JPS6143559B2 - - Google Patents

Info

Publication number
JPS6143559B2
JPS6143559B2 JP56196794A JP19679481A JPS6143559B2 JP S6143559 B2 JPS6143559 B2 JP S6143559B2 JP 56196794 A JP56196794 A JP 56196794A JP 19679481 A JP19679481 A JP 19679481A JP S6143559 B2 JPS6143559 B2 JP S6143559B2
Authority
JP
Japan
Prior art keywords
blade
stator
blades
stator member
view
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56196794A
Other languages
Japanese (ja)
Other versions
JPS5898696A (en
Inventor
Yasuo Minoshima
Kazuaki Nakamori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19679481A priority Critical patent/JPS5898696A/en
Publication of JPS5898696A publication Critical patent/JPS5898696A/en
Publication of JPS6143559B2 publication Critical patent/JPS6143559B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/52Casings; Connections of working fluid for axial pumps
    • F04D29/54Fluid-guiding means, e.g. diffusers
    • F04D29/541Specially adapted for elastic fluid pumps
    • F04D29/542Bladed diffusers

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

【発明の詳細な説明】 本発明は、真空ポンプの一種である、分子ポン
プにおけるステータ(静翼)の構造に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to the structure of a stator (stationary vane) in a molecular pump, which is a type of vacuum pump.

従来のステータの構造を第1図ないし第4図に
より説明する。第1図は縦型分子ポンプの縦断面
図、第2図は組合せ翼の断面図、第3図および第
4図は翼形状による最大排気速度効率および最大
圧縮比の関係を示すグラフ、第5図は従来のステ
ータの一例を示す平面図、第6図は第5図のA部
から見た斜視図、第7図は第5図のB視図であ
る。第1図において、分子ポンプの構造は、ロー
タ2(回転翼)およびモータ5で駆動部を構成
し、該ロータ2の翼間にステータ3(静翼)を挿
入し、該ステータ3の固定用としてスペーサーリ
ング4を設け、該スペーサーリング4の外側に外
筒ケース1を設け全体を固定している。流体は上
方より侵入し下方に排気される。次に第2図にお
いて、ロータ2とステータ3の関係は、それぞれ
の翼の角度が互いに逆になるように交互に設けて
ある。そして、分子ポンプの性能は、ピツチコー
ド比S0=a/b、と翼角αの関係で決定される。
したがつて、分子ポンプの翼の設計法としては、
数段の翼列を設ける場合、吸気口側では排気速度
効率を大きくとり分子の通り抜けを良くし、排気
口側では排気速度効率よりも圧縮比を大きくし真
空度を上げるようにするのが普通である。このた
め、第3図および第4図に示すように排気速度効
率を良くするにはS0=1.0付近を選定し、圧縮比
を良くするにはS0=0.5付近を選定すれば良いこ
とがわかる。また、翼角度としては、排気速度効
率を大きくするにはα=30〜40゜、圧縮比を大き
くするにはα=10〜20゜とするのが有効であるな
ど周知の事実となつている。したがつて、翼の配
列は吸気口側S0=1.0、翼角α=30〜40゜から
除々に形状を変化させ、排気口側S0=0.5、翼角
α=10〜20゜にする方が効果的である。第4図に
一般的なステータの形状を示しているが、これ
は、ステータ部材である一枚円板に切れ目を入れ
これを曲げて翼を形成しているものである。機械
加工で行なえば自由なピツチコード比S0、翼角α
にて製作することができる。しかし、前記ステー
タ3においては、板厚が薄く、翼枚数が多いた
め、ピツチコード比S0および翼角αを変化させな
がら加工する場合、作業が困難であり、かつ、多
大な時間を要し、高価なものとなる。したがつ
て、板を曲げて製作するのが良好な手段である
が、前述の如くS0およびαを除々に変化させてい
た場合、1枚板からの形成であるためどうしても
限界があり、最終的なS0=0.5、α=10〜20゜と
いう値のものを製作するのは不可能であるという
欠点があつた。また、翼枚数を多くとる場合、ピ
ツチコード比S0、翼角αに関係なく作業的に困難
であるという欠点があつた。
The structure of a conventional stator will be explained with reference to FIGS. 1 to 4. Figure 1 is a longitudinal sectional view of a vertical molecular pump, Figure 2 is a sectional view of a combination blade, Figures 3 and 4 are graphs showing the relationship between maximum pumping speed efficiency and maximum compression ratio depending on blade shape, and Figure 5 The figure is a plan view showing an example of a conventional stator, FIG. 6 is a perspective view as seen from section A in FIG. 5, and FIG. 7 is a perspective view from B in FIG. 5. In FIG. 1, the structure of the molecular pump is such that a rotor 2 (rotary blades) and a motor 5 constitute a driving section, a stator 3 (stator blades) is inserted between the blades of the rotor 2, and a stator 3 is fixed. A spacer ring 4 is provided, and an outer cylindrical case 1 is provided outside the spacer ring 4 to fix the entire body. Fluid enters from above and is exhausted from below. Next, in FIG. 2, the relationship between the rotor 2 and the stator 3 is alternately provided so that the angles of the respective blades are opposite to each other. The performance of the molecular pump is determined by the relationship between the pitch chord ratio S 0 =a/b and the blade angle α.
Therefore, the design method for molecular pump blades is as follows:
When installing several stages of blades, it is common practice to increase the exhaust speed efficiency on the intake side to improve the passage of molecules, and on the exhaust side to increase the compression ratio than the exhaust speed efficiency to increase the degree of vacuum. It is. Therefore, as shown in Figures 3 and 4, it is recommended to select S 0 = around 1.0 to improve pumping speed efficiency, and to choose S 0 = around 0.5 to improve compression ratio. Recognize. Additionally, it is a well-known fact that it is effective to set the blade angle to α = 30 to 40 degrees to increase exhaust velocity efficiency, and to α = 10 to 20 degrees to increase compression ratio. . Therefore, the shape of the blade arrangement is gradually changed from the intake side S 0 = 1.0 and blade angle α = 30 to 40°, and the exhaust port side S 0 = 0.5 and blade angle α = 10 to 20°. It is more effective. FIG. 4 shows the shape of a general stator, in which blades are formed by making cuts in a single disc serving as the stator member and bending the disc. Pitch cord ratio S 0 and blade angle α can be adjusted freely by machining.
It can be manufactured at. However, since the stator 3 has a thin plate and a large number of blades, it is difficult and time consuming to process the stator while changing the pitch cord ratio S 0 and the blade angle α. It becomes expensive. Therefore, a good method is to bend the plate, but if S 0 and α are gradually changed as described above, there is a limit because it is made from a single plate, and the final It has the disadvantage that it is impossible to manufacture one with a typical value of S 0 =0.5 and α = 10 to 20°. Furthermore, when using a large number of blades, there is a drawback that the work is difficult regardless of the pitch cord ratio S 0 and the blade angle α.

