JPS5926203Y2 - Heat pump type refrigeration equipment - Google Patents

Heat pump type refrigeration equipment

Info

Publication number
JPS5926203Y2
JPS5926203Y2 JP17388078U JP17388078U JPS5926203Y2 JP S5926203 Y2 JPS5926203 Y2 JP S5926203Y2 JP 17388078 U JP17388078 U JP 17388078U JP 17388078 U JP17388078 U JP 17388078U JP S5926203 Y2 JPS5926203 Y2 JP S5926203Y2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
storage device
heat storage
pump type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17388078U
Other languages
Japanese (ja)
Other versions
JPS5591460U (en
Inventor
隆雄 千秋
研作 小国
弘 安田
晃 渥美
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to JP17388078U priority Critical patent/JPS5926203Y2/en
Publication of JPS5591460U publication Critical patent/JPS5591460U/ja
Application granted granted Critical
Publication of JPS5926203Y2 publication Critical patent/JPS5926203Y2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Description

【考案の詳細な説明】 この考案は、たとえば空気熱源ヒートポンプ式空調機に
組込む蓄熱器に関するものである。
[Detailed Description of the Invention] This invention relates to a heat storage device that is incorporated into, for example, an air source heat pump type air conditioner.

まず、従来のヒートポンプ式空調機の冷凍サイクルの一
例を第1図により説明する。
First, an example of a refrigeration cycle of a conventional heat pump type air conditioner will be explained with reference to FIG.

冷凍サイクルはたがいに配管により接続した圧縮機1、
四方弁2、室外熱交換器3、膨張弁4、逆止弁5、膨張
弁6、逆止弁7、室内熱交換器8からなり、熱交換器3
,8に対してはそれぞれ室外ファン9、室内ファン10
が設置されている。
The refrigeration cycle includes a compressor 1 connected to each other by piping,
Consisting of a four-way valve 2, an outdoor heat exchanger 3, an expansion valve 4, a check valve 5, an expansion valve 6, a check valve 7, and an indoor heat exchanger 8, the heat exchanger 3
, 8, outdoor fan 9 and indoor fan 10, respectively.
is installed.

暖房運転時には、圧縮機1から吐出された高温高圧の冷
媒蒸気は、四方弁2を経て室内熱交換器8に流れ込み、
ここで室内空気と熱交換して凝縮液化し、空気が暖めら
れる。
During heating operation, high-temperature, high-pressure refrigerant vapor discharged from the compressor 1 flows into the indoor heat exchanger 8 through the four-way valve 2.
Here, it exchanges heat with indoor air, condenses and liquefies, warming the air.

液冷媒は逆止弁7、膨張弁4を通り、低温低圧冷媒とな
って室外熱交換器3に入り、ここで外気から熱を受けと
って蒸発する。
The liquid refrigerant passes through the check valve 7 and the expansion valve 4 and enters the outdoor heat exchanger 3 as a low-temperature, low-pressure refrigerant, where it receives heat from the outside air and evaporates.

この作用中、熱交換器3の外表面には次第に霜が付着す
る。
During this action, frost gradually forms on the outer surface of the heat exchanger 3.

霜の付着が多量になると、熱交換性能が低下し、効率の
悪い暖房運転状態になる。
When a large amount of frost adheres, heat exchange performance decreases, leading to inefficient heating operation.

そこで、熱交換器3にある程度箱が付いたら、冷凍サイ
クルにおける冷媒の流れをかえて霜を融かす、いわゆる
除霜運転を行う。
Therefore, once the heat exchanger 3 has a certain amount of heat, a so-called defrosting operation is performed in which the flow of refrigerant in the refrigeration cycle is changed to melt the frost.

除霜運転時には、冷媒は圧縮機1、四方弁2、室外熱交
換器3、逆止弁5、膨張弁6、室内熱交換器8、四方弁
2、圧縮機1の順に流れる。
During defrosting operation, the refrigerant flows through the compressor 1, the four-way valve 2, the outdoor heat exchanger 3, the check valve 5, the expansion valve 6, the indoor heat exchanger 8, the four-way valve 2, and the compressor 1 in this order.

