JPS6143961Y2 - - Google Patents

Info

Publication number
JPS6143961Y2
JPS6143961Y2 JP1980076065U JP7606580U JPS6143961Y2 JP S6143961 Y2 JPS6143961 Y2 JP S6143961Y2 JP 1980076065 U JP1980076065 U JP 1980076065U JP 7606580 U JP7606580 U JP 7606580U JP S6143961 Y2 JPS6143961 Y2 JP S6143961Y2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
knocking
fuel
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980076065U
Other languages
Japanese (ja)
Other versions
JPS5744U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1980076065U priority Critical patent/JPS6143961Y2/ja
Publication of JPS5744U publication Critical patent/JPS5744U/ja
Application granted granted Critical
Publication of JPS6143961Y2 publication Critical patent/JPS6143961Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Control Of The Air-Fuel Ratio Of Carburetors (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【考案の詳細な説明】 本考案は、内燃機関のノツキング防止装置に係
り、特に、吸気管を通して均一混合気が吸入され
る、圧縮比10〜14の予混合型高圧縮ガソリン内燃
機関に用いるに好適な内燃機関のノツキング防止
装置に関する。
[Detailed description of the invention] The present invention relates to a knocking prevention device for an internal combustion engine, and is particularly suitable for use in a premixed high-compression gasoline internal combustion engine with a compression ratio of 10 to 14, in which a homogeneous mixture is taken in through an intake pipe. The present invention relates to a suitable knocking prevention device for an internal combustion engine.

一般に、圧縮比8〜9程度の従来のガソリン内
燃機関においては、スロツトル弁が全開とされる
全負荷付近では、空燃比が例えば12〜13の出力空
燃比付近に設定されている。一方点火時期につい
ては、最大トルクを得るために最小進角(以下
MBTと称する)に設定するが、一般に、全負荷
付近においては、第1図に示す如く、MBT点火
時期(実線A)がノツキングリミツト(実線B)
より進んだ状態となりノツキングが発生するた
め、ノツキングセンサ等を用いてノツキングを検
出し、MBT点火時期上の点Cでノツキングが発
生する場合には、点火時期をノツキングリミツト
付近の点D迄フイードバツク制御して点火時期を
設定するようになされている。
Generally, in a conventional gasoline internal combustion engine with a compression ratio of about 8 to 9, the air-fuel ratio is set to around the output air-fuel ratio of, for example, 12 to 13 at around full load when the throttle valve is fully open. On the other hand, regarding ignition timing, the minimum advance angle (hereinafter referred to as
Generally, as shown in Figure 1, near full load, the MBT ignition timing (solid line A) is set to the knocking limit (solid line B).
As the state progresses further and knocking occurs, use a knocking sensor, etc. to detect knocking, and if knocking occurs at point C on the MBT ignition timing, adjust the ignition timing to point D near the knocking limit. The ignition timing is set using feedback control.

一方近年、主に部分負荷域における燃費向上の
ため、圧縮比を大幅に増加させた高圧縮ガソリン
内燃機関について研究されているが、この圧縮比
約10以上の高圧縮比ガソリン内燃機関では、全負
荷域のノツキングを防止するためには、全負荷域
における点火時期を大幅に遅らせる必要が出てく
るため、大幅な出力低下、燃費悪化、トルク変動
の増大をもたらし、更には過度の排気温度上昇を
もたらして、現実にエンジンとしては使用不可能
な状態となつてしまう。一方点火時期を遅らせる
のではなく、空燃比を濃くして、第1図の点Eに
示す領域とし、ノツキングを防止することも考え
られるが、大幅な空燃比過濃化が必要であり、出
力、燃費、点火プラグのくすぶり、トルク変動等
の点で、やはり実用可能なエンジンとはならな
い。
On the other hand, in recent years, research has been conducted on high-compression gasoline internal combustion engines with significantly increased compression ratios, mainly in order to improve fuel efficiency in the partial load range. In order to prevent knocking in the load range, it is necessary to significantly delay the ignition timing in the entire load range, resulting in a significant drop in output, deterioration of fuel efficiency, increase in torque fluctuation, and furthermore, an excessive rise in exhaust temperature. This causes the engine to become unusable. On the other hand, instead of retarding the ignition timing, it is possible to enrich the air-fuel ratio to the region shown at point E in Figure 1 to prevent knocking, but this would require a significant enrichment of the air-fuel ratio and the output However, in terms of fuel efficiency, smoldering spark plugs, torque fluctuations, etc., it is still not a practical engine.

