JPS6144137A - Ferruginous conglomerated grain by product generated from direct reduction iron making mill - Google Patents

Ferruginous conglomerated grain by product generated from direct reduction iron making mill

Info

Publication number
JPS6144137A
JPS6144137A JP59167191A JP16719184A JPS6144137A JP S6144137 A JPS6144137 A JP S6144137A JP 59167191 A JP59167191 A JP 59167191A JP 16719184 A JP16719184 A JP 16719184A JP S6144137 A JPS6144137 A JP S6144137A
Authority
JP
Japan
Prior art keywords
gas
pellets
generated
reduction furnace
iron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59167191A
Other languages
Japanese (ja)
Inventor
Tetsuo Takemura
竹村 哲郎
Mankiyuu Mitsuida
三井田 万穹
Shoichi Kume
正一 久米
Jihei Yoda
依田 次平
Tatsuji Aso
阿蘇 辰二
Masakazu Yamaguchi
政和 山口
Hideaki Baba
馬場 秀晃
Seiji Masumoto
増本 誠二
Noburo Ayabe
綾部 信郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yoshikawa Kogyo Co Ltd
Nippon Steel Corp
Original Assignee
Yoshikawa Kogyo Co Ltd
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yoshikawa Kogyo Co Ltd, Nippon Steel Corp filed Critical Yoshikawa Kogyo Co Ltd
Priority to JP59167191A priority Critical patent/JPS6144137A/en
Publication of JPS6144137A publication Critical patent/JPS6144137A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

PURPOSE:To obtain ferruginous conglomerated grains having substantial strength as an iron source by compounding cement with the powder dust generated in a reduction stage for ferruginous raw materials, pelletizing the mixture and curing and drying the conglomerated grains by means utilizing the waste gas of a reduction furnace. CONSTITUTION:The quicklime powder captured in a place where quicklime powder is generated is added to the sludge 3 captured by a dust collector 2 from the inside of the waste gas of the reduction furnace 1 and further the cement is added thereto; thereafter, the mixture is passed through a humidity controller 4 and is pelletized by a disk pelletizer 5. The pellets P1 are charged into a steam curing device 6 where the pellets are cured by the steam 10 generated by using part of the waste gas 7 from the reduction furnace as fuel and passed thereto from a steam generator 9. The cured pellets P2 are charged into a carbonization dryer 11. On the other hand, the gaseous CO2 7''' separated from the gas 7 by passing said gas through a CO2 remover 8 is added to the combustion gas of the generator 9 to form the gas 13 enriched with CO2 which is then passed through the dryer 11 and is brought into contact with the pellets P2. The pellets P2 are thus dried and hardened together with the carbonization of the lime component.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は直接還元製鉄工場発生物による含鉄団塊粒の
製造方法に関し、更に詳しくは含鉄原料の還元炉排出ガ
スを脱CO2し、これを還元ガスとしてリサイクルする
含鉄原料還元工程を有する直接還元製鉄工場発生物によ
る含鉄粉塵、生石灰粉塵及び還元炉からの発生ガス等直
接還元製鉄工場内での発生物を主体とする含鉄団塊粒の
製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing iron-containing aggregate grains using direct reduction iron-making factory output, and more specifically, the present invention relates to a method for producing iron-containing agglomerated grains using direct reduction iron-making factory output, and more specifically, a method for removing CO2 from the reduction furnace exhaust gas of iron-containing raw materials and reducing it. Relating to a method for producing iron-containing nodules mainly from products generated in a direct reduction steel factory, such as iron-containing dust, quicklime dust, and gas generated from a reduction furnace, which have a process of reducing iron-containing raw materials that are recycled as gas. .

〔従来の技術〕[Conventional technology]

一般に製鉄工場では、工場内の各種製造成いは処理工程
において、例えば鉱石粉、燃結粉、裂鋼粉、圧延スケー
ル、生石灰粉等多くのlff1 類の粉塵固形物が多岐
にわたって発生する。また、一方では多くの熱ガスが発
生排出されている。
Generally, in a steel factory, a wide variety of LFF1 type dust solids are generated during various manufacturing and processing steps within the factory, such as ore powder, sintered powder, cracked steel powder, rolling scale, and quicklime powder. On the other hand, a lot of hot gas is generated and discharged.