したがって、室外熱交換器3には高温冷媒が流れて付着
した霜が融かされるが、室内熱交換器8には低温冷媒が
流れ、室内ファン10によって冷媒を蒸発させる一方、
室内には冷風を吹き出すことになる。
Therefore, high-temperature refrigerant flows through the outdoor heat exchanger 3 to melt the adhering frost, while low-temperature refrigerant flows through the indoor heat exchanger 8, and while the refrigerant is evaporated by the indoor fan 10,
Cold air will be blown into the room.

ここでファン10を停止すると、冷風吹き出しの問題は
解決されるように思われるが、低温冷媒が蒸発できなく
なり、円滑な冷凍サイクルを形成できなくなる。
If the fan 10 is stopped at this point, the problem of blowing out cold air seems to be solved, but the low-temperature refrigerant cannot be evaporated, making it impossible to form a smooth refrigeration cycle.

除霜運転中に室内ファン10を停止しても、なお冷凍サ
イクルが円滑に形成されるように、蓄熱器を組込んだ冷
凍サイクルがある。
Some refrigeration cycles incorporate a heat storage device so that even if the indoor fan 10 is stopped during defrosting operation, the refrigeration cycle can still be smoothly formed.

この一例を第2図により説明する。An example of this will be explained with reference to FIG.

同図において、第1図と同じ符号をつけたものは同じも
のを表わす。
In this figure, the same reference numerals as in FIG. 1 represent the same things.

四方弁2と室内熱交換器8との間には、蓄放熱用熱交換
器12を内蔵する蓄熱器11が設置されている。
A heat storage device 11 having a built-in heat exchanger 12 for storing and releasing heat is installed between the four-way valve 2 and the indoor heat exchanger 8.

その他は第1図のものと同じである。暖房運転時に圧縮
機1から吐出された高温冷媒は、熱交換器12によって
熱を蓄熱器11内の媒体に与える。
Other details are the same as those in FIG. The high-temperature refrigerant discharged from the compressor 1 during heating operation gives heat to the medium in the heat storage device 11 through the heat exchanger 12 .

除霜運転時には、ファン10が停止していることによっ
て蒸発できなかった低温冷媒が、蓄熱器11で蓄熱媒体
から熱を受けて蒸発して圧縮機1へ戻る。
During the defrosting operation, the low-temperature refrigerant that could not be evaporated because the fan 10 is stopped receives heat from the heat storage medium in the heat storage device 11, evaporates, and returns to the compressor 1.

前述の熱の吸収、放熱によって冷凍サイクルの円滑な作
用がはかられる。
The smooth operation of the refrigeration cycle is achieved by the aforementioned heat absorption and heat radiation.

しかし、実際の装置においては、時間の問題がある。However, in an actual device, there is a problem of time.

すなわち、最も霜が付きやすい気象状況(外気温0〜2
℃、相対湿度90〜100%)で運転が行われても、着
霜により暖房能力が急激に低下するまでには数十分かか
る。
In other words, the weather conditions where frost is most likely to form (outside temperature 0 to 2
Even if the heating system is operated at a temperature of 90 to 100% relative humidity, it takes several tens of minutes before the heating capacity suddenly decreases due to frost formation.

暖房能力が低下してから除霜運転に切替えるのであるか
ら、蓄熱器11への蓄熱は、数十分かけて徐々に行えば
よく、蓄熱器11内の熱交換器12は比較的小形のもの
でよい。
Since the defrosting operation is switched to after the heating capacity has decreased, heat storage in the heat storage device 11 can be carried out gradually over several tens of minutes, and the heat exchanger 12 in the heat storage device 11 is relatively small. That's fine.

逆に急速に蓄熱を行うと、その間の暖房能力は低下し、
室内が暖まらない。
Conversely, if heat is stored rapidly, the heating capacity will decrease during that time.
The room doesn't get warm.