上記の点に鑑み本発明は、板曲げ作業で製作す
るステータ翼において、所定のピツチコード比S0
および翼角αが容易に形成できるステータの構造
とすることを目的としたものである。
In view of the above points, the present invention provides stator blades manufactured by plate bending work with a predetermined pitch cord ratio S 0
The object of the present invention is to provide a stator structure that allows the blade angle α to be easily formed.

本発明は、分子ポンプのステータを、一方のス
テータ部材に同一翼角並びに翼間隔で一方の翼を
曲げ成形し、他方のステータ部材に一方のステー
タ部材の一方の翼と同一翼角並びに翼間隔で他方
の翼を曲げ成形し、一方のステータ部材の一方の
翼の間に他方のステータ部材の他方の翼を配設し
て構成したことで、分子ポンプのステータの製作
時における所定のピツチコード比及び翼角を容易
に形成できるようにしたものである。
In the present invention, the stator of a molecular pump is formed by bending one stator member with the same blade angle and blade spacing, and forming the other stator member with the same blade angle and blade spacing as one of the blades of the other stator member. By bending and forming the other blade and arranging the other blade of the other stator member between the blades of the other stator member, the predetermined pitch cord ratio when manufacturing the stator of the molecular pump can be achieved. and the blade angle can be easily formed.