これらの発生固形物は、環境汚染の防止及び含有される
有用成分の回収のために乾式或いは湿式捕集され、その
多くのものは造粒され再利用に供されている。また発生
ガスは、そのあるものは(λ1有する顕熱を利用され、
あるものは燃料として利用されている。
These generated solids are collected dry or wet to prevent environmental pollution and recover useful components contained, and most of them are granulated and reused. In addition, some of the generated gases utilize sensible heat having λ1,
Some are used as fuel.

〔発明が解決しようとする問題点] しかし、これらの工場で発生ずる有用粉塵の利用処理及
び排出有9)Jガスの利用は、全く別個の処理系統でな
されている。
[Problems to be Solved by the Invention] However, the use and treatment of useful dust generated in these factories and the use of discharged J gas are carried out in completely separate processing systems.

又、直接還元製鉄工場においても、還元工程或いは製鋼
工程で多くの含鉄粉塵が発生し、又、上記還元工程にお
いて還元炉ガスが排出されている。
Further, even in direct reduction steel plants, a large amount of iron-containing dust is generated during the reduction process or steel manufacturing process, and reduction furnace gas is discharged during the reduction process.

上記直接還元製鉄工場の含鉄粉塵の回収利用のための団
鉱方法が研究され、還元鉄製造中に発生する還元鉄粉を
配合したMeFeに冨んだ含鉄粉鉱に何等の結合剤を加
えることなしに調湿混練後加圧成形し、更に養生硬化せ
しめる扮鉱処理法が、例えば特開昭55−115930
号公報に記載されているが、特開昭55−115930
号公報の記載は4’y)状固形物のみの処理であり、当
該工場内での他の発生物、即ちぶ元炉発生ガスの利用は
同等考慮されていない。
A briquette method for the recovery and utilization of iron-containing dust from the above-mentioned direct reduction iron manufacturing plant was studied, and some binder was added to the iron-containing powder ore enriched with MeFe mixed with reduced iron powder generated during reduced iron production. For example, Japanese Patent Laid-Open No. 55-115930 discloses a method of treating ore, which involves kneading at a controlled humidity and then pressurizing, followed by curing and hardening.
Although it is described in the publication, JP-A-55-115930
The description in the publication is only for the treatment of 4'y)-like solids, and the use of other products generated within the factory, ie, the gas generated from the main furnace, is not equally considered.

一般に直接還元製鉄工場、特に還元炉よりのCO及びc
o2を含む発生ガスは、脱COZ f&、再び還元炉に
吹き込まれ、還元ガスとして利用されるが、除去された
C02は放散され利用されることはない。
CO and c from direct reduction steel plants in general and reduction furnaces in particular
The generated gas containing O2 is removed from COZ f& and blown into the reduction furnace again to be used as reducing gas, but the removed CO2 is dissipated and is not used.

