JPS6144106A - Warm powder molding method - Google Patents

Warm powder molding method

Info

Publication number
JPS6144106A
JPS6144106A JP59165154A JP16515484A JPS6144106A JP S6144106 A JPS6144106 A JP S6144106A JP 59165154 A JP59165154 A JP 59165154A JP 16515484 A JP16515484 A JP 16515484A JP S6144106 A JPS6144106 A JP S6144106A
Authority
JP
Japan
Prior art keywords
molding
powder
superplastic
warm
precision
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59165154A
Other languages
Japanese (ja)
Inventor
Katsuyoshi Muraishi
村石 勝良
Kenzo Kato
健三 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP59165154A priority Critical patent/JPS6144106A/en
Publication of JPS6144106A publication Critical patent/JPS6144106A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce precision worked parts having high accuracy and high strength by mixing a specific amt. of release material with a pulverized superplastic material consisting of ultrafine crystal grains, heating the material to the temp. range where superelasticity is induced and subjecting simultaneously the material to molding and solid diffusion-joining. CONSTITUTION:Fine particles of a Zn-22% Al alloy, etc. sized at <=50mu are produced by an atomizing method, etc. as the superplastic material. The powder raw material 8 mixed with 1-10% MoS2 by weight with such pulverous superplastic material is charged from a hopper 7 into a lower die 7. While the powder is pressurized by an upper die 10, the upper die 10 and the lower die 9 are heated in heating furnaces 11, 12 to heat the material 8 to 250-270 deg.C by which the material is subjected to superplasticization, molding and solid diffusion-joining. The molding is taken out of the dies 9, 10 and is sintered at 350 deg.C in an inert gaseous atmosphere of N2, etc. The precision worked parts having the excellent dimensional accuracy and high strength are thus produced.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発BAF!、時計部品、携帯時計用外装部品に代表
される精密部品および電子部品、機械部品の精密加工法
に関する。
[Detailed Description of the Invention] [Industrial Field of Application] This BAF! , concerning precision processing methods for precision parts, electronic parts, and mechanical parts, such as watch parts and exterior parts for portable watches.

〔従来の技術〕[Conventional technology]

従来、精密部品の加工法としては、プレス、旋盤などに
代表される機械加工、粉末を成形後焼結する粉末成形法
、ダイカスト8aストワツクスに代表される精密鋳造法
などが知られている。
Conventionally, known methods for processing precision parts include machining typified by presses and lathes, powder molding methods in which powder is molded and then sintered, and precision casting methods typified by die casting 8a stwax.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし従来の加工方法は、機械加工では部品形状が複雑
になるほど加工工数が増え高価格となり、粉末成形法で
はクラックや焼結による寸法変化などが生じ二次加工と
しての機械加工が必要になる。精密鋳造法は近年開発が
活発に行なわれているが、重欠陥である巣を皆無にする
ことは難しくまた金属の溶融、冷却における寸法変化が
必然的に生じてしまい高精度1に要求される精密部品で
は全数検査、あるいは二次加工を必要とするなどの欠点
があった。
However, with conventional machining methods, the more complex the shape of the part, the more man-hours required for machining, resulting in higher costs, and the powder molding method causes dimensional changes due to cracks and sintering, requiring machining as secondary processing. Precision casting methods have been actively developed in recent years, but it is difficult to completely eliminate cavities, which are serious defects, and dimensional changes inevitably occur during melting and cooling of the metal, so high precision is required. Precision parts had drawbacks such as requiring 100% inspection or secondary processing.

そこで本発明は従来のこのような欠点を解決するため、
超塑性発現材の溶着作用ic着目し、徹粉未化した微細
結晶粒超塑性材を粉末成形加工時に加温して固体拡散接
合を行うことにより、精密加工部品を強度を低下させる
ことなく高精度にかつ短時間で加工することを目的とし
ている。
Therefore, in order to solve these conventional drawbacks, the present invention has the following features:
Focusing on the welding effect of superplastic materials, by heating fine-crystalline superplastic materials that have not been powdered during powder molding to perform solid-state diffusion bonding, precision machined parts can be made with high precision without reducing their strength. The purpose is to process with precision and in a short time.