除霜運転中は室内を暖房することができないので、除霜
運転はできるだけ短い方がよい。
Since it is not possible to heat the room during defrosting operation, it is better to keep defrosting operation as short as possible.

一般のヒートポンプ式空調機では除霜運転時間は3〜1
0分程度である。
For general heat pump air conditioners, the defrosting operation time is 3 to 1
It takes about 0 minutes.

したがって、除霜中に蓄熱器11からの放熱も数分で終
了する必要がある。
Therefore, the heat radiation from the heat storage device 11 needs to be completed within a few minutes during defrosting.

すなわち、蓄熱器の蓄熱速度は放熱速度に対して約10
倍大きいことが望ましい。
In other words, the heat storage rate of the heat storage device is approximately 10 times higher than the heat release rate.
Desirably twice as large.

いま、蓄熱媒体として水を使い、その顕熱を利用する蓄
熱器を考えてみる。
Let's now consider a heat storage device that uses water as a heat storage medium and uses its sensible heat.

その蓄熱量Qst、放熱量Qraは(1)、 (2)式
で表わされる。
The amount of heat storage Qst and the amount of heat radiation Qra are expressed by equations (1) and (2).

QSt=に1・Fl・△t1・△τ1・・・・・・(1
)Qra=に2・F2・△t2・△τ2・・・・・・(
2)ここで、K1、K2:熱交換器12の熱通過率F1
、F2:熱交換器伝熱面積 △t1、△t2:水と冷媒との温度差 △τ1:暖房運転時間 △τ2:除霜運転時間 とする。
QSt=1・Fl・△t1・△τ1・・・・・・(1
)Qra=2・F2・△t2・△τ2・・・・・・(
2) Here, K1, K2: heat passage rate F1 of the heat exchanger 12
, F2: Heat exchanger heat transfer area Δt1, Δt2: Temperature difference between water and refrigerant Δτ1: Heating operation time Δτ2: Defrosting operation time.

Qst 、Qraは一般に等しい。Qst and Qra are generally equal.

また熱通過率は熱交換器および熱交換の形態が決まると
与えられ、K+−=に2である。
The heat transfer rate is given when the heat exchanger and the heat exchange form are determined, and is 2 for K+-=.

蓄熱時の冷媒温度は約90℃、放熱時のそれは約10℃
である。
The refrigerant temperature during heat storage is approximately 90°C, and that during heat dissipation is approximately 10°C.
It is.

水温は蓄熱時には10℃から90℃まで上昇し、放熱時
には90℃から旬℃まで低下する。
The water temperature increases from 10°C to 90°C during heat storage, and decreases from 90°C to 90°C during heat dissipation.

したがって△1.=12となる。以上のことから、 Fl・△τ=F2・△τ2・・・・・・(3)が望まし
いが、従来では 371士(5〜10)・△τ2・・・・・・(4)であ
るにもかかわらず F1=F2・・・・・・(5) となっている。
Therefore, △1. =12. From the above, Fl・△τ=F2・△τ2 (3) is desirable, but conventionally it is 371 (5 to 10)・△τ2 (4) Nevertheless, F1=F2...(5).

この考案は、暖房運転時には内蔵する熱交換器の伝熱面
積を小さく、除霜運転時には熱交換器の伝熱面積を大き
くすることができる蓄熱器を有するヒートポンプ式冷凍
装置を提供するにある。
The object of this invention is to provide a heat pump type refrigeration system having a heat storage device that can reduce the heat transfer area of the built-in heat exchanger during heating operation and increase the heat transfer area of the heat exchanger during defrosting operation.

つぎに、この考案の一実施態様を第3図により説明する
Next, one embodiment of this invention will be explained with reference to FIG.

この実施態様は、伝熱面積F1・F2の比が1:2の場
合である。
In this embodiment, the ratio of heat transfer areas F1 and F2 is 1:2.

