JPS6143808B2 - - Google Patents

Info

Publication number
JPS6143808B2
JPS6143808B2 JP55100098A JP10009880A JPS6143808B2 JP S6143808 B2 JPS6143808 B2 JP S6143808B2 JP 55100098 A JP55100098 A JP 55100098A JP 10009880 A JP10009880 A JP 10009880A JP S6143808 B2 JPS6143808 B2 JP S6143808B2
Authority
JP
Japan
Prior art keywords
insulated wire
insulating layer
conductor
present
insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55100098A
Other languages
Japanese (ja)
Other versions
JPS5725610A (en
Inventor
Osao Kamata
Katsuo Endo
Norio Takahata
Fumikata Nakahigashi
Hiroshi Kameyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP10009880A priority Critical patent/JPS5725610A/en
Publication of JPS5725610A publication Critical patent/JPS5725610A/en
Publication of JPS6143808B2 publication Critical patent/JPS6143808B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Description

【発明の詳細な説明】 本発明は絶縁電線、特に耐トリー劣化特性の優
れた絶縁電線の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an insulated wire, particularly a method for manufacturing an insulated wire with excellent tree deterioration resistance.

第1図は従来の絶縁電線の一例を示すものであ
る。
FIG. 1 shows an example of a conventional insulated wire.

すなわち、導体11の周上に単一の溶融粘度を
有する単独の絶縁材料(例えばポリプロピレン)
から成る絶縁層13を押出成型により形成した構
造である。(12は必要に応じ設ける銅害しやへ
い層である。) この従来構造では、図に示すように、トリーT
は導体から放射状に伸長し、絶縁破壊に至る寿命
が短く、絶縁層厚さが薄い場合、特に顕著であつ
た。
That is, a single insulating material (for example polypropylene) having a single melt viscosity is placed on the circumference of the conductor 11.
This structure has an insulating layer 13 formed by extrusion molding. (12 is a copper damage resistance layer provided as necessary.) In this conventional structure, as shown in the figure, the tree T
They extend radially from the conductor, have a short lifespan before dielectric breakdown, and are particularly noticeable when the insulation layer is thin.

また、このような絶縁層を機械的にしごいだ場
合にも、応力を吸収できず、ミクロクラツクCが
放射状に伸長し、絶縁破壊に至る寿命が短く、こ
の点もまた絶縁層厚さが薄い場合には顕著であつ
た。
Furthermore, even when such an insulating layer is mechanically squeezed, it cannot absorb the stress and the microcracks C extend radially, resulting in a short lifespan leading to dielectric breakdown. This point also occurs when the insulating layer is thin. It was noticeable.

本発明の目的は、前記した従来品の欠点を解消
し、耐トリー劣化特性の優れた絶縁電線の製造方
法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing an insulated wire that eliminates the drawbacks of the conventional products described above and has excellent tree deterioration resistance.

すなわち、本発明の要旨は、導体周上に互いに
溶融粘度の異なる同種または異種の絶縁材料を球
状又はペレツト状にして各成分が溶解しないよう
に物理的に混合して、スクリユータイプの押出機
で各成分が溶融する温度で絶縁層を押出成型加工
することにより、該絶縁層の厚さ方向の中間層部
分に渦流状模様を形成することを特徴とする絶縁
電線の製造方法である。
That is, the gist of the present invention is to form insulating materials of the same kind or different kinds having different melt viscosities on the circumference of a conductor into a spherical or pellet shape and physically mix them so that the respective components do not dissolve. This method of manufacturing an insulated wire is characterized in that a spiral pattern is formed in the intermediate layer portion in the thickness direction of the insulating layer by extrusion molding the insulating layer at a temperature at which each component melts.

電気絶縁材料は単独で用いられるだけでなく、
しばしば特性を相互に活用補完する為に相溶性の
ある2種類以上の異種材料を混合して使用される
ことがある。
Electrical insulating materials are not only used alone;
Often, two or more different types of compatible materials are mixed and used in order to utilize and complement each other's properties.