〔問題を解決するための手段〕[Means to solve the problem]

上記問題を解決するためにこの発明は、アトマイズによ
って作製した微細結晶粒超塑性材粉末に離型剤を混合し
た成形用粉末原料を、超塑性材粉末が超塑性現象を発現
する温度範囲に加温し、成形加工と同時に固体拡散接合
を行うことにより著じるしく寸法精度の優れた成形加工
部品が得られるようにしたものである。tfci料粉末
に予め離型剤を混合することKより成形金型から被成形
加工部品が容易に離型するようにした。
In order to solve the above-mentioned problems, the present invention aims to heat a molding powder raw material prepared by mixing a mold release agent with a fine grained superplastic material powder produced by atomization to a temperature range in which the superplastic material powder exhibits a superplastic phenomenon. By heating and performing solid-state diffusion bonding simultaneously with molding, molded parts with significantly superior dimensional accuracy can be obtained. By mixing a mold release agent into the TFCI powder in advance, the part to be molded can be easily released from the molding die.

〔作用〕[Effect]

上記のような温間粉末成形を行うことにより、超履性現
象が発現しやすく、短時間で固体拡散接合が可能であり
、複雑形状部品においても密度は100%と緻密化し、
寸法精度の高い高強度な成形部品が、離型も容易に連続
加工で能率よく得ることができるのである。更に成形加
工後焼鈍を行なえば、微細化された結晶粒の成長を励起
させることくより強度をアンプさせることができる。
By performing warm powder compaction as described above, it is easy to cause the super-slip phenomenon, solid-state diffusion bonding is possible in a short time, and even parts with complex shapes can be made dense with a density of 100%.
High-strength molded parts with high dimensional accuracy can be efficiently obtained through continuous processing and can be easily released from the mold. Furthermore, if annealing is performed after forming, the strength can be increased without exciting the growth of fine crystal grains.

〔実施例〕〔Example〕

以下にこの発明の実施例を図面にもとづいて説明する。 Embodiments of the present invention will be described below based on the drawings.

11図は本発明の詳細な説明図であり、1の超塑性側粉
末と2の離型剤を8で混合し4で超塑性発現温度にて固
体拡散接合と成形加工を行い、6で焼鈍し6の製品を得
る、更に本発明の詳細を各工程後との製造条件により説
明する。
Figure 11 is a detailed explanatory diagram of the present invention, in which the superplastic side powder (1) and the mold release agent (2) are mixed in step 8, solid-state diffusion bonding and molding are performed at the superplasticity development temperature in step 4, and annealing is performed in step 6. The details of the present invention will be further explained with reference to the manufacturing conditions after each step.

(1)超塑性材粉末 φ材料 22チA!−残zn ・粉末粒径 φ父μ以下 の粉末t−aao℃〜850℃の温度に数時間保持した
後に水冷し結晶粒t−微細化した。
(1) Superplastic powder φ material 22chiA! - Residue zn - Powder particle size: Powder t-aao below μ or less was held at a temperature of 850° C. to 850° C. for several hours, and then cooled with water to refine the crystal grains.

(2)離型剤 二硫化モリブデン (8)混合 (1)の超塑性材粉末VC(2)の離型剤t−1〜10
チ添加して混合した。
(2) Mold release agent Molybdenum disulfide (8) Mold release agent for superplastic material powder VC (2) of mixture (1) t-1 to 10
and mixed.

(4)温開成形 第2図に示す温間成形機にて粉末間の固体拡散接合と成
形加工を行った。7の粉末供給用ホッパーから(3)で
混合した成形用粉末原料8を成形下金型9に供給し成形
上金型10にて加圧し保持したあと、成形下金型9を押
上装置13にて押上げ温間成形品を排出した。@開成形
条件を下記に示す。
(4) Warm opening molding Solid state diffusion bonding between powders and molding were performed using a warm molding machine shown in FIG. The powder raw material for molding 8 mixed in step (3) is supplied from the powder supply hopper in step 7 to the lower molding mold 9, and after being pressurized and held in the upper molding mold 10, the lower molding mold 9 is transferred to the push-up device 13. The warm molded product was then discharged. @Open molding conditions are shown below.

