JPS6143693B2 - - Google Patents

Info

Publication number
JPS6143693B2
JPS6143693B2 JP55125287A JP12528780A JPS6143693B2 JP S6143693 B2 JPS6143693 B2 JP S6143693B2 JP 55125287 A JP55125287 A JP 55125287A JP 12528780 A JP12528780 A JP 12528780A JP S6143693 B2 JPS6143693 B2 JP S6143693B2
Authority
JP
Japan
Prior art keywords
frequency
optical
injection
light
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55125287A
Other languages
Japanese (ja)
Other versions
JPS5749925A (en
Inventor
Soichi Kobayashi
Tatsuya Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP55125287A priority Critical patent/JPS5749925A/en
Publication of JPS5749925A publication Critical patent/JPS5749925A/en
Publication of JPS6143693B2 publication Critical patent/JPS6143693B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/0009Materials therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/60Receivers
    • H04B10/61Coherent receivers
    • H04B10/64Heterodyne, i.e. coherent receivers where, after the opto-electronic conversion, an electrical signal at an intermediate frequency [IF] is obtained

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Description

【発明の詳細な説明】 本発明は光ヘテロダイン方式における信号のキ
ヤリア波に追随したコヒーレントな光を中間周波
数だけシフトして局部発振光として供給する光通
信用ヘテロダイン受信回路に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heterodyne receiving circuit for optical communication that shifts coherent light following a carrier wave of a signal in an optical heterodyne system by an intermediate frequency and supplies the shifted light as locally oscillated light.

従来、光通信はPCM−IM方式が実用化面から
有利であるとされてきた。しかし、さらに大容
量、長中継距離をめざす場合には現行方式とし
て、光の可干渉性を利用するコヒーレント伝送が
有利である(山本電通学会通信方式研究会資料
CS−79−144)。光ヘテロダイン技術は従来気体
レーザで検討されている(F・E・Goodwin,
“3.39Micron Infraved Optical Heterodyne
Communication System”、IEEE、J.Q.E.QE−
3,No.11,NOV.,1967,PP.524−531)。
Conventionally, the PCM-IM method has been considered to be advantageous in terms of practical use in optical communications. However, when aiming for even higher capacity and longer relay distances, coherent transmission, which utilizes the coherence of light, is advantageous as the current method (Yamamoto Institute of Electrical Engineers of Japan Communication Systems Study Group Materials)
CS-79-144). Optical heterodyne technology has been previously investigated using gas lasers (F.E. Goodwin,
“3.39Micron Infrared Optical Heterodyne
Communication System”, IEEE, JQEQE−
3, No. 11, NOV., 1967, PP. 524-531).

従つて、光通信系における送受信装置は大形に
なり、周波数変動を制御するための温度制御系が
複雑となる。さらに気体レーザの発振波長が光通
信用フアイバの有する低損失波長領域と一致して
いないため光通信用光源として不適である。
Therefore, the transmitting/receiving device in the optical communication system becomes large in size, and the temperature control system for controlling frequency fluctuation becomes complicated. Furthermore, the oscillation wavelength of the gas laser does not match the low-loss wavelength region of the optical communication fiber, making it unsuitable as a light source for optical communication.

光領域における注入同期技術は既にStover等に
よつて確認されている(H.L.Stover and W.H.
Steier,“Locking of Laser Oscillations by
Light Injection”,Applied Phys.Lett.,vol.8,
No.4,Feb.,1966,pp.91−93)。しかし、気体
レーザの場合は利得が小さく共振器のQ値が高い
ため、同期幅、同期増幅利得が充分とれない欠点
がある。以上の観点から、気体レーザを注入同期
動作させたヘテロダイン局部発振器として用い、
光通信用ヘテロダイン受信系を構成する場合には
技術的問題が多い。
Injection locking technology in the optical domain has already been confirmed by Stover et al. (HLStover and WH
Steier, “Locking of Laser Oscillations by
Light Injection”, Applied Phys. Lett., vol.8,
No. 4, Feb., 1966, pp. 91-93). However, in the case of a gas laser, since the gain is small and the Q value of the resonator is high, there is a drawback that a sufficient synchronization width and synchronization amplification gain cannot be obtained. From the above viewpoint, using a gas laser as an injection-locked heterodyne local oscillator,
There are many technical problems when constructing a heterodyne receiving system for optical communication.

