JPS6143316B2 - - Google Patents

Info

Publication number
JPS6143316B2
JPS6143316B2 JP9000779A JP9000779A JPS6143316B2 JP S6143316 B2 JPS6143316 B2 JP S6143316B2 JP 9000779 A JP9000779 A JP 9000779A JP 9000779 A JP9000779 A JP 9000779A JP S6143316 B2 JPS6143316 B2 JP S6143316B2
Authority
JP
Japan
Prior art keywords
raw materials
less
impact resistance
steam
carbon fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9000779A
Other languages
Japanese (ja)
Other versions
JPS5614469A (en
Inventor
Ichiro Doi
Akira Iwata
Akira Yamanashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP9000779A priority Critical patent/JPS5614469A/en
Publication of JPS5614469A publication Critical patent/JPS5614469A/en
Publication of JPS6143316B2 publication Critical patent/JPS6143316B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐衝撃性に優れた水蒸気養生の軽量気
泡コンクリートに関する。 水蒸気養生された軽量気泡コンクリート(以下
ALCと略称する)は、硅砂、硅石等の硅酸質原
料と石灰およびセメント等の石灰質原料を粉砕し
たものに、水を適当な割合に混合し、ついでアル
ミニウム金属粉末等の発泡剤を加えて発泡させ
て、半可塑状としたのちオートクレープに移して
高温高圧水蒸気養生を行つて製造している。この
ようにして製造されたALCは、多数の気孔を有
するため水より軽いという特性を有するが、その
製造過程、製品の輸送又は施工中に受ける衝撃や
局部集中荷重等によつて欠け易いと云う欠点があ
る。 建築材料として用いられるこれらALCの欠け
を防止するため従来は、ALCの表層部にガラス
繊維等の繊維物質を合成樹脂系のバインダー等を
用いて接着し補強する方法が提案されている。 しかしながら、これらの繊維物質で上記の補強
をしたものは確かに耐衝撃性を向上させることは
できるが、補強材は極く表層部にのみ固定されて
いるにすぎないため、その効果は期待されるほど
は得られず、さらに耐衝撃性能の向上したものが
切望されているのが現状である。 本発明は上記従来法の欠点を解消し、耐衝撃性
の向上したALCを提供することを目的とする。
この目的を達成するため本発明は、ALCの原料
調合物に直径20μ以下、長さ100mm以下好ましく
は3mm以上100mm以下の炭素繊維を上記調合物の
全固形物に対し0.1〜3.0重量%添加混合し、のち
定法によつてオートクレーブ処理し耐衝撃性に優
れたALCとするものである。 以下本発明の概要について説明する。 本発明のALCを製造する際に混入させる繊維
としては、本発明で使用する炭素繊維のほかに
種々のものが考えられる。例えば石綿繊維、ガラ
ス繊維又は耐アルカリ性ガラス繊維等であるが、
前者の繊維のように“こし”の強い繊維は、
ALC製造の発泡の過程で独立性の有る球形の気
泡形成が阻害され、そのため強度の低下をきたし
耐衝撃性能も低下し、また後者の耐アルカリ性ガ
ラス繊維は石綿繊維のように“こし”は強くなく
可撓性に富み良好な発泡性は得られるが、オート
クレーブ養生の過程でアルカリ水に溶出される等
致命的な欠点がありこれらはともに好ましくな
い。従つて本発明のALC製造に使用される繊維
は炭素繊維に特定される。 本発明に使用される炭素繊維としては、各種の
ものがあり例えばポリアクリルニトリル、レーヨ
ン、ポリエチン、ポリプロピレン、リグニンポバ
ール、ピツチ等の有機繊維を焼成炭化した炭素繊
維、または必要によつてこれをさらに黒鉛化した
所謂黒鉛鉛質繊維等が使用できる。 上記炭素繊維は前述したように、その直径は20
μ以下、長さ100mm以下好ましくは3〜100mmのも
のを原料調合物の全固形物に対して0.1〜3.0重量
%量スラリーに添加混合して使用する。 炭素繊維の直径を20μ以下とするのは、これ以
上になると繊維の可撓性がなくなり、発泡時に無
理なストレスがかかり良好な気泡が形成されない
ためであり、繊維の長さと繊維の添加量を上記と
するのは、繊維の長さが100mm以上、添加量が3.0
重量%以上の場合には、添加した繊維が相互にか
らまりあつて“まりも”状となり、ために均一な
分散が困難で内部欠陥を生じ機械的強度が低下す
るためであり、繊維の長さが3mm以下、添加量が
0.1重量%以下の場合には耐衝撃性の効果が顕著
に現われないからである。 ALCの主要原料配合物である石灰質原料とし
ては、石灰、セメント等、硅酸質原料としては硅
石、硅砂、高炉スラグ、フライアツシユ等、発泡
剤としてはアルミニウム粉末、界面活性剤等一般
的に用いられるものであれば特に制限されること
はない。また原料配合物の撹拌はパドル状ミキサ
ー、プロペラ状ミキサー、ポツト状ミキサー等通
常使用される撹拌機が使用できる。尚炭素繊維を
均一に分散させる目的で、あらかじめ炭素繊維に
界面活性剤を施して添加するか、あいは原料スラ
リーに必要に応じて界面活性剤を添加することも
できる。 発泡成型後のオートクレーブによる蒸気養生
は、例えばゲージ圧10Kg/cm2、温度180℃の飽和
水蒸気による一般的な条件で処理することができ
る。 本発明の軽量気泡コンクリートは、耐衝撃性と
強い相関のある曲げ強度で、その効果を測定した
が実施例に示したように炭素繊維無添加の場合の
約2倍の曲げ強度を示した。 以下実施例について説明する。 実施例 6重量部の生石灰粉末と22重量部のポルトラン
ドセメントと32重量部の硅石粉末と0.05重量部の
アルミニウム粉末と40重量部の水と、前記固形物
の合計量に対し0.1〜3.0重量%の所定の炭素繊維
を添加して混合しスラリー状としたのち、通常の
操作に従つて水蒸気養生軽量気泡コンクリートを
製造した。得られた製品から4×4×16cm試験片
を切り取り耐衝撃性能試験の代りにミハリエス試
験機を用いて曲げ強度を測定した。その結果を第
1表に示す。
The present invention relates to steam-cured lightweight cellular concrete with excellent impact resistance. Steam-cured lightweight aerated concrete (below)
(abbreviated as ALC) is made by mixing silica raw materials such as silica sand and silica stone and calcareous raw materials such as lime and cement in an appropriate proportion with water, and then adding a foaming agent such as aluminum metal powder. It is manufactured by foaming it to a semi-plastic state, then transferring it to an autoclave and curing it with high temperature and high pressure steam. ALC manufactured in this way has a large number of pores and is therefore lighter than water, but it is said to be prone to chipping due to impacts received during the manufacturing process, product transportation, or construction, as well as localized concentrated loads. There are drawbacks. In order to prevent these ALCs used as building materials from chipping, a method has conventionally been proposed in which a fibrous material such as glass fiber is bonded to the surface layer of the ALC using a synthetic resin binder for reinforcement. However, although it is true that impact resistance can be improved by reinforcing these fiber materials, the effect is not expected because the reinforcing material is only fixed to the surface layer. At present, it is not possible to obtain as much impact resistance as possible, and there is a strong desire for something with even better impact resistance. The object of the present invention is to eliminate the drawbacks of the above-mentioned conventional methods and provide an ALC with improved impact resistance.
