four-way switching valve of an outdoor unit having an outdoor heat exchanger;
At least an indoor heat exchanger,
In an air conditioner formed by sequentially connecting a plurality of indoor units having pressure reducers in parallel, a solenoid valve is provided in the middle of an indoor heat exchanger.

さらに詳しくは、室内側熱交換器の途中に暖房運転時の
流量制御用の電磁弁を設け、暖房運転時、停止中の室内
ユニットの余剰冷媒を、分岐点と前記電磁弁との間に液
冷媒として滞留させるようにしたものである。
More specifically, a solenoid valve for flow control during heating operation is provided in the middle of the indoor heat exchanger, and during heating operation, excess refrigerant from the stopped indoor unit is transferred to a liquid between the branch point and the solenoid valve. It is designed to be retained as a refrigerant.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例によって説明する。 Hereinafter, the present invention will be explained by examples.

第1図は、本発明の第1の実施例に係る空気調和機のサ
イクル構成図である。
FIG. 1 is a cycle configuration diagram of an air conditioner according to a first embodiment of the present invention.

この第1図において、1は、能力に応じて回転数を変え
ることができる圧縮機4.冷媒の流れ方向を切換えて冷
房・暖房運転を切換える四方切換え弁5.室外側熱交換
器6からなる室外ユニットである。2は、途中位置(詳
細後述)に電磁弁穴8を設けた、第1の室内側熱交換器
A7と第2の室内側熱交換器A9とからなる室内側熱交
換器。
In FIG. 1, 1 is a compressor 4 whose rotation speed can be changed according to its capacity. Four-way switching valve that switches between cooling and heating operation by switching the flow direction of refrigerant 5. This is an outdoor unit consisting of an outdoor heat exchanger 6. Reference numeral 2 denotes an indoor heat exchanger consisting of a first indoor heat exchanger A7 and a second indoor heat exchanger A9, which are provided with a solenoid valve hole 8 at an intermediate position (details will be described later).

任意に絞りを全開から全閉まで変えられ、両方向から冷
媒を流すことができる、減圧器に係る可逆性の膨張弁A
IOからなる室内ユニットAである。
A reversible expansion valve A for a pressure reducer that can arbitrarily change the throttle from fully open to fully closed, allowing refrigerant to flow from both directions.
This is an indoor unit A consisting of IO.

3は、途中位置(詳細後述)に電磁弁B12を設けた、
第1の室内側熱交換器Bllと第2の室内側熱交換器8
1.3とからなる室内側熱交換器、任意に絞りを全開か
ら全閉まで変えられ、両方向から冷媒を流すことができ
る減圧器に係る可逆性の膨張弁B14からなる室内ユニ
ツ)Bである。
3, a solenoid valve B12 is provided at an intermediate position (details will be described later),
First indoor heat exchanger Bll and second indoor heat exchanger 8
1.3, an indoor unit consisting of a reversible expansion valve (B14) associated with a pressure reducer that can optionally change the aperture from fully open to fully closed and allow refrigerant to flow from both directions. .

15は、四方切換え弁5から出た配管、17は、室外側
熱交換器6から出た配管であシ、圧縮機側分岐点168
と室外熱交側分岐点18aとの間に前記室内ユニツ)A
2が、また圧縮機側分岐点1、6 bと室外熱交側分岐
点18bとの間に、前記室内ユニツ)B3が、順次並列
に接続されている。
15 is a pipe coming out of the four-way switching valve 5, 17 is a pipe coming out of the outdoor heat exchanger 6, and a branch point 168 on the compressor side.
and the outdoor heat exchanger side branch point 18a.
The indoor units) B3 are connected in parallel between the compressor side branch points 1 and 6b and the outdoor heat exchanger side branch point 18b.

そして1.52は、四方切換え弁5と室内ユニットA2
とを結ぶ配管a、15bは、配管al 5aと連結し、
室内ユニットA2と室内ユニットB3とを結ぶ配管b1
17aは、室内ユニツ)A2と室外側熱交換器6を結ぶ
配管a′、17bは、配管a’17aと連結し室内ユニ
ットA2と室内ユニツ)B3とを結ぶ配管b′である。
1.52 is the four-way switching valve 5 and the indoor unit A2.
Pipes a and 15b connecting with are connected to pipe al 5a,
Piping b1 connecting indoor unit A2 and indoor unit B3
17a is a pipe a' that connects the indoor unit A2 and the outdoor heat exchanger 6, and 17b is a pipe b' that is connected to the pipe a'17a and connects the indoor unit A2 and the indoor unit B3.

前記した電磁弁A、8(電磁弁B 1.2についても同
様)を設ける途中位置について説明すると、この電磁弁
A8を閉にしだとき、暖房運転時の冷媒量とほぼ等しい
冷媒量を、電磁弁穴8と圧縮機側分岐点16aとの間で
滞留せしめることができるような途中位置に設ける。
To explain the intermediate positions where the solenoid valves A and 8 (the same goes for solenoid valve B 1.2) are installed, when the solenoid valve A8 is closed, the amount of refrigerant that is approximately equal to the amount of refrigerant during heating operation is transferred to the solenoid. It is provided at an intermediate position where it can be retained between the valve hole 8 and the compressor side branch point 16a.