本発明は、これらの点を解決するために、局部
発振器に半導体レーザを用い注入同期動作させる
ことによつて信号の可干渉性を保存した光を作成
し、かつ正確に中間周波数に相当するだけシフト
した局部発振光を供給することを目的としてい
る。
In order to solve these problems, the present invention creates light that preserves signal coherence by using a semiconductor laser as a local oscillator and performs injection-locked operation. The purpose is to supply shifted local oscillation light.

以下、図面について詳細に説明する。 The drawings will be described in detail below.

図は本発明の一実施例であつて、1は送信光源
系、2は光伝送路系、3,6はハーフミラー、
4,5はミラー、7は注入同期半導体レーザ、8
は光周波数シフター、9は二乗検波器である。点
線で示した部分10が本発明の受信回路である。
The figure shows an embodiment of the present invention, in which 1 is a transmission light source system, 2 is an optical transmission line system, 3 and 6 are half mirrors,
4 and 5 are mirrors, 7 is an injection-locked semiconductor laser, 8
is an optical frequency shifter, and 9 is a square law detector. A portion 10 indicated by a dotted line is a receiving circuit of the present invention.

送信光源系1から出た変調信号は光伝送路系2
を通つて受信回路10に入射される。入射した変
調光はハーフミラー3によつて2分され、一方は
ハーフミラー6を介して2乗検波器へ入り、他方
はミラー4によつて反射されて、注入同期半導体
レーザ7へ入る。注入同期を信号のキヤリア周波
数で行ない、注入同期半導体レーザ7からの発振
周波数は可干渉的にキヤリア周波数に等しくな
る。半導体レーザの注入同期特性は実験的に確認
されており、最大同期幅2Δ=3GHz(このと
き同期利得23dB)、最大同期利得40dB(このとき
同期幅は2Δ=500MHz)が得られている(S.
Kobayashi and T. Kimura, “Injection
locking characteristics of AlGaAS
semiconductor laser “to be Published in
IEEE J.Quantum Electrom.,Sep.,1980)。従
つてキヤリア周波数変動が大きい場合には同期利
得が得られないため、前置光増幅器を必要とす
る。注入同期半導体レーザ7から出た光は光周波
数シフター8へ入射される。光周波数シフター8
は変調周波数がヘテロダイン用の中間周波数IF
に等しい値で変調され、キヤリア周波数cに対
LcIFの周波数の光が得られる光周波
数シフターである。これには例えば超音波周波数
シフターが相当するが、信号の変調周波数が高い
場合にはGHzオーダの高速変調器が必要となり、
電気光学効果による周波数シフターが望ましい。
光周波数シフター8から出たLの周波数を持つ
光はミラー5で反射し、ハーフミラー6で再び信
号と合波され、2乗検波器9へ入射される。2乗
検波器9からの出力はヘテロダイン検波され、中
間周波数IFを中心にベースバンド周波数を両側
に持つ信号となる。以下は電気系によつてベース
バンド信号を識別する。
The modulated signal output from the transmission light source system 1 is transmitted to the optical transmission line system 2.
The signal is input to the receiving circuit 10 through the receiving circuit 10. The incident modulated light is split into two by the half mirror 3, one of which enters the square-law detector via the half mirror 6, and the other reflected by the mirror 4 and enters the injection-locked semiconductor laser 7. Injection locking is performed using the carrier frequency of the signal, and the oscillation frequency from the injection-locked semiconductor laser 7 becomes coherently equal to the carrier frequency. The injection locking characteristics of semiconductor lasers have been experimentally confirmed, and a maximum locking width of 2Δ = 3 GHz (in this case, the locking gain is 23 dB) and a maximum locking gain of 40 dB (in this case, the locking width is 2Δ = 500 MHz) has been obtained (S .
Kobayashi and T. Kimura, “Injection
locking characteristics of AlGaAS
semiconductor laser “to be published in
IEEE J. Quantum Electrom., Sep., 1980). Therefore, if the carrier frequency fluctuation is large, a synchronization gain cannot be obtained, and a pre-optical amplifier is required. Light emitted from the injection-locked semiconductor laser 7 is input to an optical frequency shifter 8 . Optical frequency shifter 8
is the intermediate frequency IF for heterodyne modulation frequency.
This is an optical frequency shifter that is modulated with a value equal to , and obtains light with a frequency of L = c + IF for the carrier frequency c . For example, an ultrasonic frequency shifter corresponds to this, but if the modulation frequency of the signal is high, a high-speed modulator on the GHz order is required.
Frequency shifters based on electro-optic effects are preferred.
The light having the frequency L emitted from the optical frequency shifter 8 is reflected by the mirror 5, is combined with a signal again by the half mirror 6, and is input to the square law detector 9. The output from the square law detector 9 is subjected to heterodyne detection, and becomes a signal having a baseband frequency on both sides around the intermediate frequency IF . The following identifies baseband signals by electrical systems.

