JPS6143408B2 - - Google Patents

Info

Publication number
JPS6143408B2
JPS6143408B2 JP55115487A JP11548780A JPS6143408B2 JP S6143408 B2 JPS6143408 B2 JP S6143408B2 JP 55115487 A JP55115487 A JP 55115487A JP 11548780 A JP11548780 A JP 11548780A JP S6143408 B2 JPS6143408 B2 JP S6143408B2
Authority
JP
Japan
Prior art keywords
cast iron
graphite
caterpillar
graphite cast
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55115487A
Other languages
Japanese (ja)
Other versions
JPS5741307A (en
Inventor
Takashi Ooguro
Shuji Ono
Keiichi Iwamoto
Hiroshi Sakaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11548780A priority Critical patent/JPS5741307A/en
Publication of JPS5741307A publication Critical patent/JPS5741307A/en
Publication of JPS6143408B2 publication Critical patent/JPS6143408B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は良好な鋳造性と機械的性質を有する芋
虫状黒鉛鋳鉄の製造方法に関するものである。 一般に鋳鉄は片状黒鉛鋳鉄と球状黒鉛鋳鉄とが
実用されている。片状黒鉛鋳鉄は片状黒鉛を有
し、鋳造性は良いが延性の低いのが欠点である。
一方、球状黒鉛鋳鉄は球状黒鉛を有し、優れた機
械的性質特に良好な延性を示すが、流動性が悪く
引けの傾向も強いなど鋳造性は片状黒鉛鋳鉄に比
し劣る。 片状黒鉛および球状黒鉛のほかに鋳鉄中の黒鉛
として他の形状もあることは以前から知られてい
た。すなわち、球状黒鉛鋳鉄の製造が不完全な場
合に芋虫状黒鉛と呼ばれる黒鉛が発生することが
観察されていた。この黒鉛は球状黒鉛鋳鉄を製造
する際にマグネシウムの量が少な過ぎたか、また
は球状黒鉛の形成を害する元素が存在していた場
合に発生する。従つて、長い間この黒鉛は有害だ
と考えられていた。ところが最近、この芋虫状黒
鉛鋳鉄は球状黒鉛鋳鉄のもつ鋳造技術上の欠点が
ほとんどなく、機械的性質は、片状黒鉛鋳鉄と球
状黒鉛鋳鉄の中間にあることが分つた。 芋虫状黒鉛鋳鉄の製造方法として少量のマグネ
シウムを添加して製造する方法やマグネシウム―
チタン―カルシウムを同時に添加して製造する方
法が提唱されているがいずれも添加時に発熱・発
煙反応を伴なうため、その対策処置をとる必要が
ある。 一方、ミツシユメタルを添加して製造する方法
は上記のような発熱、発煙反応を行さないため工
業的に容易に芋虫状黒鉛鋳鉄を製造できるが、セ
メンタイトの形成を促進させる欠点がある。 本発明は、このミツシユメタルを添加すること
により芋虫状黒鉛鋳鉄を製造する方法であるが、
本発明においては鋳鉄溶湯成分を調整することに
よりミツシユメタル添加に伴うセメンタイトの形
成を防止して機械的性質の良好な芋虫状黒鉛鋳鉄
を製造するものである。 一般に球状黒鉛鋳鉄の製造においては黒鉛の球
状化は過共晶成分の場合が容易であるが、初晶球
状黒鉛は比重が小さいために、凝固進行中に鋳物
の上部に浮上し、いわゆるドロスの主成分となる
ので、あまり増すことができず、通常、重量比炭
素当量で4.1〜4.6%が使用される。 しかし、ミツシユメタルを添加すると溶湯は過
冷され黒鉛の晶出時期が遅れるため、過共晶成分
でもドロスの生成が抑制されると同時にミツシユ
メタルの主要成分であるセリウムによるセメンタ
イトの形成傾向も抑制することが可能である。 そこで、本発明では重量比で炭素当量4.6〜5.5
%の過共晶成分鋳鉄溶湯に黒鉛を芋虫状化するミ
ツシユメタルとジルコニウムを複合添加すること
によりセメンタイトの形成を抑制し、これにもと
づき、強度と延性を改善した。 すなわち、本発明の芋虫状黒鉛鋳鉄の製造方法
は以下のとおりである。 (1)炭素当量:4.6〜5.5wt% 硫黄 <0.035wt% である鋳鉄溶湯に ミツシユメタル:0.1〜0.5wt% ジルコニウム:0.01〜0.5wt% を複合添加する。 次に、本発明の製造方法において成分量及び添
加量を上記のように限定した理由を以下に示す。 炭素当量:4.6〜5.5wt% 炭素当量が4.6wt%未満では黒鉛が芋虫状とな
らず片状のままで、良好な機械的性質を有するこ
とが望めず、5.5wt%を超えるとドロスの浮上が
多くなり工業的な製造が困難となる。 硫黄<0.035wt% 硫黄は黒鉛が芋虫状となるのを妨害する元素
で、0.035wt%を超えて含有するとその分だけミ
ツシユメタルを多量に添加する必要がある。これ
は製品コストが高くなるだけでなく多量の硫化物
を形成し清浄度の低いしたがつて機械的性質の悪
い鋳鉄を製造することになる。 ミツシユメタル:0.1〜0.5wt% ミツシユメタル0.1wt%未満では、黒鉛の芋虫
状化が望めず、0.5wt%を超えるとセメンタイト
の形成傾向が強くなる。 ジルコニウム:0.01〜0.5wt% ジルコニウムは、ミツシユメタルと複合添加す
ることにより、溶鉄の脱酸脱硫を促進して鋳鉄の
延性を確保し、更にセメンタイトの形成を抑制し
つつ黒鉛を芋虫状化することにより、すぐれた引
張強度と延性を得ることができる。しかしなが
ら、0.01wt%未満では脱酸脱硫効果が不充分であ
り、また、0.5wt%を超えて添加しても上記効果
が飽和し、ジルコニウムの価格を考えると経済的
でない。 最後に、本発明の実施例を第1表に示す。第1
表から、本発明の製造方法で製造した芋虫状黒鉛
鋳鉄の機械的性質(引張強さ、伸び)は従来の片
状黒鉛鋳鉄と球状黒鉛鋳鉄の中間にあることがわ
かる。また、比較例1,2と実施例1,2との比
較から、ジルコニウムの添加は引張強さをより向
上させることが明白である。 本発明は以上の如く、鋳鉄溶湯の炭素当量、硫
黄量を特定の組成に限定し、更に特定組成のミツ
シユメタル及びジルコニウムを複合添加すること
により、発熱・発煙反応をすることなく、またす
ぐれた鋳造性を保持しながら、しかも、セメンタ
イトの形成を抑制した高強度高延性の芋虫状黒鉛
鋳鉄を、特別な装置を用いずに容易に製造できる
方法である。
The present invention relates to a method for producing caterpillar graphite cast iron having good castability and mechanical properties. Generally, flake graphite cast iron and spheroidal graphite cast iron are used as cast irons. Flaky graphite cast iron contains flaky graphite and has good castability, but has the disadvantage of low ductility.