本発明者等の一部は、製鉄工場、特に直接還元製鉄工場
における効率的な含鉄粉塵処理方法を開発し、特願昭5
8−183899号及び特願昭58−183902号と
して出願したが、本発明者等は、更に、直接還元製鉄工
場における発生物である、含鉄粉塵及び生石灰粉等の有
用成分を含む粉塵固形物と前記還元製鉄の還元工程にお
いて発生排出されるCO2及びC02成分を含む還元炉
ガス、及び、これをぶ元炉へリサイクルのため分離成敗
されるC02ガスに着目し、この同一工場で発生するこ
れらの有用粉塵固形物及び排出ガス及び放散COコガス
を合理的に組合せ活用し、橿力少ない結合剤をもって鉄
源としての利用に耐える充分な強度を有する含鉄団塊粒
の経済的な製造方法について種々研究を重ね本発明を完
成したものである。
Some of the present inventors developed an efficient method for treating iron-containing dust in steel factories, especially direct reduction steel factories, and
No. 8-183899 and Japanese Patent Application No. 183902/1982, the present inventors have further proposed a method for treating dust solids containing useful components such as iron-containing dust and quicklime powder, which are generated in direct reduction iron manufacturing plants. Focusing on the reduction furnace gas containing CO2 and C02 components generated and discharged in the reduction process of reduction iron manufacturing, and the CO2 gas that is separated and destroyed in order to recycle it to the main furnace, we will analyze these gases generated in the same factory. Various studies are being conducted on an economical method for producing iron-containing nodules that have sufficient strength to withstand use as an iron source using a binder with a low tensile force by rationally combining useful dust solids, exhaust gas, and emitted CO gas. This completes the present invention.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は含鉄原料な還元炉排出ガスを脱C02し、これ
を還元ガスとしてり号イクルする含鉄原1″−1m元工
l?を有する直接還元製鉄工場において発生する含鉄1
分塵及び生石灰粉塵に少量のセメントを配合し、これを
団塊粒に造粒する造粒工程と、前記の還元炉よりの未脱
CO2を分取して、これを燃料として養生硬化用水茎気
を得ると共に、この燃焼ガスに前記還元炉排出ガスより
分離したCO2ガスを、・R合して炭酸化硬化乾燥用ガ
スを得る団塊粒硬化用ガス裂造工程と、前記水蒸気によ
って団塊粒を養生する一次硬化工程と、更に、この硬化
粒を前記CO2a合燃焼ガスによって含有石灰分を炭酸
化すると共に乾燥する二次硬化工程とからなることを特
徴とする直接還元製鉄工場発生物による含鉄団塊粒の製
造方法に係るものである。
The present invention removes CO2 from the reduction furnace exhaust gas, which is a ferrous raw material, and uses it as a reducing gas.
There is a granulation process in which a small amount of cement is mixed with dust and quicklime dust, and this is granulated into nodule granules, and unremoved CO2 from the reduction furnace is separated and used as fuel to produce water stalks for curing and hardening. At the same time, CO2 gas separated from the reduction furnace exhaust gas is combined with this combustion gas to obtain a gas for carbonation, hardening and drying. iron-containing aggregate grains produced from a direct reduction iron-making factory, characterized by comprising a primary hardening step in which the hardened grains are carbonated with the CO2a combined combustion gas and dried at the same time. This relates to a manufacturing method.

以下、本発明について詳細に述べる。The present invention will be described in detail below.

直接ぶ元+M鉄工場においては、鉱石等の含鉄原1ニー
[の調整工程、含鉄粉原料の逼元工程、′!At1.1
工程或いは圧延工程等で多くの含鉄粉塵が発生し、これ
らは乾式手段或いは湿式手段により、環境汚染防止、更
には鉄源として再利用のために捕集されている。
At the direct production + M iron factory, the preparation process of iron-containing raw materials such as ore, the loading process of iron-containing powder raw materials, '! At1.1
A large amount of iron-containing dust is generated during the manufacturing process, rolling process, etc., and these dusts are collected by dry or wet means to prevent environmental pollution and to be reused as an iron source.

又製鉄工場においては、副原料として使用される多量の
生石灰が自家製造され或いは購入される。
Also, in steel factories, a large amount of quicklime, which is used as an auxiliary raw material, is produced in-house or purchased.

この生石灰は、焼成キルン等の製造設備或いは粉砕設備
、又は、貯蔵、1般送等の取扱い設備等の製鉄工場内設
備において、その一部が粉塵となりt+ii集され、そ
の一部は有効に利用されいる。これらの含鉄粉塵は、例
えば、第1表に示す如き粒度及び成分を有している。
A part of this quicklime becomes dust and is collected in the steel factory equipment such as manufacturing equipment such as firing kilns, crushing equipment, or handling equipment such as storage and general transportation, and a part of it is effectively used. It is done. These iron-containing dusts have particle sizes and components as shown in Table 1, for example.