本考案は、前記従来の欠点を解消するべくなさ
れたもので、前記のような欠点が発生することが
ない高圧縮ガソリン内燃機関を実用化することを
目的とする。
The present invention has been devised to eliminate the above-mentioned conventional drawbacks, and aims to put into practical use a high-compression gasoline internal combustion engine that does not suffer from the above-mentioned drawbacks.

本考案は、上記目的を達成するため、圧縮比10
〜14の予混合型高圧縮ガソリン内燃機関におい
て、ノツキングを検出するノツキングセンサと、
機関が高負荷状態にあることを検出する手段と、
混合気の空燃比を理論空燃比より希薄側とするこ
とが可能な空燃比制御手段とを設け、機関が高負
荷状態でノツキングが検出された場合に、前記空
燃比制御手段により、混合気の空燃比を理論空燃
比より希薄側とし、ノツキングの発生を防止する
ようにしたことを特徴とする。
In order to achieve the above objectives, this invention has a compression ratio of 10
A knocking sensor that detects knocking in ~14 premixed high-compression gasoline internal combustion engines,
means for detecting that the engine is under high load;
An air-fuel ratio control means capable of making the air-fuel ratio of the air-fuel mixture leaner than the stoichiometric air-fuel ratio is provided, and when knocking is detected when the engine is under high load, the air-fuel ratio control means controls the air-fuel ratio of the air-fuel mixture. The air-fuel ratio is set to be leaner than the stoichiometric air-fuel ratio to prevent knocking.

また、前記高負荷状態では、吸気管負圧が100
mmHg以下のときとしたものである。
In addition, in the above-mentioned high load state, the intake pipe negative pressure is 100
This is when the temperature is below mmHg.

又、前記空燃比制御手段を、気化器に配設され
た燃料流量減量機構としたものであ。
Further, the air-fuel ratio control means is a fuel flow rate reduction mechanism disposed in the carburetor.

或いは、前記空燃比制御手段を、気化器に配設
されたエアブリード空気量増量機構としたもので
ある。
Alternatively, the air-fuel ratio control means is an air bleed air amount increasing mechanism disposed in the carburetor.

或いは、前記空燃比制御手段を、電子制御燃料
噴射装置としたものである。
Alternatively, the air-fuel ratio control means is an electronically controlled fuel injection device.