On the other hand, spheroidal graphite cast iron contains spheroidal graphite and exhibits excellent mechanical properties, particularly good ductility, but its castability is inferior to flaky graphite cast iron, such as poor fluidity and a strong tendency to shrink. In addition to flake graphite and nodular graphite, other forms of graphite in cast iron have long been known. That is, it has been observed that graphite called caterpillar graphite is generated when the production of spheroidal graphite cast iron is incomplete. This graphite occurs when the amount of magnesium is too low when producing spheroidal graphite cast iron, or when elements are present that inhibit the formation of spheroidal graphite. Therefore, for a long time this graphite was considered to be harmful. However, it has recently been discovered that this caterpillar graphite cast iron has almost no defects in casting technology that spheroidal graphite cast iron has, and its mechanical properties are between those of flaky graphite cast iron and spheroidal graphite cast iron. A method of manufacturing caterpillar graphite cast iron by adding a small amount of magnesium, and a method of manufacturing by adding a small amount of magnesium.
A manufacturing method has been proposed in which titanium and calcium are added at the same time, but both methods involve exothermic and smoke-emitting reactions upon addition, so countermeasures must be taken to prevent this. On the other hand, the method of manufacturing by adding Mitsushimetal does not involve the above-mentioned exothermic and smoke-emitting reactions, so it is possible to industrially easily manufacture caterpillar-shaped graphite cast iron, but it has the disadvantage of promoting the formation of cementite. The present invention is a method for producing caterpillar graphite cast iron by adding this Mitsushi metal,
In the present invention, the formation of cementite accompanying the addition of honey metal is prevented by adjusting the components of molten cast iron, thereby producing caterpillar-like graphite cast iron with good mechanical properties. In general, in the production of spheroidal graphite cast iron, it is easy to spheroidize graphite in the case of hypereutectic components, but because primary spheroidal graphite has a low specific gravity, it floats to the top of the casting during solidification, forming so-called dross. Since it is the main component, it cannot be increased much, and usually 4.1 to 4.6% of carbon equivalent by weight is used. However, when Mitsushi Metal is added, the molten metal is supercooled and the crystallization of graphite is delayed, so the hypereutectic component also suppresses the formation of dross and at the same time suppresses the tendency of cementite formation due to cerium, which is the main component of Mitsushi Metal. is possible. Therefore, in the present invention, the carbon equivalent is 4.6 to 5.5 by weight.
The formation of cementite was suppressed by adding zirconium and Mitsushimetal, which transforms graphite into caterpillar-like forms, to molten cast iron with a hypereutectic component of 50%, and based on this, strength and ductility were improved. That is, the method for manufacturing the caterpillar-like graphite cast iron of the present invention is as follows. (1) Mitsushi metal: 0.1-0.5 wt% and zirconium: 0.01-0.5 wt% are added in combination to molten cast iron with carbon equivalent: 4.6-5.5 wt% and sulfur <0.035 