蓄熱器11内にはたがいに流路をつらねた熱交換器12
A、12Bが内蔵されており、熱交換器12Aの一方端
側には矢印方向への流れを許容する逆止弁13が取付け
られている。
A heat exchanger 12 in which flow paths are connected to each other in the heat storage device 11
A and 12B are built in, and a check valve 13 that allows flow in the direction of the arrow is attached to one end of the heat exchanger 12A.

暖房運転時には、圧縮機から吐出された高温冷媒はB側
からA側に向って流れ、熱交換器12Bのみが働、く。
During heating operation, the high temperature refrigerant discharged from the compressor flows from the B side to the A side, and only the heat exchanger 12B works.

熱交換器12 A、12 Cは逆止弁13によって閉じ
られている。
Heat exchangers 12A and 12C are closed by check valves 13.

この場合、熱交換器の面積F1は蓄熱媒体量に対して比
較的小さいので、蓄熱時間△τ1は大きくなる。
In this case, since the area F1 of the heat exchanger is relatively small with respect to the amount of heat storage medium, the heat storage time Δτ1 becomes long.

蓄熱速度が遅いために、暖房運転の開始直後、蓄熱器に
多量の熱が移動しないゆえ、室内空気を十分に暖めるこ
とができる。
Since the heat storage rate is slow, a large amount of heat does not transfer to the heat storage device immediately after the heating operation starts, so the indoor air can be sufficiently warmed.

除霜運転時には低圧低温の冷媒がA側からB側に向って
流れるようにする。
During defrosting operation, low-pressure, low-temperature refrigerant is made to flow from side A to side B.

この場合、熱交換器12A、12 Bの三者がともに働
き、伝熱面積が大きくなる。
In this case, the three heat exchangers 12A and 12B work together, increasing the heat transfer area.

その結果、急速に低温冷媒を過熱することができ、この
熱と圧縮機入力とによって霜を短時間で融かすことがで
きる。
As a result, the low temperature refrigerant can be rapidly superheated, and this heat and the compressor input can melt the frost in a short time.

次に、本考案によるヒートポンプ式冷凍装置の実施例を
説明する。
Next, an embodiment of the heat pump type refrigeration apparatus according to the present invention will be described.

第4図は第3図の蓄熱器11を四方弁2と室内熱交換器
8との間に設置した冷凍サイクルを示し、同図中第1図
および第3図と同じ符号をつけたものは同じものを表わ
す。
FIG. 4 shows a refrigeration cycle in which the heat storage device 11 of FIG. 3 is installed between the four-way valve 2 and the indoor heat exchanger 8. represent the same thing.

蓄熱器11の熱交換器12Bの一方端側は膨張弁4.6
間の管路に、除霜用膨張弁14、電磁弁15を介してつ
らねられ、他方端側は熱交換器12Aと室内熱交換器8
との間の管路につらねられている。
One end side of the heat exchanger 12B of the heat storage device 11 is an expansion valve 4.6.
A defrosting expansion valve 14 and a solenoid valve 15 are suspended in the pipe between the pipes, and the other end is connected to a heat exchanger 12A and an indoor heat exchanger 8.
It is suspended in a conduit between the

熱交換器12Aの一方端側は四方弁2の切替口につらね
られ、他方端側は室内熱交換器8につらねられている。
One end of the heat exchanger 12A is connected to the switching port of the four-way valve 2, and the other end is connected to the indoor heat exchanger 8.

その他は第1図と同じである。除霜運転時のみ電磁弁1
5が開き、膨張弁]4によって低温低圧となった冷媒が
、熱交換器12B。
Other details are the same as in Figure 1. Solenoid valve 1 only during defrosting operation
5 is opened, and the refrigerant that has become low temperature and low pressure by the expansion valve] 4 is transferred to the heat exchanger 12B.

12Aを経て蓄熱器11から吸熱して蒸発する。12A, absorbs heat from the heat storage device 11, and evaporates.

また、一部の冷媒は、膨張弁6.室内熱交換器8を経て
熱交換器12Aに流れる。
In addition, some refrigerant flows through the expansion valve 6. It flows through the indoor heat exchanger 8 to the heat exchanger 12A.