以上のように構成した空気調和機の動作を説明する。The operation of the air conditioner configured as above will be explained.

室内ユニットA2および室内ユニットB3が置かれてい
る被空調室2室を同時に冷房する場合を説明する。この
場合は、四方切換え弁5を冷房運転側にし、電磁弁A8
および電磁弁B12を開にセットする。ここで空気調和
機をONにすると、膨張弁AIOおよび膨張弁B14の
絞りがそれぞれの被空調室の必要冷房能力に応じて調節
され、また圧縮機4の回転数が両波空調室の冷房負荷に
応じて変化しながら運転される。このことにより、圧縮
機4を吐出した高温高圧のガス冷媒は、四方切換え弁5
を通り室外側熱交換器6で外気に放熱し凝縮する。この
凝縮しだ液冷媒は配管aJ、7aを通り、一部は膨張弁
AIOへ、残りは配管b’17bを通り膨張弁B14へ
送られる。膨張弁1、10と膨張弁B14で低圧になっ
た冷媒は、そす 被空調室から吸熱しガス冷媒となって、配管a15aお
よび配管b15bを通って四方切換え弁5へ送られ再び
圧縮機4へ戻る。
A case will be described in which two air-conditioned rooms in which indoor unit A2 and indoor unit B3 are placed are simultaneously cooled. In this case, set the four-way switching valve 5 to the cooling operation side, and set the solenoid valve A8 to the cooling operation side.
and set solenoid valve B12 open. When the air conditioner is turned on here, the throttles of the expansion valves AIO and B14 are adjusted according to the required cooling capacity of each air-conditioned room, and the rotation speed of the compressor 4 is adjusted to the cooling load of the double-wave air-conditioned room. It is operated while changing depending on the situation. As a result, the high temperature and high pressure gas refrigerant discharged from the compressor 4 is transferred to the four-way switching valve 5.
through the outdoor heat exchanger 6, where the heat is radiated to the outside air and condensed. This condensed drip refrigerant passes through the pipes aJ and 7a, and part of it is sent to the expansion valve AIO, and the rest passes through the pipe b'17b and is sent to the expansion valve B14. The refrigerant that has become low pressure in the expansion valves 1 and 10 and the expansion valve B14 absorbs heat from the air-conditioned room, becomes a gas refrigerant, is sent to the four-way switching valve 5 through the pipe a15a and the pipe b15b, and is then returned to the compressor 4. Return to

また、一方の被空調室の冷房が不要になった場合には、
不要になった被空調室の室内ユニット、たとえば室内ユ
ニットA2の膨張弁AIOを全閉にし、電磁弁A8を開
にして運転する。このようにすることにより、第1.第
2の室内側熱交換A7.A、9内の圧力は低圧になり、
ガス冷媒となって液冷媒の滞留はなくなる。
In addition, if cooling of one of the air-conditioned rooms is no longer necessary,
The indoor unit of the air-conditioned room that is no longer needed, for example, the expansion valve AIO of the indoor unit A2, is fully closed, and the solenoid valve A8 is opened to operate. By doing this, the first. Second indoor heat exchange A7. A, the pressure inside 9 becomes low pressure,
It becomes a gas refrigerant, and there is no longer any stagnation of liquid refrigerant.

次に被空調室2室を同時に暖房する場合を説明する。こ
の場合は、四方切換え弁5を暖房運転側ネ にし、電磁弁穴8および電磁弁B12を開にセットする
。ここで空気調和機をONにすると、各被空調室の暖房
負荷に応じて膨張弁A10.膨張弁B14の絞りおよび
圧縮機4の回転数を制御しながら運転される。このこと
により、冷房運転とは逆に、圧縮機4を出た高温高圧の
ガス冷媒は配管a15a、配管b15bを通りそれぞれ
の室内側熱交換器A7.A9およびBll、B13へ送
られ、被空調室に放熱し凝縮し、膨張弁A10゜B14
で低圧になり、配管a’l 7 a 、 b’17bを
通シ室外側熱交換器6で外気から吸熱しガス冷媒となり
、四方切換え弁5を通シ圧縮機4へ戻る。
Next, a case will be described in which two air-conditioned rooms are heated at the same time. In this case, the four-way switching valve 5 is set to the heating operation side, and the solenoid valve hole 8 and solenoid valve B12 are set to open. When the air conditioner is turned on here, the expansion valve A10. It is operated while controlling the throttle of the expansion valve B14 and the rotation speed of the compressor 4. As a result, contrary to the cooling operation, the high-temperature, high-pressure gas refrigerant leaving the compressor 4 passes through the pipes a15a and b15b to the respective indoor heat exchangers A7. The heat is sent to A9, Bll, and B13, and is radiated to the air-conditioned room and condensed, and the expansion valve A10°B14
The refrigerant becomes a low pressure, passes through the pipes a'l7a and b'17b, absorbs heat from the outside air in the outdoor heat exchanger 6, becomes a gas refrigerant, and returns to the compressor 4 through the four-way switching valve 5.