しかし、その場合、常識として均質化するまで
混練その他の方法を講じている。
However, in that case, it is common knowledge that kneading or other methods are used until homogenization.

然るに、本発明においては、電気的トリー発生
〜成長による絶縁破壊を防止するために、均質化
の常識に反し、互いに溶融粘度の異なる同種また
は異種の絶縁材料を不均等に混合押出しして絶縁
層を構成したものである。
However, in the present invention, in order to prevent dielectric breakdown due to the generation and growth of electrical trees, contrary to the common sense of homogenization, insulating materials of the same type or different types having different melt viscosities are mixed and extruded unevenly to form an insulating layer. It is composed of

すなわち、溶融粘度の異なる(分子量の異なる
と換言してもよい)異種の絶縁材料、または同種
の絶縁材料を、望ましい大きさの球状またはペレ
ツト状の粒塊のまま適当な対比で物理的に混合
し、これをスクリユータイプ押出機に投入し、各
成分が溶融する温度で押出し成型加工をおこなう
と、スクリユー溝中での流動特性が渦流混合であ
るため、例えば粘度の低い成分の中に、粘度の高
い成分のものが、完全に均一に混練りされないま
ま、第2図に示すように、渦巻き状の半混合体と
して存在し、渦流状模様が形成される。
In other words, different types of insulating materials with different melt viscosities (which can also be referred to as different molecular weights) or the same type of insulating materials are physically mixed in appropriate proportions in the form of spherical or pellet-like agglomerates of desired size. However, when this is put into a screw type extruder and extrusion molding is performed at a temperature where each component melts, the flow characteristics in the screw groove are vortex mixing, so for example, some components with low viscosity The components with high viscosity are not completely uniformly kneaded and exist as a spiral semi-mixture as shown in FIG. 2, forming a swirl pattern.

このような半混合物質が導体周上に同心円状に
被覆されるときは、低粘度成分の易動性に対して
高粘度成分はあたかも非流動性の如く働き、流動
学上にいうPlug flow状の挙動を示し、例えば絶
縁層断面の中央部に、高粘度成分の渦流状粒塊が
介在する形をとるため、断面は不規則な3層に分
離した形態をとるのである。
When such a semi-mixed material is coated concentrically around the conductor, the high viscosity component behaves as if it were non-fluid compared to the mobility of the low viscosity component, resulting in what is called a plug flow shape in terms of rheology. For example, the cross section of the insulating layer has a shape in which swirl-like particles of high viscosity components are present in the center, so the cross section takes on a form separated into three irregular layers.

本発明で用いられる絶縁材料は、ポリエチレ
ン、ポリプロピレンなどのポリオレフイン系材
料、エチレン−酢酸ビニル共重合体、エチレン−
エチルアクリレート共重合体、エチレン−エチル
アクリレート共重合体などのエチレン共重合体、
エチレン−プロピレン共重合ゴム、エチレン−プ
ロピレン−ジエン共重合ゴム、クロロスルフオン
化ポリエチレン、塩素化ポリエチレン、ポリクロ
ロプレン、ブチルゴム、シリコーンゴムなどの合
成ゴム、ポリ塩化ビニルのようなビニル系材料、
ふつ素樹脂、ポリアミド樹脂など広範囲な電線用
絶縁材料のなかから採用できる。
Insulating materials used in the present invention include polyolefin materials such as polyethylene and polypropylene, ethylene-vinyl acetate copolymers, and ethylene-vinyl acetate copolymers.
Ethylene copolymers such as ethyl acrylate copolymer, ethylene-ethyl acrylate copolymer,
Synthetic rubbers such as ethylene-propylene copolymer rubber, ethylene-propylene-diene copolymer rubber, chlorosulfonated polyethylene, chlorinated polyethylene, polychloroprene, butyl rubber, silicone rubber, vinyl materials such as polyvinyl chloride,
It can be used from a wide range of insulating materials for electric wires, including fluororesin and polyamide resin.