以下、本発明による一実施例を第8図ないし第
12図により説明する。第8図および第9図に示
すように、まず、母材となる円板に翼の切欠きを
入れる。すなわち、対応する円板で翼の根元とな
る位置に互いに反対方向となるように斜線で示す
ような切欠きを入れ、第5図に示すステータと同
様に、同一方向に板曲げを行ない翼形状を構成し
た一方のステータ部材6および他方のステータ部
材7を製作する。即ち、一方のステータ部材6に
おいて、同一翼角並びに翼間隔で一方の翼が曲げ
成形され、他方のステータ部材7において、一方
のステータ部材6での一方の翼と同一翼角並びに
翼間隔で他方の翼が曲げ形成されている。次に第
10図に示すように、一方のステータ部材6およ
び他方のステータ部材7を根元の切欠きが向い合
うように重ね合せ、一方のステータ部材6および
他方のステータ部材7を互いに回転させて、第1
1図および第12図に示すように組合せステータ
を形成する。この場合、一方のステータ部材6の
一方の翼の間に他方のステータ部材7の他方の翼
が配設される。本実施例のようにすることによ
り、一方のステータ部材6の一方の翼と該翼と相
隣り合う他方のステータ部材7の他方の翼との間
隔つまり翼ピツチ2を従来の1枚ものの半分にす
ることができるため、圧縮比を高めるために必要
な理論的なピツチコード比S0の値も簡単に得るこ
とが出来る。また、ステータ部材6,7も組合せ
ステータを形成することにより、ステータ部材1
枚毎の翼枚数も従来のものに比較し少なくなるた
めに、板曲げ作業も容易となるという効果があ
る。また、翼の根元に切欠きを入れることによる
強度低下については、本品は静翼であるため強度
的には全く問題とならない。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS. 8 to 12. As shown in FIGS. 8 and 9, first, a notch for the wing is made in a disc serving as a base material. In other words, cutouts are made in the corresponding discs at positions that will become the blade roots in opposite directions as shown by diagonal lines, and the plates are bent in the same direction in the same way as the stator shown in Figure 5 to create the blade shape. One stator member 6 and the other stator member 7 are manufactured. That is, in one stator member 6, one blade is bent and formed with the same blade angle and blade spacing, and in the other stator member 7, the other blade is bent and formed with the same blade angle and blade spacing as one blade in one stator member 6. The wings are formed by bending. Next, as shown in FIG. 10, one stator member 6 and the other stator member 7 are placed one on top of the other so that the notches at the bases face each other, and one stator member 6 and the other stator member 7 are rotated relative to each other. , 1st
A combined stator is formed as shown in FIGS. 1 and 12. In this case, the other wing of the other stator member 7 is arranged between one wing of the one stator member 6 . By doing as in this embodiment, the distance between one blade of one stator member 6 and the other blade of the other stator member 7 adjacent to this blade, that is, the blade pitch 2, is reduced to half of the conventional one-piece blade. Therefore, it is possible to easily obtain the value of the theoretical pitch code ratio S 0 necessary to increase the compression ratio. Furthermore, the stator members 6 and 7 can also form a combined stator, so that the stator member 1
Since the number of blades per blade is smaller than that of conventional blades, it has the effect of making plate bending work easier. Furthermore, the reduction in strength due to the notch at the base of the blade is not a problem at all since this product is a stationary blade.

以上、本発明によれば、各ステータ部材での翼
の枚数が少なくなるとともにその間隔を広いた
め、製作が容易となり、所定のピツチコード比お
よび翼角を形成できる。
As described above, according to the present invention, the number of blades in each stator member is reduced and the spacing between the blades is wide, making it easy to manufacture and making it possible to form a predetermined pitch cord ratio and blade angle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は縦型分子ポンプの縦断面図、第2図は
組合せ翼の断面図、第3図おび第4図は翼形状に
よる最大排気速度効率および最大圧縮比を示すグ
ラフ、第5図は従来のステータの平面図、第6図
は第5図のA部からの斜視図、第7図は第5図の
B視図、第8図および第9図は本発明によるステ
ータの一実施例を構成する各ステータ部材の平面
図、第10図は本発明によるステータの一実施例
の部分拡大平面図、第11図は第10図のC部か
ら斜視図、第12図は第10図のD視図である。 1…外筒ケース、2…ロータ、3…ステータ、
6…一方のステータ部材、7…他方のステータ部
材、4…スペーサリング、5…モータ。
Figure 1 is a longitudinal sectional view of a vertical molecular pump, Figure 2 is a sectional view of a combination blade, Figures 3 and 4 are graphs showing the maximum pumping speed efficiency and maximum compression ratio depending on the blade shape, and Figure 5 is a graph showing the maximum pumping speed efficiency and maximum compression ratio depending on the blade shape. A plan view of a conventional stator, FIG. 6 is a perspective view from part A in FIG. 5, FIG. 7 is a view from B in FIG. 5, and FIGS. 8 and 9 are an embodiment of the stator according to the present invention. FIG. 10 is a partially enlarged plan view of an embodiment of the stator according to the present invention, FIG. 11 is a perspective view taken from section C in FIG. 10, and FIG. This is a view from D. 1... Outer cylinder case, 2... Rotor, 3... Stator,
6... One stator member, 7... Other stator member, 4... Spacer ring, 5... Motor.