また、一方の被空調室の暖房が不要になった場合、たと
えば室内ユニツ)A2側の暖房が不要になった場合には
、電磁弁A8を閉にし、膨張弁AIOを全開にして運転
する。このことにより、室内ユニツ)A2内の第1の室
内側熱交換器A7内は高圧側になシ、冷媒は凝縮し液冷
媒が滞留する。一方、第2の室内側熱交換器A9内は低
圧側にカム冷媒は蒸発しガス冷媒となる。ところで、電
磁弁穴8を閉にしておけば、第1の室内側熱交換器A7
(圧縮機側分岐点162と電磁弁穴8との間)に滞留す
る液冷媒量を暖房運転時の当該室内ユニツ)A2内の冷
媒量と同一になるように電磁弁穴8の位置を設定しであ
るので、一方の被空調室のみを暖房する、暖房部分運転
時でも冷凍サイクル内の冷媒量が適正になり、高効率の
暖房運転が可能になる。
Further, when heating of one of the air-conditioned rooms is no longer necessary, for example when heating of the indoor unit A2 is no longer necessary, the solenoid valve A8 is closed and the expansion valve AIO is fully opened for operation. As a result, the inside of the first indoor heat exchanger A7 in the indoor unit A2 is not on the high pressure side, the refrigerant is condensed, and the liquid refrigerant is retained. On the other hand, in the second indoor heat exchanger A9, the cam refrigerant evaporates on the low pressure side and becomes a gas refrigerant. By the way, if the solenoid valve hole 8 is closed, the first indoor heat exchanger A7
Set the position of the solenoid valve hole 8 so that the amount of liquid refrigerant that stays in the area (between the compressor side branch point 162 and the solenoid valve hole 8) is the same as the amount of refrigerant in A2 of the indoor unit during heating operation. Therefore, the amount of refrigerant in the refrigeration cycle becomes appropriate even during the heating partial operation in which only one air-conditioned room is heated, making it possible to perform highly efficient heating operation.

以上説明した第1の実施例によれば、均圧管などを設け
る必要がないので構造が簡単で、暖房運転時の冷媒量を
単室・多室暖房に拘らず適正な値に制御することができ
る、冷凍サイクルの効率が高く、省電力化が図れる空気
調和機を提供することができるという効果がある。
According to the first embodiment described above, the structure is simple because there is no need to provide pressure equalization pipes, and the amount of refrigerant during heating operation can be controlled to an appropriate value regardless of single-room or multi-room heating. This has the effect of being able to provide an air conditioner that has a high efficiency refrigeration cycle and can save power.

なお、上記実施例は、二基冷暖房用の空気調和機につい
てのものであるが、本発明は、王室以上の多室冷暖房用
の空気調和機にも適用できるものである。
Although the above-mentioned embodiments relate to a two-unit air conditioner for heating and cooling, the present invention can also be applied to an air conditioner for heating and cooling multiple rooms in a royal room or above.

第2図は、本発明の第2の実施例に係る空気調和機のサ
イクル構成図である。
FIG. 2 is a cycle configuration diagram of an air conditioner according to a second embodiment of the present invention.

この第2図において、第1図と同一番号を付したものは
同一部分である。そして19は、減圧器に係る冷房用キ
ャピラリチューブA120は冷房用電磁弁A121は、
減圧器に係る暖房用キャピラリチューブA122は暖房
用逆止弁A123は、減圧器に係る冷房用キャピラリチ
ューブB124は冷房用電磁弁B125は、減圧器に係
る暖房用キャピラリチューブB126は暖房用逆止弁B
である。
In FIG. 2, the same numbers as in FIG. 1 indicate the same parts. 19 is a cooling capillary tube A120 related to a pressure reducer, and a cooling solenoid valve A121 is,
The heating capillary tube A122 related to the pressure reducer is the heating check valve A123, the cooling capillary tube B124 related to the pressure reducer is the cooling solenoid valve B125, and the heating capillary tube B126 related to the pressure reducer is the heating check valve. B
It is.

このように構成した第2図に係る空気調和機の動作を説
明する。
The operation of the air conditioner constructed in this way according to FIG. 2 will be explained.

冷房運転時には、二基冷房の場合は、電磁弁A8.電磁
弁B12.冷房用電磁弁A20.冷房用電磁弁B24を
開にする。このようにして運転することによシ、室外側
熱交換器6で凝縮しだ液冷媒の一部は配管a′17a、
冷房用電磁弁A20を通υ、残りの液冷媒は配管b’1
7b、冷房用電磁弁B24を通シ、それぞれの冷房用キ
ャピラリチューブA19.B23で減圧され、室内側熱
交換器A7.A9.Bl 1 ’、Bl 3で被空調室
から吸熱する。
During cooling operation, in the case of dual cooling, solenoid valve A8. Solenoid valve B12. Cooling solenoid valve A20. Open the cooling solenoid valve B24. By operating in this manner, a part of the sweat refrigerant condensed in the outdoor heat exchanger 6 is transferred to the pipe a'17a,
The cooling solenoid valve A20 is passed through υ, and the remaining liquid refrigerant is piped b'1.
7b, the cooling solenoid valve B24 is passed through each cooling capillary tube A19. The pressure is reduced at B23, and the indoor heat exchanger A7. A9. Heat is absorbed from the air-conditioned room at Bl 1 ' and Bl 3.