変調信号はASK,FSK,PSKの場合が考えら
れるが変調度に依存せずキヤリア成分が確保でき
るASK変調信号が本発明には適している。
The modulation signal may be ASK, FSK, or PSK, but the ASK modulation signal, which does not depend on the degree of modulation and can ensure a carrier component, is suitable for the present invention.

以上説明したように、ヘテロダイン方式におい
ては信号周波数変動に追随した局発光周波数が必
要であり、本発明をそれを半導体レーザによる注
入同期動作により満足させている。従つて、信号
のキヤリア周波数が送信用光源の不安定性もしく
は送信側の変調器の不安定性によつてドリフトし
ても局発光は常にキヤリア周波数よりIFの中間
周波数だけシフトした光を供給することが可能で
あり、従来の自由発振レーザと電気系による帰還
回路の構成と比較して非常に簡便に受信回路を設
計することができる利点がある。さらに半導体レ
ーザを使うことによつて小形化が可能となり、光
フアイバの低損失領域での光伝送が可能である利
点もある。
As explained above, the heterodyne system requires a local oscillation frequency that follows signal frequency fluctuations, and the present invention satisfies this requirement by injection locking operation using a semiconductor laser. Therefore, even if the carrier frequency of the signal drifts due to the instability of the transmitting light source or the instability of the modulator on the transmitting side, the local light source can always supply light that is shifted from the carrier frequency by the intermediate frequency of the IF . This has the advantage that the receiving circuit can be designed very easily compared to the conventional configuration of a feedback circuit using a free oscillation laser and an electric system. Furthermore, by using a semiconductor laser, it is possible to reduce the size of the device, and there is also the advantage that it is possible to transmit light in the low-loss region of an optical fiber.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の半導体レーザを用いた光通信用ヘ
テロダイン受信回路である。 1……送信光源系、2……光伝送路系、3……
ハーフミラー、4……ミラー、5……ミラー、6
……ハーフミラー、7……注入同期半導体レー
ザ、8……光周波数変調器、9……二乗検波器、
10……光通信用ヘテロダイン受信回路。
The figure shows a heterodyne receiving circuit for optical communication using the semiconductor laser of the present invention. 1... Transmission light source system, 2... Optical transmission line system, 3...
Half mirror, 4...Mirror, 5...Mirror, 6
... Half mirror, 7 ... Injection-locked semiconductor laser, 8 ... Optical frequency modulator, 9 ... Square law detector,
10...Heterodyne receiving circuit for optical communication.