第1表 これらの含鉄粉及び生石灰粉は、その発生場所により粒
度を異にするので、本発明においては、これをペレット
、或いはブリケント等の造粒手段に適応した粒度に調整
することが好ましい。例えば、ポーリングディスク、或
いはポーリングドラム等の如き転勤手段によりペレット
造粒を行う場合は、限定されるものではないが、粒度4
5μm以下が65%以上となるように粒度間11するこ
とが好ましく、45μmに)、下の微細粒が65910
以下となると転勤造粒効率が劣化する。
Table 1 These iron-containing powders and quicklime powders have different particle sizes depending on where they are generated, so in the present invention, it is preferable to adjust the particle size to be suitable for granulation means such as pellets or Brikent. For example, when pelletizing by a transfer means such as a polling disk or a polling drum, the particle size is 4.
It is preferable to set the grain size between 11 and 45 μm so that 65% or more is 5 μm or less, and the lower fine grain is 65910.
If it is below, the transfer granulation efficiency will deteriorate.

一方、加圧成形手段によりブリケット造粒を行う場合は
、第1表の如き粒度の回収粉塵には、適当な通気性を付
与するために、最大粒51以下の比較的粗大粒粉を存在
させることが好ましい。
On the other hand, when briquette granulation is performed by pressure molding means, relatively coarse powder with a maximum particle size of 51 or less is added to the collected dust having a particle size as shown in Table 1 in order to provide appropriate air permeability. It is preferable.

本発明においては、直接還元′!A鉄工場内で発生する
上記の如く含鉄粉及び生石灰粉を必要に応して粒度調整
して造粒原料とされるが、これに更に工場外から供給さ
れる粉状原料を必要に応して付加することもできる。
In the present invention, direct reduction′! The above-mentioned iron-containing powder and quicklime powder generated within the A iron factory are used as granulation raw materials by adjusting the particle size as necessary, but in addition to this, powdered raw materials supplied from outside the factory are used as necessary. It can also be added.

上記の如き直接還元製鉄工場での発生粉原料を主体とし
て調整された含鉄粉及び生石灰粉からなる造粒原料に、
結合剤としてセメントを添加する。
A granulated raw material consisting of iron-containing powder and quicklime powder prepared mainly from powder raw materials generated in a direct reduction steel factory as described above,
Add cement as a binding agent.

セメントの添加量は、上記造粒原料中に含有されている
生石灰の量及び造粒方法によって定めるべきであって、
生石灰含有量が少ない場合は多く、一方、その含有量が
多い場合は少なくするが、添加量を2〜10%の範囲で
添加するのが好ましい。
The amount of cement added should be determined depending on the amount of quicklime contained in the granulation raw material and the granulation method,
When the quicklime content is low, it is increased, and when the content is high, it is decreased, but it is preferable to add the amount in the range of 2 to 10%.

セメントの添加量が2%以下では実質的に石灰分の結合
硬化となり、必要な造粒強度が得られず、又10%以上
では強度過度等となり不経済である。
If the amount of cement added is less than 2%, the lime content will substantially bind and harden, making it impossible to obtain the necessary granulation strength, while if it is more than 10%, the strength will be excessive, which is uneconomical.

上記の如くして、必要な結合剤を添加した含鉄 を原料
、工場内発生粉からなる造材原料は、転勤造粒もしくは
加圧成形造粒、或いは押し出し造粒等の造粒手段によっ
て任意に選ばれる水分量に調湿され、混練される。
As described above, the raw material for granulation, which is made of iron-containing material with the necessary binder added and powder generated in the factory, can be granulated as desired by granulation methods such as transfer granulation, pressure molding granulation, or extrusion granulation. The moisture content is adjusted to the selected amount and kneaded.

調湿され混練された上記造粒原料は、ポーリングディス
ク、ポーリングドラム等の転勤造粒装置或いは双輪式団
鉱機等の加圧成形装置の如き任意の造粒手段によってコ
ールドベレット或いはブリトソトに造粒される。
The moisture-adjusted and kneaded granulated raw material is granulated into cold pellets or burritos by any granulating means such as a transfer granulating device such as a polling disk or a polling drum, or a pressure forming device such as a twin-wheel briquette machine. be done.