また、一方の被空調室の冷房が不要になった場合、たと
えば室内ユニツ)A2A側の被空調室の冷房が不要の場
合には、冷房用電磁弁A20を閉。
In addition, when cooling of one of the air-conditioned rooms is no longer necessary, for example, when cooling of the air-conditioned room on the side of the indoor unit A2A is no longer necessary, the cooling solenoid valve A20 is closed.

電磁弁A8を開にして運転することにより、第1の室内
側熱交換器A7および第2の室内側熱交換器A9内は低
圧側になり、冷媒は蒸発しガス冷媒のみとなる。したが
って室内ユニツ)A2A内に液冷媒の滞留はなくなる。
By operating with the solenoid valve A8 open, the insides of the first indoor heat exchanger A7 and the second indoor heat exchanger A9 become low-pressure, and the refrigerant evaporates, leaving only gas refrigerant. Therefore, no liquid refrigerant remains in the indoor unit A2A.

一方暖房運転時には、二基暖房の場合は、電磁弁A8.
電磁弁B1’2を開、冷房用電磁弁A20゜冷房用電磁
弁B24を閉にする。このようにして運転することによ
り、圧縮機4を出た高温のガス冷媒は、配管a 15 
aおよび配管b15bを通って、それぞれ室内側熱交換
器A7.A9・Bll・B13で被空調室に放熱し凝縮
し、それぞれの暖房用キャピラリチューブA21.B2
5、暖房用逆止弁A22.B26を通シ室外側熱交換器
6へ送られ、ここで外気から吸熱しガス冷媒とカリ、四
方切換え弁5を通り圧縮機4へ戻る。
On the other hand, during heating operation, in the case of dual heating, solenoid valve A8.
Open the solenoid valve B1'2 and close the cooling solenoid valve A20° and the cooling solenoid valve B24. By operating in this manner, the high temperature gas refrigerant that has exited the compressor 4 is transferred to the pipe a 15.
a and pipe b15b to the indoor heat exchanger A7. A9, Bll, and B13 radiate heat to the air-conditioned room and condense it, and each heating capillary tube A21. B2
5. Heating check valve A22. B26 is passed through and sent to the outdoor heat exchanger 6, where it absorbs heat from the outside air, passes through the gas refrigerant and potash, and returns to the compressor 4 through the four-way switching valve 5.

串 寸だ、一方の被空調室の暖房が不要になった場合、たと
えば室内ユニツ) A、 2 A側の暖房が不要になっ
た場合には、電磁邦人8を閉、冷房用電磁弁A20を開
にして運転する。このことにより、前記第1の実施例に
同様に、第1の室内側熱交換器A7は高圧側になり液冷
媒が滞留し、第2の室内側熱交換器A9内は低圧側にな
りガス冷媒となり、常に冷凍サイクル内の冷媒量が適正
な状態で運転することができる。
If the heating of one air-conditioned room is no longer necessary, for example, the indoor unit) A, 2 If the heating of the A side is no longer necessary, close the solenoid 8 and turn the cooling solenoid valve A20. Drive with it open. As a result, similarly to the first embodiment, the first indoor heat exchanger A7 becomes a high-pressure side and liquid refrigerant accumulates, and the second indoor heat exchanger A9 becomes a low-pressure side and gas It becomes a refrigerant and can always be operated with the appropriate amount of refrigerant in the refrigeration cycle.

以上説明した第2の実施例によれば、キャピラリチュー
ブで適正な絞りが得られるような能力可変範囲の小さい
圧縮機を用いる場合には、前記第1の実施例の効果に加
えて、膨張弁を使用しなくても安価々減圧器(す々わち
キャピラリチューブ)で冷凍サイクル内の冷媒量を適正
に制御できるという利点がある。
According to the second embodiment described above, when using a compressor with a small capacity variable range in which an appropriate restriction can be obtained with a capillary tube, in addition to the effects of the first embodiment, the expansion valve The advantage is that the amount of refrigerant in the refrigeration cycle can be properly controlled using an inexpensive pressure reducer (capillary tube) without using a refrigeration cycle.

第3図は、本発明の第3の実施例に係る空気調和機のサ
イクル構成図である。
FIG. 3 is a cycle configuration diagram of an air conditioner according to a third embodiment of the present invention.