wt%. Next, the reason why the amount of components and the amount added in the manufacturing method of the present invention are limited as described above will be explained below. Carbon equivalent: 4.6 to 5.5wt% If the carbon equivalent is less than 4.6wt%, the graphite will not become caterpillar-like but will remain flaky, and it cannot be expected to have good mechanical properties, and if it exceeds 5.5wt%, dross will float. This makes industrial production difficult. Sulfur <0.035wt% Sulfur is an element that prevents graphite from becoming caterpillar-like, and if the content exceeds 0.035wt%, it is necessary to add a correspondingly large amount of Mitsushimetal. This not only increases the cost of the product, but also forms a large amount of sulfides and produces a cast iron with poor cleanliness and therefore poor mechanical properties. Mitsushi Metal: 0.1 to 0.5 wt% If Mitsushi Metal is less than 0.1 wt%, it is impossible to expect graphite to become caterpillar-like, and if it exceeds 0.5 wt%, there is a strong tendency to form cementite. Zirconium: 0.01-0.5wt% Zirconium promotes the deoxidation and desulfurization of molten iron by adding it in combination with Mitsushi Metal to ensure the ductility of cast iron, and also suppresses the formation of cementite while turning graphite into a caterpillar shape. , excellent tensile strength and ductility can be obtained. However, if it is less than 0.01 wt%, the deoxidizing and desulfurizing effect is insufficient, and if it is added in excess of 0.5 wt%, the above effect is saturated, which is not economical considering the price of zirconium. Finally, examples of the present invention are shown in Table 1. 1st
From the table, it can be seen that the mechanical properties (tensile strength, elongation) of the caterpillar graphite cast iron produced by the production method of the present invention are between those of conventional flaky graphite cast iron and spheroidal graphite cast iron. Further, from a comparison between Comparative Examples 1 and 2 and Examples 1 and 2, it is clear that the addition of zirconium further improves the tensile strength. As described above, the present invention limits the carbon equivalent and sulfur content of molten cast iron to a specific composition, and furthermore, by adding Mitsushi metal and zirconium of a specific composition, it is possible to achieve excellent casting without causing exothermic or smoking reactions. This is a method that can easily produce high-strength, high-ductility caterpillar-like graphite cast iron that maintains its properties and suppresses the formation of cementite without using special equipment.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 炭素当量4.6〜5.5wt%、硫黄0.035wt%、以
下である鋳鉄溶湯にミツシユメタル0.1〜0.5wt%
とジルコニウム0.01〜0.5wt%を添加することを
特徴とする芋虫状黒鉛鋳鉄の製造方法。
1 Mitsushi Metal 0.1 to 0.5 wt% to molten cast iron with carbon equivalent of 4.6 to 5.5 wt%, sulfur of 0.035 wt%, or less.
A method for producing caterpillar-like graphite cast iron characterized by adding 0.01 to 0.5 wt% of zirconium.
JP11548780A 1980-08-22 1980-08-22 Production of wormlike graphite cast iron Granted JPS5741307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11548780A JPS5741307A (en) 1980-08-22 1980-08-22 Production of wormlike graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11548780A JPS5741307A (en) 1980-08-22 1980-08-22 Production of wormlike graphite cast iron