ついで、この造粒物は、水蒸気養生により第一次硬化処
理に付され、更に読いて炭酸化による第二次硬化処理に
使用される水蒸気及びco2ガス等の硬化処理剤、更に
は硬化物の乾燥に使用される乾燥ガスは何れも含鉄原料
の還元炉よりの生成1力を以て供されることを最も特徴
とする。
Next, this granulated material is subjected to a primary hardening treatment by steam curing, and furthermore, a hardening treatment agent such as steam and CO2 gas used in a secondary hardening treatment by carbonation, and furthermore, a hardening treatment agent such as steam and CO2 gas used in a secondary hardening treatment by carbonation, and further a hardening treatment of the cured product. The most characteristic feature is that the drying gas used for drying is supplied from a reduction furnace for iron-containing raw materials.

上記した還元炉排出ガスの組成は、一般に第2表に例示
したように多くの可燃還元性成分と共に相当量のCO及
びco2成分を含有している。
The composition of the reduction furnace exhaust gas described above generally contains many combustible and reducible components as well as considerable amounts of CO and CO2 components, as illustrated in Table 2.

第2表 還元製鉄工場においては、この還元炉排出ガスに含有さ
れているC02ガスを分離放散後、残余のガスを還元用
ガスとして還元炉ヘリサイクルしている。
In the reduced steel mills shown in Table 2, after the CO2 gas contained in the reducing furnace exhaust gas is separated and diffused, the remaining gas is recycled to the reducing furnace as a reducing gas.

この還元炉排出ガスは比較的高い発熱グを有しており、
熱量としても有すノなものである。
This reduction furnace exhaust gas has a relatively high exothermic value,
It also has a quantity of heat.

本発明においては、上記したぶ元炉排出ガスの特性及び
退元炉排出ガスから分副放肢されるCO。
In the present invention, the characteristics of the above-mentioned head furnace exhaust gas and the CO separated from the head furnace exhaust gas.

ガスに着目し、これを団塊粒の硬化用に活用する直接囚
元製鉄工場内クローズドシステム方式の工場内発生物の
団塊粒処理方法である。
This is a closed system method for processing nodules generated in the factory, which focuses on gas and uses it to harden the nodules.

即ら、本発明には、還元炉排出ガスを脱co2ガス以前
にその一部を分取して燃料として、前記した団塊粒の養
生用水蒸気を製出すると共に高湿の燃焼ガスを得る。
That is, in the present invention, a part of the reducing furnace exhaust gas is separated before the CO2 gas is removed and used as a fuel to produce the steam for curing the nodules described above and to obtain high-humidity combustion gas.

上記の製出水蒸気は、前記団塊粒の水茎気養生による第
一次硬化処理のための雰囲気調整用として団塊粒養生槽
中に導入される。
The produced steam is introduced into the nodules curing tank to adjust the atmosphere for the primary hardening treatment of the nodule grains through water stalk air curing.

本発明における上記水蒸気養生は、通常の条件で行うも
ので、例えば水蒸気により調整される湿度lOO%のち
とに温度100℃以下、好ましくは70〜80°Cにて
行われる。
The above-mentioned steam curing in the present invention is carried out under normal conditions, for example, at a temperature of 100°C or less, preferably 70 to 80°C, after a humidity of 100% is adjusted by water vapor.

水茎気養生により第一次硬化された団塊粒は、ついで、
前記養生用水蒸気の製出時に排出される第3表に例示す
るような組成の燃焼ガスに、上記した還元炉排出ガスか
ら分離した第4表に例示したような組成の002ガスを
主成分とする分離ガスを混合して、co210%〜30
%のC02冨化ガスを得ると共に、これを 150°C
〜250°Cの温度に調整したco2冨化ガスと接触さ
せて炭酸化乾燥される。
The nodules that have been primarily hardened by water stem air curing are then
The main component is 002 gas, which is separated from the above-mentioned reduction furnace exhaust gas and has a composition as shown in Table 4, in the combustion gas having the composition shown in Table 3 which is emitted during the production of the curing steam. CO2 10%~30
% C02 enriched gas and heated it to 150°C.
It is carbonated and dried by contacting with CO2 enriched gas adjusted to a temperature of ~250°C.