・温・  度  250℃〜270℃ ・保持時間 15〜30秒 Φ成形圧力 7〜15 t o n / cm”尚金型
の温度社上下型とも11および12の加熱炉にて予め加
温しておいた。
・Temperature: 250°C to 270°C ・Holding time: 15 to 30 seconds Φ Molding pressure: 7 to 15 ton/cm Oita.

(5)焼鈍 不活性雰囲気としてN!ガスを用い、この雰囲気中くて
350℃、1時間保持後炉冷した。
(5) N as an inert atmosphere for annealing! Using a gas, the mixture was kept at 350° C. for 1 hour in this atmosphere and then cooled in the furnace.

(6)製品の各種特性 上記の工程で得られた製品の各種特性をg1表に示す。(6) Various characteristics of the product Table g1 shows various characteristics of the product obtained in the above process.

第1表 沃1表における、充填密度、被削性および寸法精度は超
辺性材の粉末粒度、成形時の圧力、温度保持時間に左右
されるが充填密度は徽粉末化するほど、成形圧力は高い
ほど、保持時間が長いほど良く100%に近い密度が得
られる、寸法精度も同様で上述の実施例の条件内でサン
プルサイズの外径φ20I、厚すt = 0.5〜2.
OII+aで変化皆無であった9機械的強度は焼鈍を行
うことにより硬すのアップが認められ同拐質を用いた他
の加工法(例えばダイカスト)品と同程度の強度を得た
In Table 1, the packing density, machinability, and dimensional accuracy depend on the powder particle size of the ultra-hard material, the pressure during molding, and the temperature holding time. The higher the retention time, the better the density close to 100% can be obtained.The dimensional accuracy is also the same, and within the conditions of the above example, the sample size is outer diameter φ20I, thickness t = 0.5 to 2.
The mechanical strength of 9, which had no change in OII+a, was increased by annealing, and the strength was comparable to that of products using other processing methods (for example, die casting) using the same particles.

更Vc離型剤としての二硫化モリブデンの影#九ついて
各種実験を行ったか、増加と共に離型性は向上するが1
0%を越えると強度が低下することが認められた。した
がって、離型利としての二硫化モリブデンは重量比で1
〜H1係が良い、1だ付帯効果として被削試験において
二硫化モリブデンの添加により切削時のカエリが分断さ
れ粉状になり、ダイカスト品の切削加工に比べ数段被剛
性が向上する効果も認められた。また超塑性材の粉末粒
度をφ50μ以下に範囲を限定したのは、温間成形時の
能率および完成品の強度、品質(寸法変化束の発生)な
どからである。
Furthermore, various experiments were conducted regarding the influence of molybdenum disulfide as a mold release agent #9, and the mold release property improves as the Vc increases, but 1
It was found that when the content exceeds 0%, the strength decreases. Therefore, molybdenum disulfide as a mold release agent has a weight ratio of 1
~H1 ratio is good, 1D An additional effect was observed in machining tests where the addition of molybdenum disulfide broke up the burr during cutting and turned it into powder, improving the rigidity by several steps compared to cutting machining of die-cast products. It was done. Further, the reason why the powder particle size of the superplastic material is limited to φ50μ or less is due to the efficiency during warm forming, the strength and quality of the finished product (occurrence of dimensional change bundles), etc.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したように超塑性発現材の溶着作用
に着目し、微粉末化した微細結晶粒超塑性材を粉末成形
加工時に固体拡散接合を同時に行うことにより、高精度
、高強度な精密加工部品をまったく新しい加工方法で安
価゛に製造できるとい1      う効果がある。
As explained above, this invention focuses on the welding action of superplastic materials, and by simultaneously performing solid diffusion bonding of finely powdered fine grained superplastic materials during powder molding processing, high precision and high strength precision can be achieved. One effect is that processed parts can be manufactured at low cost using a completely new processing method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にかかる製造工程説明囚、第2図は本発
明に用いる温間粉末成形機断面図である。 7・・・粉末供給用ホッパー 8・・・成形用粉末原料 9・eや成形下金型 10・・・成形上金型 11・・・成形上金型加熱炉 12・・・成形下金型加熱炉 13−・・押上装置 以   上
FIG. 1 is an explanation of the manufacturing process according to the present invention, and FIG. 2 is a sectional view of a warm powder compacting machine used in the present invention. 7... Powder supply hopper 8... Powder raw material for molding 9/e, lower mold 10... upper mold 11... upper mold heating furnace 12... lower mold Heating furnace 13--Pushing device and above