この第3図において、第1図と同一番号を付したものは
同一部分である。そして29ば、室外側熱交換器6の室
内ユニット側出口に設けられた第2の減圧器であり、こ
の第2の減圧器29の抵抗は、冷房運転時に、配管a’
17a、配管b’l’1内の冷媒温度が被空調室の温度
よりも低くなるように選ぶ。27は、室外ユニットIA
から最も遠い位置にある室内ユニツ)B3Bの入口、出
口間に設けられた、抵抗に係るキャピラリチューブ28
を有するバイパス回路であり、前記キャピラリチューブ
28の抵抗は、暖房運転時に、室内ユニットB3Bが停
止しているとき、配管b15bからの放熱により凝縮す
る冷媒量よりもわずかに多くバイパス回路27に冷媒が
流れるように選ぶ。
In FIG. 3, the same parts as in FIG. 1 are denoted by the same numbers. 29 is a second pressure reducer provided at the indoor unit side outlet of the outdoor heat exchanger 6, and the resistance of this second pressure reducer 29 is such that during cooling operation, the resistance of the pipe a'
17a, the temperature of the refrigerant in the pipe b'l'1 is selected to be lower than the temperature of the air-conditioned room. 27 is outdoor unit IA
Capillary tube 28 related to resistance, installed between the inlet and outlet of B3B (the indoor unit located farthest from the
The resistance of the capillary tube 28 is such that during heating operation, when the indoor unit B3B is stopped, the amount of refrigerant flowing into the bypass circuit 27 is slightly larger than the amount of refrigerant condensed due to heat radiation from the pipe b15b. Choose flowingly.

このように構成した第3図に係る空気調和機の動作を説
明する。冷房運転時には、室外側熱交換器6内で凝縮し
た液冷媒は、第2の減圧器29で減圧され気液二相の液
冷媒となシ、配管a′17a。
The operation of the air conditioner constructed in this way according to FIG. 3 will be explained. During cooling operation, the liquid refrigerant condensed in the outdoor heat exchanger 6 is depressurized by the second pressure reducer 29 and becomes a gas-liquid two-phase liquid refrigerant.

b’17b(二基冷房の場合)を通って膨張弁A10.
膨張弁B14で再び減圧され室内側熱交換器A7.A9
.Bll、B13で被空調室から吸熱する。この場合、
ノ<イノくス路27にも冷媒は流れるが、キャピラリチ
ューブ28の抵抗は、膨張弁A10.膨張弁B14の抵
抗に比べてはるかに大きく、熱的な損失はほとんどない
b'17b (in case of dual cooling) to expansion valve A10.
The pressure is reduced again by the expansion valve B14 and the indoor heat exchanger A7. A9
.. Bll and B13 absorb heat from the air conditioned room. in this case,
Although the refrigerant also flows through the flow path 27, the resistance of the capillary tube 28 causes the expansion valve A10. The resistance is much greater than that of the expansion valve B14, and there is almost no thermal loss.

捷だ、一方の被空調室の冷房が不要になっだ場合、たと
えば室内ユニツ)B3Bが不要になり、この室内ユニッ
トBaB内の膨張弁B14を全閉にした場合でも、配管
b’17b内は、バイパス路27を通って冷媒が流れる
ため、配管内の冷媒量は全室冷房した場合とほとんど変
らない。
However, if cooling of one of the air-conditioned rooms is no longer necessary, for example, indoor unit (B3B) is no longer necessary, and even if the expansion valve B14 in this indoor unit BaB is fully closed, the inside of piping b'17b is Since the refrigerant flows through the bypass passage 27, the amount of refrigerant in the piping is almost the same as when all rooms are cooled.

一方暖房運転時には、室内側熱交換器A7゜A9.Bl
l、B13で凝縮しだ液冷媒は、膨張弁AIOおよび膨
張弁B14で減圧され、気液二相となシ配管a’17a
、b’17bを通り、第2の圧縮機4へ戻る。
On the other hand, during heating operation, the indoor heat exchanger A7°A9. Bl
The liquid refrigerant condensed in B13 is depressurized by expansion valve AIO and expansion valve B14, and becomes gas-liquid two-phase.
, b'17b and returns to the second compressor 4.

また、一方の被空調室の暖房が不要になった場合、たと
えば室内ユニツ)B3Bが不要になシ、この室内ユニツ
)BaB内の電磁弁B12を閉にした場合でも、配管b
lsb内は、放熱によシ凝縮する冷媒量以上にバイパス
回路27を通って冷媒が流れるため、配管b15b内は
常にガス冷媒室 となシ、全冷暖房運転時と冷媒量の差はなくなる。
In addition, if heating of one of the air-conditioned rooms is no longer necessary, for example, indoor unit) B3B is no longer needed, and even if solenoid valve B12 in this indoor unit) BaB is closed, piping b
Inside the lsb, more refrigerant flows through the bypass circuit 27 than the amount of refrigerant condensed by heat radiation, so the inside of the pipe b15b is always a gas refrigerant chamber, and there is no difference in the amount of refrigerant compared to during full cooling/heating operation.

寸だ、第1の室内側熱交換器B11内に液冷媒が滞留し
ているため、冷凍サイクル内の冷媒量も適正になって常
に高効率で運転することができる。
In fact, since the liquid refrigerant remains in the first indoor heat exchanger B11, the amount of refrigerant in the refrigeration cycle becomes appropriate, and the refrigeration cycle can always be operated with high efficiency.