以下本考案の原理を説明する。一般に、ガソリ
ン内燃機関における空燃比とMBT点火時期及び
ノツキングリミツトの関係は、第1図に示す如く
であると考えられており、従つて、圧縮比約10以
上の高圧縮ガソリン内燃機関では、点火時期を大
幅に遅らせる必要があるため、実用化困難である
と考えられていた。ところが、考案者等が吸気管
を通して均一混合気が吸入される、圧縮比10〜14
の予混合型高圧縮ガソリン内燃機関について、空
燃比とMBT点火時期(実線A)及びノツキング
リミツト(実線B)の関係について調査したとこ
ろ、第2図に示すような関係にあることがわかつ
た。即ち、通常の圧縮比のエンジンと異なり、理
論空燃比よりも更に希薄空燃比域でMBT付近の
点火時期でもノツキングが発生しない領域Fや存
在する。従つて、この領域F内の点Gを用いれ
ば、全負荷付近においても、ノツキングを発生す
ることなくMBT点火時期で運転することが可能
である。高圧縮ガソリン内燃機関でのみこの点G
を使える理由は、高圧縮ガソリン内燃機関では、
ノツキングリミツトが希薄空燃比域で、空燃比に
対して非常に敏感になつており、逆に点火時期に
対して、鈍感になつていること、このような希薄
空燃比域では、従来の低圧縮比では安定した燃焼
が得られないこと、希薄空燃比では出力空燃比に
比べて、エンジンに供給される燃料の絶対量が低
下するため、出力は低下するが、高圧縮比エンジ
ンでは、その出力低下分を圧縮比向上分による効
率向上と、希薄空燃比で安定した燃焼ができたこ
とによる効率向上でかなり補うことができるた
め、点Gで運転しても、低圧縮比内燃機関の場合
(第1図の点D)と比べ出力の低下は少なくてす
むこと等による。なお圧縮比約14以上となると、
更にノツキングが激しくなり、第2図中の点Gが
更に希薄側に移動するため、安定した燃焼が得ら
れなくなる。本考案は、このような考案者等の実
験結果に基づいてなされたものである。
The principle of the present invention will be explained below. Generally, the relationship between the air-fuel ratio, MBT ignition timing, and knocking limit in a gasoline internal combustion engine is considered to be as shown in Figure 1. Therefore, in a high compression gasoline internal combustion engine with a compression ratio of about 10 or more, It was thought that it would be difficult to put it into practical use because the ignition timing would have to be significantly delayed. However, the inventors and others proposed a compression ratio of 10 to 14, in which a homogeneous air-fuel mixture is inhaled through the intake pipe.
When we investigated the relationship between the air-fuel ratio, MBT ignition timing (solid line A), and knocking limit (solid line B) for a premixed high-compression gasoline internal combustion engine, we found that the relationship is as shown in Figure 2. . That is, unlike an engine with a normal compression ratio, there is a region F in which knocking does not occur even at an ignition timing near MBT in an air-fuel ratio region even leaner than the stoichiometric air-fuel ratio. Therefore, by using point G within this region F, it is possible to operate at the MBT ignition timing without knocking, even near full load. This point G only in high compression gasoline internal combustion engines
The reason why can be used is that in high compression gasoline internal combustion engines,
The knocking limit becomes extremely sensitive to the air-fuel ratio in the lean air-fuel ratio range, and conversely becomes insensitive to the ignition timing. Stable combustion cannot be obtained with a compression ratio, and with a lean air-fuel ratio, the absolute amount of fuel supplied to the engine is lower than the output air-fuel ratio, resulting in a decrease in output. The decrease in output can be considerably compensated for by the efficiency improvement due to the compression ratio improvement and the efficiency improvement due to stable combustion at the lean air-fuel ratio, so even if operated at point G, the low compression ratio internal combustion engine This is because there is less reduction in output compared to (point D in FIG. 1). In addition, when the compression ratio is about 14 or more,
Furthermore, the knocking becomes more severe and the point G in FIG. 2 moves further toward the lean side, making it impossible to obtain stable combustion. The present invention was made based on the experimental results of the inventors.

以下図面を参照した、本考案の実施例を詳細に
説明する。本考案の第1実施例は、第3図に示す
如く、吸気管12を通して気化器14で形成され
た均一混合気が吸入される。圧縮比10〜14の予混
合型高圧縮ガソリン内燃機関10において、ガソ
リン内燃機関10の本体に設けられた、エンジン
本体の振動、或いは、この振動により生ずる音波
を電気信号に変換するノツキングセンサ16と、
該ノツキングセンサ16の出力からノツキングの
有無を検出するノツキング検出回路17と、気化
器14に配設された、混合気の空燃比を理論空燃
比より希薄側とすることが可能な燃料流量減量機
構18と、吸気管12の負圧を検知する吸気負圧
センサ20と、前記ノツキング検出回路17及び
吸気負圧センサ20の出力に基づき、前記ノツキ
ングセンサ16により吸気管負圧が100mmHg以下
の高負荷域でノツキングが検出された場合には、
前記燃料流量機構18を駆動して混合気の空燃比
を理論空燃比より希薄側とする制御回路22とを
設けたものである。
Embodiments of the present invention will be described in detail below with reference to the drawings. In the first embodiment of the present invention, as shown in FIG. 3, a homogeneous air-fuel mixture formed by a carburetor 14 is sucked through an intake pipe 12. In a premixed high-compression gasoline internal combustion engine 10 with a compression ratio of 10 to 14, a knocking sensor 16 is provided in the main body of the gasoline internal combustion engine 10 and converts vibrations of the engine main body or sound waves generated by this vibration into electrical signals. and,
A knocking detection circuit 17 that detects the presence or absence of knocking based on the output of the knocking sensor 16, and a fuel flow reduction device disposed in the carburetor 14 that can make the air-fuel ratio of the air-fuel mixture leaner than the stoichiometric air-fuel ratio. Based on the outputs of the mechanism 18, the intake negative pressure sensor 20 that detects the negative pressure in the intake pipe 12, the knocking detection circuit 17, and the intake negative pressure sensor 20, the knocking sensor 16 detects when the intake pipe negative pressure is 100 mmHg or less. If knocking is detected in the high load range,
A control circuit 22 is provided which drives the fuel flow rate mechanism 18 to make the air-fuel ratio of the air-fuel mixture leaner than the stoichiometric air-fuel ratio.