Claims (3)

【特許請求の範囲】[Claims] (1)直径50μ以下の超塑性材粉末に離型剤を混合し
た成形用粉末原料を所望の成形金型に充填し、前記超塑
性材粉末が超塑性現象を発現する温度範囲で固体拡散接
合と成形加工を同時に行うことを特徴とする温間粉末成
形法。
(1) Fill a desired mold with a molding powder raw material consisting of a superplastic material powder with a diameter of 50μ or less mixed with a mold release agent, and solid-state diffusion bonding in a temperature range where the superplastic material powder exhibits a superplastic phenomenon. This is a warm powder compaction method that is characterized by performing both molding and molding at the same time.
(2)前記離型材として、重量比で1〜10%の二硫化
モリブデンを用いたことを特徴とする特許請求の範囲第
1項記載の温間粉末成形法。
(2) The warm powder molding method according to claim 1, wherein molybdenum disulfide of 1 to 10% by weight is used as the mold release material.
(3)前記成形加工の後に成形部品を不活性ガス雰囲気
中で焼鈍を行うことを特徴とする特許請求の範囲第1項
記載の温間粉末成形法。
(3) The warm powder forming method according to claim 1, wherein the molded part is annealed in an inert gas atmosphere after the forming process.
JP59165154A 1984-08-07 1984-08-07 Warm powder molding method Pending JPS6144106A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59165154A JPS6144106A (en) 1984-08-07 1984-08-07 Warm powder molding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59165154A JPS6144106A (en) 1984-08-07 1984-08-07 Warm powder molding method

Publications (1)

Publication Number Publication Date
JPS6144106A true JPS6144106A (en) 1986-03-03

Family

ID=15806896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59165154A Pending JPS6144106A (en) 1984-08-07 1984-08-07 Warm powder molding method

Country Status (1)

Country Link
JP (1) JPS6144106A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04157311A (en) * 1990-10-19 1992-05-29 Nippondenso Co Ltd Manufacture of vibrating member of angular velocity sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04157311A (en) * 1990-10-19 1992-05-29 Nippondenso Co Ltd Manufacture of vibrating member of angular velocity sensor

Similar Documents

Publication Publication Date Title
AU2003245820B2 (en) Method for producing highly porous metallic moulded bodies close to the desired final contours
US5119729A (en) Process for producing a hollow charge with a metallic lining
US3950166A (en) Process for producing a sintered article of a titanium alloy
SE436199B (en) METAL FORM OF ALUMINUM POWDER ALLOY AND PROCEDURE FOR PREPARING THIS
US4365996A (en) Method of producing a memory alloy
US6761852B2 (en) Forming complex-shaped aluminum components
US4518441A (en) Method of producing metal alloys with high modulus of elasticity
US4452756A (en) Method for producing a machinable, high strength hot formed powdered ferrous base metal alloy
US4534808A (en) Method for refining microstructures of prealloyed powder metallurgy titanium articles
JPH0254733A (en) Manufacture of ti sintered material
US4410488A (en) Powder metallurgical process for producing a copper-based shape-memory alloy
JPS6144106A (en) Warm powder molding method
JPS6141961B2 (en)
CN110014144A (en) A kind of powder metallurgy antifriction material for automobile gearbox
JPS6144109A (en) Forming of warm powder
JPS6144107A (en) Production of main plate for timepiece
JPH032335A (en) Manufacture of titanium powder or titanium alloy powder sintered product
JPS62199703A (en) Hot hydrostatic compression molding method for al-si powder alloy
JPH0925524A (en) Production of sintered aluminum material
JPS5836042B2 (en) Dougou Kinno Setsusakusetupuno Ryoushita Dougou Kinsei Hin no Seizouhou
JP2002289418A (en) High-density sintered body granulating powder and sintered body using the same
JPS6144108A (en) Production of case for timepiece
JPS5853684B2 (en) Method for manufacturing sintered products made of different powder materials
JPH0790346A (en) Manufacture of aluminum deoxidizer
JPH02122004A (en) Manufacture of aluminum powder forged material