以上説明した第3の実施例によれば、前記第1の実施例
の効果に加えて、配管a15a、配管b 1.5 bは
、冷房・暖房共にガス冷媒、配管a′17 a、配管b
’17bは、冷房・暖房共に気液二相となり、配管内の
冷媒量が少なくなるので、冷凍サイクル内に封入する冷
媒量が少なくてすむ。
According to the third embodiment described above, in addition to the effects of the first embodiment, the pipe a15a and the pipe b1.5b use gas refrigerant for both cooling and heating, and the pipe a'17a and the pipe b
In '17b, both cooling and heating are gas-liquid two-phase, and the amount of refrigerant in the piping is reduced, so the amount of refrigerant sealed in the refrigeration cycle can be reduced.

また、冷房と暖房とで、配管内の冷媒量に差が々く々す
、配管を長くした場合でも、常に適正な冷媒量で運転で
きるという効果がある。
In addition, even if the amount of refrigerant in the pipes varies greatly between cooling and heating, and even if the pipes are long, the system can always be operated with an appropriate amount of refrigerant.

第4図は、本発明の第4の実施例に係る空気調和機のサ
イクル構成図である。
FIG. 4 is a cycle configuration diagram of an air conditioner according to a fourth embodiment of the present invention.

この第4図において、第3図と同一番号を付したものは
同一部分である。そして30は、圧縮機側分岐点16a
から、室外ユニット1人から遠ざかる側にある室内ユニ
ツ)B3に至る配管b15bの、前記圧縮機側分岐点1
6a近傍に設けられた電磁弁Cでおる。
In FIG. 4, the same parts as in FIG. 3 are denoted by the same numbers. And 30 is the compressor side branch point 16a
The branch point 1 on the compressor side of the pipe b15b leading from the indoor unit (indoor unit) B3 on the side away from one person in the outdoor unit
A solenoid valve C provided near 6a.

このように構成した第4図に係る空気調和機の暖房運転
時、室内ユニツ)B3を停止した場合の動作を説明する
(他の動作は、前記第3図に係る空気調和機の動作と同
一であるので、説明を省略する)。
The operation when the indoor unit) B3 is stopped during heating operation of the air conditioner according to FIG. Therefore, the explanation will be omitted).

暖房運転時、室内ユニツ)B3を停止する場合には、予
め電磁弁B i−2を閉にし、運転開始後、所定時間経
過して第1の室内側熱交換器B]、]内と配管blsb
内に液冷媒が凝縮したのち電磁弁C30を閉にする。こ
のことにより余剰冷媒は、第1の室内側熱交換器Bll
と配管1) 15 b内に滞留し、冷凍サイクル内の冷
媒量は適正になる。
When stopping the indoor unit B3 during heating operation, close the solenoid valve B i-2 in advance, and after a predetermined period of time has elapsed after the start of operation, the inside of the first indoor heat exchanger B], ] and the piping are closed. blsb
After the liquid refrigerant is condensed inside, the solenoid valve C30 is closed. As a result, the excess refrigerant is transferred to the first indoor heat exchanger Bll.
and piping 1) 15 b, and the amount of refrigerant in the refrigeration cycle becomes appropriate.

なお、配管b 1.5 bの長さが長く、配管b l 
5 b内に滞留する冷媒量が多くなり、冷凍サイクル内
の冷媒量が少々くなって室外側熱交換器6の過熱度が大
きくなるおそれがある場合には、運転の途中において、
室外側熱交換器6の過熱度がなく々るまで電磁弁B12
を開にし、第1の室外側熱交換器B i I内および配
管b ]、 5 b内に滞留していだ液冷媒の一部を冷
凍サイクル内へ戻すようにすればよい。
In addition, the length of piping b 1.5 b is long, and the length of piping b l
If there is a risk that the amount of refrigerant remaining in 5b becomes large and the amount of refrigerant in the refrigeration cycle becomes small and the degree of superheating of the outdoor heat exchanger 6 increases, during operation,
Solenoid valve B12 until the degree of superheating of the outdoor heat exchanger 6 is exhausted.
may be opened, and a portion of the liquid refrigerant remaining in the first outdoor heat exchanger B i I and the pipes b ] and 5 b may be returned to the refrigeration cycle.

以上説明した第4の実施例によれば、バイパス回路27
がないため、循環冷媒量のすべてが利用でき、前記第3
の実施例よりもさらに効率が良くなり、配管を長くして
も効率が低下しないという効果がある。
According to the fourth embodiment described above, the bypass circuit 27
Therefore, all the amount of circulating refrigerant can be used, and the third
The efficiency is even better than that of the embodiment, and there is an effect that efficiency does not decrease even if the piping is lengthened.

第5図は、本発明の第5の実施例に係る空気調和機の室
内ユニットの要部を示す略示図である。
FIG. 5 is a schematic diagram showing the main parts of an indoor unit of an air conditioner according to a fifth embodiment of the present invention.