In order to achieve this object, the present invention adds and mixes carbon fibers with a diameter of 20μ or less and a length of 100mm or less, preferably 3mm or more and 100mm or less, in an amount of 0.1 to 3.0% by weight based on the total solids of the above-mentioned mixture. This is then autoclaved using a standard method to obtain ALC with excellent impact resistance. The outline of the present invention will be explained below. In addition to the carbon fibers used in the present invention, various fibers may be used to mix in the production of the ALC of the present invention. For example, asbestos fiber, glass fiber or alkali-resistant glass fiber, etc.
Fibers with strong stiffness, such as the former type,
In the foaming process of ALC production, the formation of independent spherical cells is inhibited, resulting in a decrease in strength and impact resistance. However, it has fatal drawbacks such as being eluted into alkaline water during the autoclave curing process, both of which are undesirable. Therefore, the fibers used in the production of ALC of the present invention are specified as carbon fibers. There are various types of carbon fibers used in the present invention, such as carbon fibers obtained by firing and carbonizing organic fibers such as polyacrylonitrile, rayon, polyethine, polypropylene, lignin poval, and pituti, or if necessary, further carbon fibers. Graphitized so-called graphite fibers can be used. As mentioned above, the carbon fiber has a diameter of 20
μ or less, with a length of 100 mm or less, preferably 3 to 100 mm, is added and mixed into the slurry in an amount of 0.1 to 3.0% by weight based on the total solids of the raw material mixture. The reason why the diameter of the carbon fiber is set to 20μ or less is that if the diameter is larger than this, the fiber loses its flexibility, which causes excessive stress during foaming and prevents the formation of good bubbles. The above refers to a fiber length of 100 mm or more and an additive amount of 3.0 mm.
If the amount exceeds % by weight, the added fibers will become entangled with each other and form a "marimo" shape, making it difficult to disperse uniformly, causing internal defects and reducing mechanical strength. 3mm or less, the amount added is
This is because if the amount is less than 0.1% by weight, the impact resistance effect will not be noticeable. Calcareous raw materials, which are the main raw material mixtures for ALC, include lime and cement; silica raw materials include silica stone, silica sand, blast furnace slag, and fly ash; foaming agents include aluminum powder and surfactants, etc. There are no particular restrictions as long as it is suitable. For stirring the raw material mixture, commonly used stirrers such as paddle mixers, propeller mixers, pot mixers, etc. can be used. In order to uniformly disperse the carbon fibers, the carbon fibers may be treated with a surfactant beforehand, or a surfactant may be added to the raw material slurry as necessary. Steam curing in an autoclave after foam molding can be carried out under general conditions, for example, using saturated steam at a gauge pressure of 10 Kg/cm 2 and a temperature of 180°C. The lightweight cellular concrete of the present invention had a bending strength that has a strong correlation with impact resistance, and its effect was measured, and as shown in the examples, it showed about twice the bending strength of the case without carbon fibers. Examples will be described below. Example 6 parts by weight of quicklime powder, 22 parts by weight of Portland cement, 32 parts by weight of silica powder, 0.05 parts by weight of aluminum powder, 40 parts by weight of water, 0.1 to 3.0% by weight based on the total amount of the solids. After adding and mixing specified carbon fibers to form a slurry, steam-cured lightweight cellular concrete was manufactured according to normal operations. A 4 x 4 x 16 cm test piece was cut out from the obtained product and its bending strength was measured using a Michalies tester instead of the impact resistance test. The results are shown in Table 1.