暖房運転時には逆止弁13の働きで、熱交換器12B、
除霜用膨張弁14.電磁弁15を含む管路には冷媒は流
れない。
During heating operation, the check valve 13 works to close the heat exchanger 12B,
Defrosting expansion valve 14. Refrigerant does not flow through the pipe line including the solenoid valve 15.

冷房運転時には電磁弁15が閉じており、同管路には冷
媒は流れない。
During cooling operation, the solenoid valve 15 is closed and no refrigerant flows through the pipe.

以上説明したように、この考案によれば、ヒートポンプ
式空調機において、暖房時と除霜時とで蓄熱器内の熱交
換面積を変え、暖房中は徐々に蓄熱することができ、そ
の結果、暖房運転開始直後の室内への吹出し空気温度の
立上り特性を低下させないですむ。
As explained above, according to this invention, in a heat pump type air conditioner, the heat exchange area in the heat storage device is changed during heating and defrosting, and heat can be gradually stored during heating, and as a result, There is no need to reduce the rise characteristic of the temperature of the air blown into the room immediately after the heating operation starts.

また、除霜中には、急速に蓄熱媒体から冷媒へ熱を与え
ることができ、その結果、室外熱交換器の霜取りを早く
完了させることができる。
Further, during defrosting, heat can be rapidly given from the heat storage medium to the refrigerant, and as a result, defrosting of the outdoor heat exchanger can be completed quickly.

なお、この考案は、逆サイクル除霜方式を採用した冷凍
冷蔵ユニツl−にも適用することができ、冷蔵庫を冷や
している間に蓄熱器に徐々に蓄熱し、逆サイクル運転で
の除霜の際に、急速に冷媒が熱を受けて庫内熱交換器に
付いた霜を融かすことができる。
This idea can also be applied to refrigerator/refrigerator units that employ a reverse cycle defrosting system, in which heat is gradually stored in the heat storage device while the refrigerator is being cooled, and defrosting is performed during reverse cycle operation. At this time, the refrigerant rapidly receives heat and can melt the frost that has formed on the internal heat exchanger.

したがって、除霜中の庫内温度の上昇は最小限にとどめ
ることができる。
Therefore, the rise in internal temperature during defrosting can be kept to a minimum.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のヒートポンプ式空調機の冷凍サイクルの
一例を示す系統図、第2図は従来の蓄熱器を組込んだヒ
ートポンプ式空調機の冷凍サイクルを示す系統図、第3
図はこの考案による蓄熱器の異なる実施態様を示す断面
図、第4図は第3図の蓄熱器を組込んだヒートポンプ式
空調機の冷凍サイクルを示す系統図である。 1・・・・・・圧縮機、2・・・・・・四方弁、3・・
・・・・室外熱交換器、8・・・・・・室内熱交換器、
11・・・・・・蓄熱器、12A〜12B・・・・・・
熱交換器、13・・・・・・逆止弁、14・・・・・・
除霜用膨張弁、15・・・・・・電磁弁。
Figure 1 is a system diagram showing an example of the refrigeration cycle of a conventional heat pump type air conditioner, Figure 2 is a system diagram showing the refrigeration cycle of a heat pump type air conditioner incorporating a conventional heat storage device, and Figure 3 is a system diagram showing an example of the refrigeration cycle of a conventional heat pump type air conditioner.
The figure is a sectional view showing a different embodiment of the heat storage device according to this invention, and FIG. 4 is a system diagram showing a refrigeration cycle of a heat pump air conditioner incorporating the heat storage device of FIG. 3. 1... Compressor, 2... Four-way valve, 3...
...Outdoor heat exchanger, 8...Indoor heat exchanger,
11... Heat storage device, 12A~12B...
Heat exchanger, 13... Check valve, 14...
Defrosting expansion valve, 15... Solenoid valve.