この第5図において、第1図と同一番号を付したものは
同一部分である。そして32は、逆止弁31と並列に設
けられた小形の電磁弁である。通常冷房、暖房両方向の
流れに対して抵抗の少ない電磁弁8は高価になる。そこ
で、電磁弁8を使用する代りに、逆止弁31と並列に設
けた小形の電磁弁32を使用し、暖房運転時には電磁弁
32を用いて冷媒を流し、冷房運転時には逆止弁31を
用いて流すことによシ、消費電力が少なくなり、また安
価になるという利点がある。
In FIG. 5, the same parts as in FIG. 1 are denoted by the same numbers. And 32 is a small electromagnetic valve provided in parallel with the check valve 31. Normally, the solenoid valve 8, which has little resistance to flow in both directions of cooling and heating, is expensive. Therefore, instead of using the solenoid valve 8, a small solenoid valve 32 installed in parallel with the check valve 31 is used.The solenoid valve 32 is used to flow the refrigerant during heating operation, and the check valve 31 is closed during cooling operation. This has the advantage of reducing power consumption and cost.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように本発明によれば、構造が簡単
で、単室・多室運転に拘らず、冷凍ザイクル内の冷媒量
が常に適正である空気調和機を提供することができる。
As described in detail above, according to the present invention, it is possible to provide an air conditioner that has a simple structure and in which the amount of refrigerant in the refrigerating cycle is always appropriate regardless of whether the air conditioner is operated in a single room or in multiple rooms.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜4図は、それぞれ本発明の第1〜4の実施例に係
る空気調和機のサイクル構成図、第5図は、本発明の第
5の実施例に係る空気調和機の室内ユニットの要部を示
す略示図である。 1、IA・・・室外ユニット、2.2A、、2B山室内
ユニットA、3.3A、3B・・・室内ユニットB14
・・・圧縮機、5・・・四方切換え弁、6・・・室外側
熱交換器、7・・・第1の室内側熱交換器A、8・・電
磁弁に、9・・・第2の室内側熱交換器A110・・・
膨張弁A11〕・・・第1の室内側熱交換器B1〕2・
・・電磁弁B113・・・第2の室内側熱交換器B11
4・・膨張弁B、15−・・配管、15b−・・配管、
16a。 16b・・・圧縮機側分岐点、17・・・配管、18a
。 18b・・・室外熱交側分岐点、19・・・冷房用キャ
ピラリチューブA121・・・暖房用キャピラリチュー
ブA123・・・冷房用キャピラリチューブB125・
・・暖房用キャピラリチューブB127・・・ノく41
42回路、28・・・キャピラリチューブ、29・・・
第2のヤ 第 l 口 第20 ! 茅9 図
1 to 4 are cycle configuration diagrams of air conditioners according to the first to fourth embodiments of the present invention, and FIG. 5 is a diagram of the indoor unit of the air conditioner according to the fifth embodiment of the present invention. FIG. 3 is a schematic diagram showing main parts. 1, IA...Outdoor unit, 2.2A, 2B Mountain indoor unit A, 3.3A, 3B...Indoor unit B14
Compressor, 5... Four-way switching valve, 6... Outdoor heat exchanger, 7... First indoor heat exchanger A, 8... Solenoid valve, 9... No. 2 indoor heat exchanger A110...
Expansion valve A11]...first indoor heat exchanger B1]2.
...Solenoid valve B113...Second indoor heat exchanger B11
4... Expansion valve B, 15-... Piping, 15b-... Piping,
16a. 16b... Compressor side branch point, 17... Piping, 18a
. 18b...Outdoor heat exchange side branch point, 19...Cooling capillary tube A121...Heating capillary tube A123...Cooling capillary tube B125.
...Capillary tube for heating B127...No.41
42 circuits, 28... capillary tubes, 29...
Second Ya No. 20! Kaya9 figure

Claims (5)