本発明の一実施例を第2図を引用して説明す
る。1は断面積1.4の軟銅線の導体であり、この
直上にエポキシ樹脂をコーテイングした銅害しや
へい層2が設けられている。
An embodiment of the present invention will be described with reference to FIG. 1 is an annealed copper wire conductor having a cross-sectional area of 1.4 mm, and a copper damage resistance layer 2 coated with epoxy resin is provided directly above the annealed copper wire conductor.

この導体周上には、溶融粘度指数3のポリプロ
ピレン75重量%と溶融粘度指数0.2のエチレン−
プロピレン共重合体25重量%とを、各成分を球状
で物理的に混合し、これをスクリユータイプ押出
機に投入、押出成型して被覆厚さ0.3の絶縁層3
が構成されている。
On the circumference of this conductor, 75% by weight of polypropylene with a melt viscosity index of 3 and ethylene with a melt viscosity index of 0.2 are coated.
25% by weight of propylene copolymer, each component is physically mixed in a spherical shape, put into a screw type extruder, and extruded to form an insulating layer 3 with a coating thickness of 0.3.
is configured.

この場合、 溶融指数測定条件:230℃,2.16Kg, 10分間 導 体 温 度 :約10℃ 冷 却 条 件 :水(水温約0℃)にてて急
冷。
In this case, melting index measurement conditions: 230℃, 2.16Kg, 10 minutes Conductor temperature: Approximately 10℃ Cooling conditions: Rapid cooling with water (water temperature approximately 0℃).

である。It is.

さて、絶縁層3は、第2図に示すように、低粘
度成分である内層部31及び外層部32と、高粘
度成分であつて渦流状模様が形成されている中間
層部30とから3層構造を呈している。
Now, as shown in FIG. 2, the insulating layer 3 consists of an inner layer part 31 and an outer layer part 32 which are low viscosity components, and an intermediate layer part 30 which is a high viscosity component and has a swirl pattern formed therein. It has a layered structure.

この実施例は、水中モータ用マグネツトワイヤ
の例である。
This example is an example of a magnet wire for an underwater motor.

上記実施例の構造であれば、図示するように、
トリーTの伸長は渦の存在によつて阻止されるか
または渦巻き状に湾曲することにより見掛け上の
絶縁層厚さが厚くなつたと同じであり、絶縁破壊
に至るまでの寿命が長くなる。
If the structure of the above embodiment is used, as shown in the figure,
The extension of the tree T is inhibited by the presence of vortices or it is curved into a spiral shape, which is the same as increasing the apparent thickness of the insulating layer, and lengthening the lifespan until dielectric breakdown occurs.

また、機械的にしごいだ場合、渦による応力吸
収によりミクロクラツクも少なくなり、かつミク
ロクラツクCの伸長方向も渦巻き状に沿つて湾曲
することにより、この面からも絶縁破壊に至るま
での寿命が長くなる。
In addition, when mechanically squeezed, the number of microcracks is reduced due to stress absorption by vortices, and the extending direction of microcracks C is also curved along the spiral shape, which also extends the lifespan until dielectric breakdown occurs. .

ここで、第1図に示した従来の絶縁電線(ポリ
プロピレンの単独絶縁層を有するもの)と、第2
図に示した本発明方法により製造された絶縁電線
とを、両者同一サイズで作成したものについて、
破壊電圧−促進劣化時間特性を第3図イ及びロに
示す。
Here, the conventional insulated wire (having a single insulating layer of polypropylene) shown in FIG.
Regarding the insulated wire manufactured by the method of the present invention shown in the figure, both of which are the same size,
The breakdown voltage-accelerated deterioration time characteristics are shown in Figure 3 A and B.

イは従来の絶縁電線、ロは本発明方法により製
造された絶縁電線である。
A is a conventional insulated wire, and B is an insulated wire manufactured by the method of the present invention.