図において、24はエアクリーナ、26は排気
管である。
In the figure, 24 is an air cleaner, and 26 is an exhaust pipe.

前記燃料流量減量機構18は、第4図に詳細に
示す如く、気化器14のベンチユリ14a内にガ
ソリンを吐出するためのノズル14bに気化器フ
ロート室14cの燃料を導出する燃料通路14d
の燃料流入口14e,14fの一方に配設され
た、燃料流入口14fを閉塞可能な弁体18a
と、該弁体18aを駆動して燃料流入口14fを
閉塞する電磁弁18bとから構成されている。図
において、14g,14hは燃料ジエツト、14
iはエアブリード通路、14jは空気ジエツト、
14kはフロート、14lは絞り弁である。
As shown in detail in FIG. 4, the fuel flow rate reduction mechanism 18 includes a fuel passage 14d that leads the fuel in the carburetor float chamber 14c to a nozzle 14b for discharging gasoline into the bench lily 14a of the carburetor 14.
A valve body 18a that is disposed at one of the fuel inlets 14e and 14f and can close the fuel inlet 14f.
and a solenoid valve 18b that drives the valve body 18a to close the fuel inlet 14f. In the figure, 14g and 14h are fuel jets, 14
i is an air bleed passage, 14j is an air jet,
14k is a float, and 14l is a throttle valve.

以下作用を説明する。ノツキングセンサ16の
出力信号は、ノツキング検出回路17に入力さ
れ、該ノツキングセンサ16の出力レベルが所定
値以上であるときにノツキングが発生していると
判定して、ノツキング検出回路17からノツキン
グ信号が制御回路22に入力される。一方、吸気
管12の吸気負圧は吸気負圧センサ20で検知さ
れ、高負圧の部分負荷時には該吸気負圧センサ2
0がオフとなり、制御回路22からの出力信号が
停止される。従つて、この部分負荷時には電磁弁
18bは常に閉じており、空燃比は燃料流入口1
4eから流入する燃料流量によつて決まる、従来
と同様のノツキングが発生しない希薄空燃比領域
とされ、例えば燃費を授視した設定とされてい
る。一方、吸気管12内の吸気負圧が例えば100
mmHgより零に近くなると、吸気負圧センサ20
がオンとなり、制御回路22から電磁弁18bに
開閉を指示する信号が送られる。従つて、電磁弁
18bは、この信号により作動開始し、弁体18
aが燃料流入口14fを閉じた場合には、燃料通
路14dに流入する燃料流量が減少するため、空
燃比が部分負荷時と同様に希薄化され、ノツキン
グが防止される。一方、ノツキングが発生しなく
なると、電磁弁18bが開き、燃料流入口14f
が開かれるため、フロート室14cから燃料通路
14dに流れ込む燃料流量が多くなつて空燃比が
過濃化される。従つて、この繰返しにより、空燃
比をノツキングリミツトぎりぎりに保つことが可
能である。この空燃比制御は、制御信号のデユー
テイ比を変えることにより行なわれる。このよう
に、ノツキングリミツトぎりぎり迄全負荷空燃比
を過濃側に近づけることができるので、希薄空燃
比ではあるが出力減少を最小限に押さえることが
できる。
The action will be explained below. The output signal of the knocking sensor 16 is input to the knocking detection circuit 17, and when the output level of the knocking sensor 16 is equal to or higher than a predetermined value, it is determined that knocking has occurred, and the knocking detection circuit 17 detects the knocking. The signal is input to control circuit 22 . On the other hand, the intake negative pressure in the intake pipe 12 is detected by the intake negative pressure sensor 20.
0 is turned off, and the output signal from the control circuit 22 is stopped. Therefore, during this partial load, the solenoid valve 18b is always closed, and the air-fuel ratio is equal to the fuel inlet 1.
The air-fuel ratio range is determined by the flow rate of fuel flowing in from 4e, and is set in a lean air-fuel ratio region in which knocking does not occur as in the conventional case, and is set in consideration of fuel efficiency, for example. On the other hand, the intake negative pressure in the intake pipe 12 is, for example, 100
When it approaches zero than mmHg, the intake negative pressure sensor 20
is turned on, and a signal instructing the solenoid valve 18b to open or close is sent from the control circuit 22. Therefore, the solenoid valve 18b starts operating in response to this signal, and the valve body 18
When the engine a closes the fuel inlet 14f, the flow rate of fuel flowing into the fuel passage 14d decreases, so that the air-fuel ratio is diluted as in the case of partial load, and knocking is prevented. On the other hand, when knocking no longer occurs, the solenoid valve 18b opens and the fuel inlet 14f opens.
is opened, the flow rate of fuel flowing from the float chamber 14c into the fuel passage 14d increases, resulting in an over-enriched air-fuel ratio. Therefore, by repeating this process, it is possible to maintain the air-fuel ratio just below the knocking limit. This air-fuel ratio control is performed by changing the duty ratio of the control signal. In this way, the full-load air-fuel ratio can be brought close to the rich side until the knocking limit is reached, so that although the air-fuel ratio is lean, the reduction in output can be kept to a minimum.