第3表 第4表 上記炭酸化乾燥において、団塊粒は、炭酸ガス富化ガス
と接触されることによって、その中に含まれる石灰分は
ガス中の002により炭酸化されて、CaCO3・5i
02及びCaCO3となると共に乾燥される。
Table 3 Table 4 In the above-mentioned carbonation drying, the nodules are brought into contact with carbon dioxide gas enriched gas, and the lime contained therein is carbonated by 002 in the gas, resulting in CaCO3.5i
02 and CaCO3 and is dried.

かくて、前記第一次硬化粒は、上記の炭酸化乾燥処理に
より更に一層硬化される。
Thus, the primary hardened particles are further hardened by the carbonation drying treatment described above.

本発明は上記の如く同一工場内での発生物の夫々の特性
を適確に把握し、廃棄物をなくし、これを効果的に組合
せ活用して、工場内発生粒塵の再資源化を計ったもので
あり、経済的に、しかも環境改善効果を得ることのでき
る極めて有用な工場内発生物の再資源化法である。
As described above, the present invention aims to recycle particulate dust generated within a factory by accurately grasping the characteristics of each of the materials generated within the same factory, eliminating waste, and effectively combining and utilizing the waste. This is an extremely useful method of recycling waste generated in factories, which is economical and has the effect of improving the environment.

(実施例〕 以下、更に本発明の実施例について第1図に示したフロ
ーチャートにより述べる。
(Example) Hereinafter, an example of the present invention will be further described with reference to the flowchart shown in FIG.

還元炉(11へ装入される鉱石ペレ・ノドの篩下粉及び
集塵機(2)で還元炉(1)の排ガス中から捕集した還
元炉集塵スラリ(3)の混合物に、更に図示されていな
い生石灰貯蔵ポツパー等の生石灰粉発生個所で捕集され
た生石灰粉を3%(重量)添加して、これを造粒原料と
した。これらの造粒原料の粒度構成を第5表に示す。
The mixture of the under-sieve powder of ore pellets and throat charged into the reduction furnace (11) and the reduction furnace dust collection slurry (3) collected from the exhaust gas of the reduction furnace (1) by the dust collector (2) is further shown in the figure. 3% (by weight) of quicklime powder collected at places where quicklime powder is generated, such as unused quicklime storage potspur, was added and used as a granulation raw material.The particle size structure of these granulation raw materials is shown in Table 5. .

第5表 これらの配合原料中にバインダーとしてセメントを8%
添加混合すると共に、水分を9%になるように混合調湿
装置(4)により調整した。
Table 5 8% cement as a binder in these blended raw materials
While adding and mixing, the moisture content was adjusted to 9% using a mixing and humidity control device (4).

この調整された造粒原料をディスク造粒装置(5)にて
転勤造粒して粒径5〜101重のペレット(Pl)を得
た。
This adjusted granulation raw material was transferred and granulated using a disk granulator (5) to obtain pellets (Pl) having a particle size of 5 to 101 times.

ついでこのペレy ト(Pt )を水蒸気養生装置(6
)に装入し、還元炉排出ガス(7)の一部を、そのガス
の還元炉(1)へのリサイクル(7′)のための脱C0
2装置(8)の以前において分取し、この分取ガス(7
″)を燃料とする水茎気発生装τ(9)よりの水茎気0
0)を前記水蒸気養生装置(6)に通人し、湿度100
%、温度80°Cにて10時間水茎気養生し、羨牛ペレ
ット P2を得た。
Next, this pellet (Pt) was placed in a steam curing device (6
), and part of the reduction furnace exhaust gas (7) is removed from CO for recycling (7') to the reduction furnace (1).
2 device (8), and this fractionated gas (7
Water stalk gas from water stalk gas generator τ(9) using fuel as fuel
0) to the steam curing device (6), and the humidity was 100.
%, water stalks were air-cured for 10 hours at a temperature of 80°C to obtain Enyu pellets P2.