【特許請求の範囲】[Claims] 1.少なくとも、圧縮機,四方切換え弁,室外側熱交換
器を有する室外ユニツトの前記四方切換え弁から出た配
管の圧縮機側分岐点と、前記室外側熱交換器から出た配
管の室外熱交側分岐点との間に、少なくとも、室内側熱
交換器,減圧器を有する複数台の室内ユニツトを順次並
列に接続してなる空気調和機において、室内側熱交換器
の途中位置に電磁弁を設けたことを特徴とする空気調和
機。
1. At least a branch point on the compressor side of the piping exiting from the four-way switching valve of an outdoor unit having a compressor, a four-way switching valve, and an outdoor heat exchanger, and an outdoor heat exchanger side of the piping exiting from the outdoor heat exchanger. In an air conditioner in which a plurality of indoor units each having at least an indoor heat exchanger and a pressure reducer are sequentially connected in parallel between the branch point and the indoor heat exchanger, a solenoid valve is installed in the middle of the indoor heat exchanger. An air conditioner characterized by:
2.電磁弁を、該電磁弁を閉にしたとき、暖房運転時の
冷媒量とほぼ等しい冷媒量を該電磁弁と圧縮機側分岐点
との間で滞留せしめることができるような、室内側熱交
換器の途中位置に設けるようにしたものである特許請求
の範囲第1項記載の空気調和機。
2. An indoor heat exchanger capable of retaining an amount of refrigerant approximately equal to the amount of refrigerant during heating operation between the solenoid valve and a branch point on the compressor side when the solenoid valve is closed. 2. The air conditioner according to claim 1, wherein the air conditioner is installed at a midway position of the air conditioner.
3.室外側熱交換器の室内ユニツト側出口に、第2の減
圧器を設けたものである特許請求の範囲第2項記載の空
気調和機。
3. The air conditioner according to claim 2, wherein a second pressure reducer is provided at the indoor unit side outlet of the outdoor heat exchanger.
4.室外ユニットから最も遠い位置にある室内ユニツト
の入口,出口間に、抵抗を有するバイパス回路を設けた
ものである特許請求の範囲第3項記載の空気調和機。
4. 4. The air conditioner according to claim 3, wherein a bypass circuit having resistance is provided between the inlet and outlet of the indoor unit located farthest from the outdoor unit.
5.圧縮機側分岐点から、室外ユニツトから遠ざかる側
にある室内ユニツトヘ至る配管上の、前記圧縮機側分岐
点近傍に電磁弁を設けたものである特許請求の範囲第3
項記載の空気調和機。
5. Claim 3: A solenoid valve is provided near the compressor side branch point on the piping leading from the compressor side branch point to the indoor unit on the side away from the outdoor unit.
Air conditioner as described in section.
JP59165726A 1984-08-09 1984-08-09 Air conditioner Expired - Lifetime JPH0621727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59165726A JPH0621727B2 (en) 1984-08-09 1984-08-09 Air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59165726A JPH0621727B2 (en) 1984-08-09 1984-08-09 Air conditioner

Publications (2)

Publication Number Publication Date
JPS6144259A true JPS6144259A (en) 1986-03-03
JPH0621727B2 JPH0621727B2 (en) 1994-03-23

Family

ID=15817904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59165726A Expired - Lifetime JPH0621727B2 (en) 1984-08-09 1984-08-09 Air conditioner

Country Status (1)

Country Link
JP (1) JPH0621727B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122167A (en) * 1988-10-31 1990-05-09 Hitachi Ltd Refrigerant circuit for multiroom air conditioner
JP2019166962A (en) * 2018-03-23 2019-10-03 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioning device for vehicle
WO2020157788A1 (en) * 2019-01-28 2020-08-06 三菱電機株式会社 Air conditioner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145460A (en) * 1983-02-07 1984-08-20 松下精工株式会社 Multi-chamber type heat pump system air conditioner

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145460A (en) * 1983-02-07 1984-08-20 松下精工株式会社 Multi-chamber type heat pump system air conditioner

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02122167A (en) * 1988-10-31 1990-05-09 Hitachi Ltd Refrigerant circuit for multiroom air conditioner
JP2019166962A (en) * 2018-03-23 2019-10-03 サンデン・オートモーティブクライメイトシステム株式会社 Air conditioning device for vehicle
WO2020157788A1 (en) * 2019-01-28 2020-08-06 三菱電機株式会社 Air conditioner
CN113302436A (en) * 2019-01-28 2021-08-24 三菱电机株式会社 Air conditioning apparatus
JPWO2020157788A1 (en) * 2019-01-28 2021-10-14 三菱電機株式会社 Air conditioner
EP3919835A4 (en) * 2019-01-28 2022-01-19 Mitsubishi Electric Corporation Air conditioner

Also Published As

Publication number Publication date
JPH0621727B2 (en) 1994-03-23

Similar Documents

Publication Publication Date Title
JP3858015B2 (en) Refrigerant circuit and heat pump water heater
JP2001317831A (en) Air conditioner
JPS6144259A (en) Air conditioner
KR102345648B1 (en) Geothermal heat pump system capable of simultaneous or independent hot water supply operation
JP2005283058A (en) Reheating dehumidifying type air conditioner
CN108709336B (en) Heat pump system and air conditioner
JP2759367B2 (en) Refrigerant system in absorption heat pump air conditioner
JPH04190052A (en) Air conditioner and its operating method
JPH0212541Y2 (en)
JPH10205932A (en) Air conditioner
JPS6145145B2 (en)
JPH07293975A (en) Air conditioner
JPH10141815A (en) Air conditioner
JP2759366B2 (en) Refrigerant system in absorption heat pump air conditioner
JP2713351B2 (en) Refrigerant system in absorption heat pump air conditioner
JPH0212542Y2 (en)
JPH06337186A (en) Defrosting controller for air-conditioning machine
JPS583015Y2 (en) Separate type air conditioner/heater
JPS5926203Y2 (en) Heat pump type refrigeration equipment
JP2605422B2 (en) Air conditioner
JP2002031371A (en) Air conditioner
JPH10339512A (en) Attachment unit for air conditioner
JPH11304286A (en) Multi-room air conditioner
JPH0745987B2 (en) Air conditioner
JPH0634219A (en) Air conditioning system