Publications (2)

Publication Number Publication Date
JPS5741307A JPS5741307A (en) 1982-03-08
JPS6143408B2 true JPS6143408B2 (en) 1986-09-27

Family

ID=14663730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11548780A Granted JPS5741307A (en) 1980-08-22 1980-08-22 Production of wormlike graphite cast iron

Country Status (1)

Country Link
JP (1) JPS5741307A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383920A (en) * 1976-12-29 1978-07-24 Takaoka Kogyo Kk Method of producing spheroidal graphite cast iron

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5383920A (en) * 1976-12-29 1978-07-24 Takaoka Kogyo Kk Method of producing spheroidal graphite cast iron

Also Published As

Publication number Publication date
JPS5741307A (en) 1982-03-08

Similar Documents

Publication Publication Date Title
US2750284A (en) Process for producing nodular graphite iron
US2792300A (en) Process for the production of nodular iron
US4227924A (en) Process for the production of vermicular cast iron
US2643949A (en) Method for the production of iron and steel
US2683662A (en) Manufacture of iron and steel and products obtained
US3997338A (en) Gray cast iron
JPS6143408B2 (en)
US3177071A (en) Process for the manufacture of ironsilicon magnesium prealloys
US20240167126A1 (en) Spheroidal Graphite Cast Iron, Method for Manufacturing Spheroidal Graphite Cast Iron, and Spheroidizing Treatment Agent
US4430123A (en) Production of vermicular graphite cast iron
US3328164A (en) Prealloy for the treatment of iron and steel melts
US2841488A (en) Nodular cast iron and process of making same
SU872563A1 (en) Method of modifying wrought iron
US2814559A (en) Process for the production of nodular cast iron
US2948605A (en) Nodular iron
US2841489A (en) Nodular cast iron and process of making same
US1540006A (en) Metallic alloy
US2683663A (en) Stainless steel and method of production
JPS63483B2 (en)
JPS6111306B2 (en)
US3125442A (en) Buctile iron casting
JPH0454723B2 (en)
JP3797818B2 (en) Graphite spheroidized alloy for cast iron production
SU827555A1 (en) Method of modifying wrought iron
JPS591766B2 (en) Spheroidal graphite cast iron inoculation alloy