促進劣化条件は、60℃汚水浸漬、9KHz,1KVp
課電である。
Accelerated deterioration conditions are 60℃ sewage immersion, 9KHz, 1KVp
It is chargeable.

この第3図の結果からも明らかなように、本発
明方法により製造された絶縁電線は耐トリー劣化
の点で効果が明白である。
As is clear from the results shown in FIG. 3, the insulated wire manufactured by the method of the present invention is clearly effective in terms of tree deterioration resistance.

尚、本発明方法により製造された絶縁電線は、
従来の絶縁電線と比較して、初期の交流絶縁破壊
電圧特性が劣つているが、これは溶融粘度の異な
る絶縁材料が半混合体として存在しているため、
ミクロボイド等が生じ、特性が劣つているもの
で、純粋な絶縁材料から構成されている従来の絶
縁電線の方が初期に於いては特性が優れているも
のである。
Incidentally, the insulated wire manufactured by the method of the present invention is
Compared to conventional insulated wires, the initial AC breakdown voltage characteristics are inferior, but this is because insulating materials with different melt viscosities exist as a semi-mixture.
Microvoids and the like occur, resulting in poor characteristics, whereas conventional insulated wires made of pure insulating materials initially have superior characteristics.

しかし、その後の特性の劣化状況は第3図より
も明らかな通り、本発明方法により製造された絶
縁電線の方が耐トリー劣化特性が優れているもの
である。
However, as is clear from FIG. 3, the subsequent deterioration of the characteristics shows that the insulated wire manufactured by the method of the present invention has better tree deterioration resistance.

本発明製造方法は特に絶縁層厚さの薄い絶縁電
線ほど効果は大きいが、絶縁厚が厚い場合でも耐
トリー劣化の点での効果は期待できる。
The manufacturing method of the present invention is particularly effective as the insulated wire has a thinner insulation layer, but even when the insulation layer is thick, it can be expected to be effective in terms of tree deterioration resistance.

従つて、600V定格以上で使用される絶縁電線
(例えば架橋ポリエチレンケーブルなど)に適用
した場合にも効果は期待できる。
Therefore, effects can also be expected when applied to insulated wires used at a rating of 600V or higher (for example, cross-linked polyethylene cables, etc.).

以上のように説明した本発明製造方法により製
造された絶縁電線であれば、従来のこの種電線に
比較し、絶縁破壊値の低下が少なく、寿命が大幅
に向上した。
The insulated wire manufactured by the manufacturing method of the present invention as described above has less decrease in dielectric breakdown value and has a significantly improved lifespan than conventional wires of this type.

すなわち、導体近傍から発生するトリーは、渦
流状模様が形成されている中間層部或は中間層部
と内層部の存在により、放射状の伸長を阻止され
るために、耐トリー劣化の効果がすぐれ、寿命が
改善されたのである。
In other words, the trees generated near the conductor are prevented from elongating radially due to the presence of the intermediate layer portion or the intermediate layer portion and the inner layer portion in which the vortex-like pattern is formed, so that the trees are highly effective in preventing tree deterioration. , the lifespan has been improved.