ついで、この養生ペレットP2を、炭酸化乾燥装置(1
1)に装入した。一方、前記水蒸気発生装置(9)から
排出される温度300℃の燃焼ガス(12)に、脱co
2装置(8)にて還元炉排出ガス(7)より分離したC
02ガス(7〜)を添加して、温度200°Cの第6表
に示した組成の002冨化ガス(13)を得た。
Next, this cured pellet P2 was passed through a carbonation dryer (1
1). On the other hand, the combustion gas (12) at a temperature of 300°C discharged from the steam generator (9) is deco
C separated from the reduction furnace exhaust gas (7) in the second device (8)
02 gas (7~) was added to obtain 002 enriched gas (13) having the composition shown in Table 6 at a temperature of 200°C.

第6表 このC02冨化ガスを炭酸化乾燥装置(11)に通人し
、水蒸気養生されたペレット(P2)に充分接触せしめ
ながら3時間保持し、ペレット(P2 )中に含まれて
いる石灰分の炭酸化を行うと共に、ペレットの乾燥を行
った。
Table 6 This C02 enriched gas is passed through the carbonation drying device (11) and kept in sufficient contact with the steam-cured pellets (P2) for 3 hours to remove the lime contained in the pellets (P2). The pellets were dried as well as carbonated for a minute.

かくて得られた炭酸化乾燥ペレy l・(P3 )は、
セメントの配合lが少ないにもかかわらす圧壌強1□ 
   度160kg/ペレットであった。
The thus obtained carbonated dry pellet y l (P3) is
Pressure strength 1□ despite the small cement content
The weight was 160 kg/pellet.

〔発明の効果〕〔Effect of the invention〕

このように、本発明では、直接通元工場で発生する有用
粉塵固形物及び排出ガス等を合理的Gこ牟■lみ合せる
ことによって、鉄源として利用する(こ充分な強度を有
する含鉄用塊粒を経済的=製造することができる。
In this way, in the present invention, the useful dust solids and exhaust gas directly generated at the Tongyuan factory are used as an iron source by rationally combining them (this is used as an iron-containing material with sufficient strength). Agglomerates can be produced economically.

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明の実施の一例を示すフローチャートである。 (1)還元炉      (2)集塵機(3)還元炉集
塵スラリ (4)混合8I?a湿装置(5)ディスク造
粒装置 (6)水蒸気発生装置(7)還元炉排出ガス 
(7゛)リサイクル(7’′)分取ガス    (7′
)COZカ゛ス(8)脱co2装置    (9)水蒸
気発生装置00)水蒸気     (11)炭酸化乾燥
装置(12)燃焼ガス
The figure is a flowchart showing an example of implementation of the present invention. (1) Reduction furnace (2) Dust collector (3) Reduction furnace dust collection slurry (4) Mixing 8I? a Humidification device (5) Disk granulation device (6) Steam generator (7) Reduction furnace exhaust gas
(7゛) Recycling (7'') Preparation gas (7'
) COZ gas (8) CO2 removal equipment (9) Steam generator 00) Steam (11) Carbonation drying equipment (12) Combustion gas

Claims (1)