Claims (1)

【特許請求の範囲】[Claims] 1 一方のステータ部材に同一翼角並びに翼間隔
で一方の翼を曲げ成形し、他方のステータ部材に
前記翼と同一翼角並びに翼間隔で他方の翼を曲げ
成形し、前記一方の翼の間に前記他方の翼を配設
して構成したことを特徴とする分子ポンプのステ
ータ。
1 Bending and forming one blade on one stator member with the same blade angle and blade spacing, bending and forming the other blade on the other stator member with the same blade angle and blade spacing, and forming a blade between the one blade. A stator for a molecular pump, characterized in that the other blade is disposed on the stator of the molecular pump.
JP19679481A 1981-12-09 1981-12-09 Stator for molecular pump Granted JPS5898696A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19679481A JPS5898696A (en) 1981-12-09 1981-12-09 Stator for molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19679481A JPS5898696A (en) 1981-12-09 1981-12-09 Stator for molecular pump

Publications (2)

Publication Number Publication Date
JPS5898696A JPS5898696A (en) 1983-06-11
JPS6143559B2 true JPS6143559B2 (en) 1986-09-27

Family

ID=16363754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19679481A Granted JPS5898696A (en) 1981-12-09 1981-12-09 Stator for molecular pump

Country Status (1)

Country Link
JP (1) JPS5898696A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133953U (en) * 1989-04-15 1990-11-07

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60143192U (en) * 1984-03-02 1985-09-21 セイコー精機株式会社 Turbo molecular pump blade shape
JPS62258187A (en) * 1986-05-02 1987-11-10 Mitsubishi Heavy Ind Ltd Method of forming stationary blade plate for turbo molecule pump
DE10052637B4 (en) * 2000-10-24 2021-03-11 Pfeiffer Vacuum Gmbh 02/16/2001 Discs for a turbo molecular pump
DE102004012713A1 (en) * 2004-03-16 2005-10-06 Pfeiffer Vacuum Gmbh Turbo molecular pump
GB2440947A (en) * 2006-08-16 2008-02-20 Boc Group Plc A stator blade made of at least two stacked sheets
JP6241222B2 (en) * 2013-01-22 2017-12-06 株式会社島津製作所 Vacuum pump
JP7052752B2 (en) * 2019-01-30 2022-04-12 株式会社島津製作所 Turbo molecular pump

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5849434Y2 (en) * 1978-12-28 1983-11-11 株式会社荏原製作所 Impeller for vortex pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02133953U (en) * 1989-04-15 1990-11-07

Also Published As

Publication number Publication date
JPS5898696A (en) 1983-06-11

Similar Documents

Publication Publication Date Title
US5286168A (en) Freestanding mixed tuned blade
US20090127961A1 (en) Permanent magnet rotor
JPS6143559B2 (en)
US3826588A (en) Turbomolecular vacuum pump
JP2807884B2 (en) Rotor assembly
US6227795B1 (en) Contoured propulsion blade and a device incorporating same
JPS649475B2 (en)
KR890004933B1 (en) Turbo molecular pump
JP2005519236A (en) Method of manufacturing a monolithic rotor for a friction vacuum pump and rotor manufactured by the method
EP0173049B1 (en) Improved vane slots for a fluid power converter
JPH09250493A (en) Cross flow fan
JP4056725B2 (en) Turbo molecular pump disc
JP4527966B2 (en) Molecular pump
JPS6361799A (en) Turbo molecular pump
JPS6332957Y2 (en)
US7192262B2 (en) Twin-shaft vacuum pump and method of forming same
JPH0988504A (en) Compressor and gas turbine
JPS63297793A (en) Vacuum pump
JPH0452879B2 (en)
JPH01170800A (en) Multi-vane fan
JPS6218718Y2 (en)
JPS6223599A (en) Fan wheel of blower
JPS61254058A (en) Stepping motor
JPH0425401B2 (en)
US4905471A (en) Blade fixing mechanism for torque converter