Claims (1)

【特許請求の範囲】[Claims] 1 入力変調信号によつて注入同期する半導体レ
ーザを用いた局部発振器と、その局部発振器の出
力に対し中間周波数に相当する周波数シフトを生
じさせる光周波数シフターを具備することを特徴
とする注入同期による光通信用ヘテロダイン受信
回路。
1. Injection locking characterized by comprising a local oscillator using a semiconductor laser that is injection-locked by an input modulation signal and an optical frequency shifter that generates a frequency shift corresponding to an intermediate frequency in the output of the local oscillator. Heterodyne receiver circuit for optical communication.
JP55125287A 1980-09-11 1980-09-11 Heterodyne receiving circuit for optical communication by injection synchronism Granted JPS5749925A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55125287A JPS5749925A (en) 1980-09-11 1980-09-11 Heterodyne receiving circuit for optical communication by injection synchronism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55125287A JPS5749925A (en) 1980-09-11 1980-09-11 Heterodyne receiving circuit for optical communication by injection synchronism

Publications (2)

Publication Number Publication Date
JPS5749925A JPS5749925A (en) 1982-03-24
JPS6143693B2 true JPS6143693B2 (en) 1986-09-29

Family

ID=14906336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55125287A Granted JPS5749925A (en) 1980-09-11 1980-09-11 Heterodyne receiving circuit for optical communication by injection synchronism

Country Status (1)

Country Link
JP (1) JPS5749925A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4768852A (en) * 1983-01-28 1988-09-06 University Of Delaware Apparatus for optical fiber communication using travelling wave acousto-optical modulator and injection locked lasers
US4579417A (en) * 1983-01-28 1986-04-01 University Of Delaware Apparatus for optical fiber communications using standing wave acousto-optical modulator
JPS6374331A (en) * 1986-09-18 1988-04-04 Kokusai Denshin Denwa Co Ltd <Kdd> Diversity optical reception system

Also Published As

Publication number Publication date
JPS5749925A (en) 1982-03-24

Similar Documents

Publication Publication Date Title
JP2718770B2 (en) Transceiver for bidirectional coherent optical transmission system
US7133615B2 (en) Two-optical signal generator for generating two optical signals having adjustable optical frequency difference
US5917179A (en) Brillouin opto-electronic oscillators
US5777778A (en) Multi-Loop opto-electronic microwave oscillator with a wide tuning range
AU702275B2 (en) Method and apparatus of stabilizing a semiconductor laser
Braun et al. Optical microwave generation and transmission experiments in the 12-and 60-GHz region for wireless communications
US4843609A (en) Optical integrated circuit for heterodyne detection
US5761228A (en) Optical clock regenerator
Grosskopf et al. Optical millimeter-wave generation and wireless data transmission using a dual-mode laser
AU576678B2 (en) Optical homodyne detection
CN113078548A (en) Laser frequency stabilizing device and method based on delay difference feedforward
Kimura et al. Progress of coherent optical fibre communication systems
CN110970785A (en) Coherent swept-frequency light source with enhanced Fourier domain injection locking
US5025487A (en) System for transmitting information on interferometrically generated optical carriers
US7269354B1 (en) Superheterodyne photonic receiver using non-serial frequency translation
EP0382417B1 (en) Full duplex lightwave communicating system
JPS6143693B2 (en)
Bhattacharya et al. A method for generation of optical FM signal through injection locking
JP3351212B2 (en) Pulse light source
JPS6143694B2 (en)
GB2144598A (en) Laser telecommunications system
US6266351B1 (en) Generator for producing a high-frequency, low-noise signal
Guzman et al. InP-Si 3 N 4 Dual-Laser Hybrid Source-Based Wireless Mm-wave Communication Link Using Optical Injection Locking
JP3575653B2 (en) Ultra-fast synchronous pulse light source
Logan Jr Photonic radio frequency synthesizer