なお前記第1実施例においては、燃料流量減量
機構が、気化器に配設された、燃料通路に流れ込
む燃料量を減少するための電磁弁とされていた
が、燃料流量減量機構はこれに限定されず。例え
ば、燃料供給系として電子制御燃料噴射装置が用
いられている場合には、吸気マニホルドに配設さ
れた燃料噴射弁の開弁時間を減少することによ
り、混合気の空燃比を理論空燃比より希薄側とす
ることも勿論可能である。
In the first embodiment, the fuel flow rate reduction mechanism was a solenoid valve disposed in the carburetor for reducing the amount of fuel flowing into the fuel passage, but the fuel flow rate reduction mechanism is limited to this. not. For example, when an electronically controlled fuel injection device is used as a fuel supply system, the air-fuel ratio of the mixture can be lowered from the stoichiometric air-fuel ratio by reducing the opening time of the fuel injection valves installed in the intake manifold. Of course, it is also possible to set it on the dilute side.

本考案の第2実施例を第5図に示す。本実施例
は、空燃比制御手段として、気化器14のエアブ
リード通路14iを開閉制御する弁体30a及び
該弁体30aを駆動する電磁弁30bを備えたエ
アブリード空気量増量機構30を用いたものであ
る。他の点については前記第1実施例と同様であ
るので説明は省略する。
A second embodiment of the present invention is shown in FIG. In this embodiment, as the air-fuel ratio control means, an air bleed air amount increasing mechanism 30 is used, which includes a valve body 30a that controls the opening and closing of the air bleed passage 14i of the carburetor 14, and a solenoid valve 30b that drives the valve body 30a. It is something. The other points are the same as those of the first embodiment, so the explanation will be omitted.

本実施例においては、ノツキング検出回路17
及び吸気負圧センサ20の出力信号に基づき、高
負荷域でノツキングが発生した場合には、電磁弁
30bによりエアブリード通路14iが開かれて
いる時間が増大して、空燃比が理論空燃比より希
薄側とされる。一方、低負荷域或いは高負荷域で
もノツキングが発生していない場合には、電磁弁
30bによりエアブリード通路14iが閉じられ
ている時間が長くなり、従つて、空燃比が理論空
燃比或いは出力空燃比に制御される。
In this embodiment, the knocking detection circuit 17
Based on the output signal of the intake negative pressure sensor 20, if knocking occurs in a high load range, the time during which the air bleed passage 14i is open by the solenoid valve 30b increases, and the air-fuel ratio becomes lower than the stoichiometric air-fuel ratio. It is considered to be on the thin side. On the other hand, if knocking does not occur even in a low load range or a high load range, the time during which the air bleed passage 14i is closed by the solenoid valve 30b becomes longer, and the air-fuel ratio becomes closer to the stoichiometric air-fuel ratio or the output air-fuel ratio. Controlled by fuel ratio.