また、機械的折り曲げ(しごき)が作用しても
渦による応力吸収によりミクロクラツクの発生も
少なくなり、かつミクロクラツクが発生してもそ
の伸長方向は渦巻き状に沿つて湾曲することによ
り、この面からも絶縁破壊に至るまでの寿命が長
くなる。
In addition, even when mechanical bending (straining) is applied, the occurrence of microcracks is reduced due to stress absorption by vortices, and even if microcracks occur, their elongation direction is curved along the spiral shape, so that they can be easily seen from this plane. The lifespan until dielectric breakdown occurs is extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の絶縁電線の一例を示す断面図、
第2図は本発明製造方法により製造された絶縁電
線の一実施例を示す断面図、第3図イ及びロは、
第1図及び第2図の電線の破壊電圧−促進劣化時
間特性を夫々示す線図である。 1……導体、3……絶縁層、31,32……低
粘度成分である内層部及び外層部、30……高粘
度成分であつて渦流状模様が形成されている中間
層部。
Figure 1 is a cross-sectional view showing an example of a conventional insulated wire;
FIG. 2 is a sectional view showing an example of an insulated wire manufactured by the manufacturing method of the present invention, and FIG. 3 A and B are
3 is a diagram showing the breakdown voltage-accelerated deterioration time characteristics of the electric wires of FIGS. 1 and 2, respectively. FIG. DESCRIPTION OF SYMBOLS 1... Conductor, 3... Insulating layer, 31, 32... Inner layer part and outer layer part which are a low viscosity component, 30... An intermediate layer part which is a high viscosity component and has a swirl pattern formed therein.

Claims (1)

【特許請求の範囲】[Claims] 1 導体周上に互いに溶融粘度の異なる同種また
は異種の絶縁材料を球状又はペレツト状にして各
成分が溶解しないように物理的に混合して、スク
リユータイプの押出機で各成分が溶融する温度で
絶縁層を押出成型加工することにより、該絶縁層
の厚さ方向の中間層部分に渦流状模様を形成する
ことを特徴とする絶縁電線の製造方法。
1. Insulating materials of the same type or different types with different melt viscosities are formed into a spherical or pellet shape on the circumference of a conductor, and physically mixed so that each component does not melt, and the temperature at which each component melts using a screw type extruder is determined. 1. A method of manufacturing an insulated wire, characterized in that a spiral pattern is formed in an intermediate layer portion in the thickness direction of the insulating layer by extrusion molding the insulating layer.
JP10009880A 1980-07-22 1980-07-22 Insulated wire Granted JPS5725610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10009880A JPS5725610A (en) 1980-07-22 1980-07-22 Insulated wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10009880A JPS5725610A (en) 1980-07-22 1980-07-22 Insulated wire

Publications (2)

Publication Number Publication Date
JPS5725610A JPS5725610A (en) 1982-02-10
JPS6143808B2 true JPS6143808B2 (en) 1986-09-30

Family

ID=14264917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10009880A Granted JPS5725610A (en) 1980-07-22 1980-07-22 Insulated wire

Country Status (1)

Country Link
JP (1) JPS5725610A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59103209A (en) * 1982-12-03 1984-06-14 住友電気工業株式会社 Electrically insulating cable

Also Published As

Publication number Publication date
JPS5725610A (en) 1982-02-10

Similar Documents

Publication Publication Date Title
US4041237A (en) Electric conductor adapted for use in process instrumentation
US3792192A (en) Electrical cable
US4276251A (en) Power and control cables having flexible polyolefin insulation
JPH04106B2 (en)
JPS6143808B2 (en)
JP2022060751A (en) Twist wire, and cable including the same
JPH09231839A (en) Direct current cable
US4915889A (en) Method of producing an electrically semi-conducting, strippable plastics mixture
JPH0757559A (en) Heat-resistant covered electric wire
JPH1186636A (en) Dc cable
JPH0620530A (en) Water tree resistant cable
JP3777958B2 (en) Cross-linked polyethylene insulated power cable suitable for recycling
JP2001266650A (en) Electric insulating composition and electric cable
GB2093043A (en) Electric cables having flexible polyolefin insulation
JPS61235444A (en) Semiconductive resin composition
JPS6245643B2 (en)
JPS5814670Y2 (en) Suifuushikisuichiyudendouki
JPS6332204B2 (en)
JPH10233123A (en) X-ray cable
JPS5851415A (en) Flame resistant insulated wire
CA1160301A (en) Power and control cables having flexible polyolefin insulation
WO1995009198A1 (en) An extrudable conducting polymer compound
JPH02165506A (en) High-tension cable
JPH0360123B2 (en)
JPS63269408A (en) Rubber plastic power cable