Claims (1)

【実用新案登録請求の範囲】 圧縮機、四方弁、室内熱交換器、冷房及び暖房用減圧装
置、室外熱交換器を順次配管接続してなるヒートポンプ
式冷凍装置において、四方弁と室内熱交換器の間に、こ
の両機器を接続する管路を第1熱交換器として内蔵する
蓄熱器を設け、更に、冷暖房用減圧装置を結ぶ高圧液管
路と、蓄熱器と室内熱交換器を結ぶ管路とを、除霜時の
み開となる開閉弁、減圧装置、上記蓄熱器に内蔵される
第2熱交換器、逆止弁を配管接続するバイパス管路で接
続し、暖房運転時には、上記第1熱交換器のみを蓄熱材
加熱器とし、除霜運転時には上記第2熱交換器。 第1熱交換器を直列接続して側熱交換器を冷媒蒸発器と
することを特徴とするヒートポンプ式冷凍装置。
[Scope of Claim for Utility Model Registration] In a heat pump type refrigeration system in which a compressor, a four-way valve, an indoor heat exchanger, a pressure reducing device for cooling and heating, and an outdoor heat exchanger are sequentially connected via piping, the four-way valve and the indoor heat exchanger In between, a heat storage device is installed with a built-in pipe line that connects these two devices as a first heat exchanger, and a high-pressure liquid pipe line that connects the air conditioning/heating pressure reducing device and a pipe that connects the heat storage device and the indoor heat exchanger are installed. A bypass pipe connects an on-off valve that is opened only during defrosting, a pressure reducing device, a second heat exchanger built into the heat storage device, and a check valve, and during heating operation, the above-mentioned Only the first heat exchanger is used as a heat storage material heater, and the second heat exchanger is used during defrosting operation. A heat pump type refrigeration device characterized in that first heat exchangers are connected in series and a side heat exchanger is used as a refrigerant evaporator.
JP17388078U 1978-12-20 1978-12-20 Heat pump type refrigeration equipment Expired JPS5926203Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17388078U JPS5926203Y2 (en) 1978-12-20 1978-12-20 Heat pump type refrigeration equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17388078U JPS5926203Y2 (en) 1978-12-20 1978-12-20 Heat pump type refrigeration equipment

Publications (2)

Publication Number Publication Date
JPS5591460U JPS5591460U (en) 1980-06-24
JPS5926203Y2 true JPS5926203Y2 (en) 1984-07-30

Family

ID=29179967

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17388078U Expired JPS5926203Y2 (en) 1978-12-20 1978-12-20 Heat pump type refrigeration equipment

Country Status (1)

Country Link
JP (1) JPS5926203Y2 (en)

Also Published As

Publication number Publication date
JPS5591460U (en) 1980-06-24

Similar Documents

Publication Publication Date Title
JPH04263758A (en) Heat pump hot-water supplier
CN108826536A (en) The air conditioner unit of not stopping function is heated with defrosting
WO2019091240A1 (en) Heating circulation system for air conditioning, and air conditioner
CN112161324B (en) Air conditioner
JP2001355941A (en) Heat pump system
CN215892840U (en) Energy-saving dehumidifying refrigeration heat exchange device
JPH074794A (en) Air-conditioning equipment
JPH04332350A (en) Air conditioner and its operating method
JPH0544675Y2 (en)
CN216481291U (en) Air conditioner
JPS5926203Y2 (en) Heat pump type refrigeration equipment
JPH078999Y2 (en) Air source heat pump
CN217402776U (en) Multi-evaporation direct-expansion type fresh air handling unit
JPS6143194Y2 (en)
CN217031455U (en) Heat pump air conditioning system
CN107062668A (en) Cooling cycle system and its refrigerating method
JPH0510191Y2 (en)
JPS6039721Y2 (en) Heat pump air conditioner
JPS5922438Y2 (en) refrigeration cycle
JPS608291Y2 (en) Refrigeration cycle for air conditioners
JP3634467B2 (en) Refrigeration equipment
JPH0620053Y2 (en) Heat pump air conditioner
JP2557940Y2 (en) Air heat source heat pump air conditioner
JPH10141815A (en) Air conditioner
TWI442010B (en) Heat pump air conditioning system