以上説明したとおり、本考案によれば、高圧縮
ガソリン内燃機関の高負荷時のノツキングを防止
することができ、従来の低圧縮ガソリン内燃機関
に比べ出力の低下が少なく、更に燃費も大幅に向
上した上で、安定した運転を行なうことができ
る。又、高負荷域でのみノツキングに応じた空燃
比制御を行なうことにより、部分負荷運転時に
は、例えば燃費向上のため、更に希薄空燃比に設
定するなど、高負荷域とは違つたねらいで空燃比
を設定することが可能となる等の優れた効果を有
する。
As explained above, according to the present invention, it is possible to prevent knocking of a high-compression gasoline internal combustion engine at high loads, resulting in less reduction in output compared to conventional low-compression gasoline internal combustion engines, and significantly improving fuel efficiency. After that, stable operation can be performed. In addition, by controlling the air-fuel ratio according to knocking only in the high-load range, during partial-load operation, the air-fuel ratio can be adjusted for a different purpose than in the high-load range, such as setting an even leaner air-fuel ratio to improve fuel efficiency. It has excellent effects such as making it possible to set the

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、従来の低圧縮ガソリン内燃機関にお
ける全負荷付近の空燃比とMBT点火時期及びノ
ツキングリミツトの関係を示す線図、第2図は、
本考案の原理を説明する、高圧縮ガソリン内燃機
関における全負荷付近の空燃比とMBT点火時期
及びノツキングリミツトの関係を示す線図、第3
図は、本考案に係る内燃機関のノツキング防止装
置が配設された予混合型高圧縮ガソリン内燃機関
の構成を示す略線図、第4図は、前記第1実施例
における燃料流量減量機構が配設された気化器を
示す拡大断面図、第5図は、本考案に係る内燃機
関のノツキング防止装置の第2実施例に用いられ
ている、エアブリード空気量増量機構が配設され
た気化器を示す断面図である。 10……ガソリン内燃機関、12……吸気管、
14……気化器、16……ノツキングセンサ、1
7……ノツキング検出回路、18……燃料流量増
量機構、20……吸気負圧センサ、22……制御
回路、30……エアブリード空気量増量機構。
Figure 1 is a diagram showing the relationship between the air-fuel ratio near full load, MBT ignition timing, and knocking limit in a conventional low-compression gasoline internal combustion engine.
Diagram 3 showing the relationship between the air-fuel ratio near full load, MBT ignition timing, and knocking limit in a high-compression gasoline internal combustion engine to explain the principle of the present invention.
4 is a schematic diagram showing the configuration of a premixed high-compression gasoline internal combustion engine equipped with the knocking prevention device for an internal combustion engine according to the present invention, and FIG. 4 shows the fuel flow reduction mechanism in the first embodiment. FIG. 5 is an enlarged sectional view showing the carburetor installed therein, and FIG. It is a sectional view showing a container. 10...Gasoline internal combustion engine, 12...Intake pipe,
14... Carburetor, 16... Notking sensor, 1
7...Knocking detection circuit, 18...Fuel flow rate increase mechanism, 20...Intake negative pressure sensor, 22...Control circuit, 30...Air bleed air amount increase mechanism.

Claims (1)