【特許請求の範囲】[Claims] 1、含鉄原料の還元炉排出ガスを脱CO_2し、これを
還元ガスとしてリサイクルする含鉄原料還元工程を有す
る直接還元製鉄工場において、発生する含鉄粉塵及び生
石灰粉塵に少量のセメントを配合し、これを団塊粒に造
粒する造粒工程と、前記還元炉よりの未脱CO_2排出
ガスを分取して、これを燃料として水蒸気を得ると共に
、この燃焼ガスに前記還元炉排出ガスより分離したCO
_2ガスを混合して乾燥ガスを得る団塊粒硬化用ガス製
造工程と、前記水蒸気によって団塊粒を養生する一次硬
化工程と、更にこの硬化粒を前記CO_2混合燃焼ガス
によって含有石灰分を炭酸化すると共に乾燥する二次硬
化乾燥工程とからなることを特徴とする直接還元製鉄工
場発生物による含鉄団塊粒の製造方法。
1. In a direct reduction steelmaking factory that has a process for reducing ferrous raw materials that removes CO_2 from the reduction furnace exhaust gas from ferrous raw materials and recycles it as reducing gas, a small amount of cement is mixed with the ferrous dust and quicklime dust that is generated. A granulation step of granulating into nodules, a separation of the unremoved CO_2 exhaust gas from the reduction furnace, and using this as fuel to obtain steam, and adding CO separated from the reduction furnace exhaust gas to this combustion gas.
A process for producing a gas for hardening the nodules by mixing the _2 gases to obtain a dry gas, a primary curing process for curing the nodules using the water vapor, and further carbonating the lime content of the hardened particles using the CO_2 mixed combustion gas. 1. A method for producing iron-containing nodules using direct reduction ironmaking factory output, comprising a secondary hardening and drying step.
JP59167191A 1984-08-08 1984-08-08 Ferruginous conglomerated grain by product generated from direct reduction iron making mill Pending JPS6144137A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59167191A JPS6144137A (en) 1984-08-08 1984-08-08 Ferruginous conglomerated grain by product generated from direct reduction iron making mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59167191A JPS6144137A (en) 1984-08-08 1984-08-08 Ferruginous conglomerated grain by product generated from direct reduction iron making mill

Publications (1)

Publication Number Publication Date
JPS6144137A true JPS6144137A (en) 1986-03-03

Family

ID=15845115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59167191A Pending JPS6144137A (en) 1984-08-08 1984-08-08 Ferruginous conglomerated grain by product generated from direct reduction iron making mill

Country Status (1)

Country Link
JP (1) JPS6144137A (en)

Similar Documents

Publication Publication Date Title
US3770416A (en) Treatment of zinc rich steel mill dusts for reuse in steel making processes
KR20110057221A (en) Process for producing agglomerates of finely particulate iron carriers
US3313617A (en) Iron-containing flux material for steel-making process
JP2001348625A (en) Method for producing pellet for iron-marking raw material
US4063930A (en) Preparation of weatherable ferrite agglomerate
EP0003665A1 (en) A method of producing cold agglomerates for use in iron making
JP2706142B2 (en) Recycling method of steelmaking dusts in electric furnace with scrap preheating furnace
US3323901A (en) Process of pelletizing ores
JPS6144137A (en) Ferruginous conglomerated grain by product generated from direct reduction iron making mill
JP2000192155A (en) Treatment of sludge containing water and oil components
CN113249566B (en) Sintering system and method for limonite type laterite-nickel ore
JPS5819729B2 (en) Seikorohekiyoukiyuusuruni Textile Kiyoukakaijiyoutaino Seikomirhaikibutsudustkarano Seizouhou
JPH0154415B2 (en)
CN108642240B (en) Molten iron heat-preservation covering agent prepared from waste dust-removal cloth bags and preparation method
JPS5853054B2 (en) Method for manufacturing non-fired agglomerate for iron manufacturing
JPS62174333A (en) Production of lump ore
JPH09279258A (en) Method for agglomerating iron-making dust
JPH0377258B2 (en)
JP5664210B2 (en) Agglomeration method of steelmaking dust
JPS63140042A (en) Pelletizing treatment for granulated body from ironworks
EP4001442A1 (en) Method for bricketing dust captured in the desulphurisation and ladle furnace dust collection system
JPS6075527A (en) Treatment of dust generated in an ironworks
JPH0660359B2 (en) Method for producing unfired agglomerated ore
JPH0629472B2 (en) Cold bonding method for particulate materials
JP4339945B2 (en) Method for producing granular quicklime with maintained strength