【実用新案登録請求の範囲】 (1) 圧縮比10〜14の予混合型高圧縮ガソリン内燃
機関において、ノツキングを検出するノツキン
グセンサと、機関が高負荷状態にあることを検
出する手段と、混合気の空燃比を理論空燃比よ
り希薄側とすることが可能な空燃比制御手段と
を設け、機関が高負荷状態でノツキングが検出
された場合に、前記空燃比制御手段により、混
合気の空燃比を理論空燃比より希薄側とし、ノ
ツキングの発生を防止するようにしたことを特
徴とする内燃機関のノツキング防止装置。 (2) 前記高負荷域状態の検出手段は、吸気管負圧
を検出しその吸気管負圧が100mm/Hg以下のと
きに高負荷状態であると判別する実用新案登録
請求の範囲第1項に記載の内燃機関のノツキン
グ防止装置。 (3) 前記空燃比制御手段が、気化器に配設された
燃料流量減量機構である実用新案登録請求の範
囲第1項又は第2項に記載の内燃機関のノツキ
ング防止装置。 (4) 前記空燃比制御手段が、気化器に配設された
エアブリード空気量増量機構である実用新案登
録請求の範囲第1項又は第2項に記載の内燃機
関のノツキング防止装置。 (5) 前記空燃比制御手段が、電子制御燃料噴射装
置である実用新案登録請求の範囲第1項又は第
2項に記載の内燃機関のノツキング防止装置。
[Scope of Claim for Utility Model Registration] (1) A knocking sensor for detecting knocking in a premixed high-compression gasoline internal combustion engine with a compression ratio of 10 to 14, and means for detecting that the engine is in a high load state; An air-fuel ratio control means capable of making the air-fuel ratio of the air-fuel mixture leaner than the stoichiometric air-fuel ratio is provided, and when knocking is detected when the engine is under high load, the air-fuel ratio control means controls the air-fuel ratio of the air-fuel mixture. A knocking prevention device for an internal combustion engine, characterized in that the air-fuel ratio is made leaner than the stoichiometric air-fuel ratio to prevent the occurrence of knocking. (2) The high load range state detection means detects intake pipe negative pressure and determines that the high load state is present when the intake pipe negative pressure is 100 mm/Hg or less.Claim 1 of the Utility Model Registration Claim The knocking prevention device for an internal combustion engine described in . (3) The knocking prevention device for an internal combustion engine according to claim 1 or 2, wherein the air-fuel ratio control means is a fuel flow reduction mechanism disposed in a carburetor. (4) The knocking prevention device for an internal combustion engine according to claim 1 or 2, wherein the air-fuel ratio control means is an air bleed air amount increasing mechanism disposed in a carburetor. (5) The knocking prevention device for an internal combustion engine according to claim 1 or 2, wherein the air-fuel ratio control means is an electronically controlled fuel injection device.
JP1980076065U 1980-05-30 1980-05-30 Expired JPS6143961Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980076065U JPS6143961Y2 (en) 1980-05-30 1980-05-30

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980076065U JPS6143961Y2 (en) 1980-05-30 1980-05-30

Publications (2)

Publication Number Publication Date
JPS5744U JPS5744U (en) 1982-01-05
JPS6143961Y2 true JPS6143961Y2 (en) 1986-12-11

Family

ID=29438721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980076065U Expired JPS6143961Y2 (en) 1980-05-30 1980-05-30

Country Status (1)

Country Link
JP (1) JPS6143961Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112A (en) * 1977-06-03 1979-01-05 Hitachi Ltd Combustion control system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54112A (en) * 1977-06-03 1979-01-05 Hitachi Ltd Combustion control system

Also Published As

Publication number Publication date
JPS5744U (en) 1982-01-05

Similar Documents

Publication Publication Date Title
KR900001625B1 (en) System of controlling engine
US4485625A (en) Control means for internal combustion engines
JPS6466439A (en) Air-fuel ratio controlling method of internal combustion engine
CA1155015A (en) Electronic controlled carburetor
JPS6143961Y2 (en)
US4572134A (en) Double carburetor
CA1073364A (en) Protection system for exhaust purifying catalytic converter of internal combustion engine
JPS6052304B2 (en) Cylinder fuel injection internal combustion engine
JPS6466427A (en) Fuel supply control device for internal combustion engine
JPS56138435A (en) Knocking action controller for engine mounted with turbosupercharger
JPH04325752A (en) Exhaust gas recirculation control device for internal combustion engine
US4099492A (en) Mixture correction system during rapid acceleration in internal combustion engine with auxiliary combustion chamber
US4190028A (en) Mixture forming assembly for closed loop air-fuel metering system
JPS6466436A (en) Fuel supply control device of internal combustion engine
JPS59126041A (en) Internal-combustion engine
JPS6252144B2 (en)
JPS63246460A (en) Output control device for gas engine
JPS6214366Y2 (en)
SE8401252L (en) SYSTEM FOR REGULATING THE FUEL AIR MIXTURE TO A COMBUSTION ENGINE
JPS57198323A (en) Method of controlling air fuel ratio of internal combustion engine
JPS6052314B2 (en) Ignition timing control method for turbocharged engine
JPS5724436A (en) Deceleration control device of air-fuel ratio controller for internal combustion engine
JPS5950849B2 (en) Internal combustion engine with auxiliary intake port
JPH0727003A (en) Air-fuel ratio controller of engine
JPS6453039A (en) Air-fuel ratio controller for internal combustion engine