【表】【table】

【表】【table】

【表】 第1表より明らかなように本発明の範囲を外れ
た実験No.2、3及びNo.4、No.5以外は何れも曲げ
強度が大巾に向上した。但し繊維の長さが100mm
で添加量の多いものについては、添加した繊維が
マリモ状となつた。尚、製品の嵩比重は0.48〜
0.51であつて何れも添加した繊維による発泡の障
害は認められなかつた。
[Table] As is clear from Table 1, the bending strength was significantly improved in all cases except for Experiments Nos. 2 and 3, and Nos. 4 and 5, which were outside the scope of the present invention. However, the fiber length is 100mm
For those with a large amount added, the added fibers became marimo-like. In addition, the bulk specific gravity of the product is 0.48~
0.51, and no obstruction to foaming was observed due to the added fibers.

Claims (1)

【特許請求の範囲】[Claims] 1 粉末状の硅酸質原料と石灰質原料を主要原料
とする水蒸気養生軽量気泡コンクリートにおい
て、該原料のスラリー混合物に直径20μ以下、長
さ100mm以下下の炭素繊維を全固形物に対して0.1
〜3.0重量%混入させて成る耐衝撃性に優れた水
蒸気養生軽量気泡コンクリート。
1. In steam-cured lightweight cellular concrete whose main raw materials are powdered silica raw materials and calcareous raw materials, carbon fibers with a diameter of 20 μ or less and a length of 100 mm or less are added to the slurry mixture of the raw materials at 0.1% of the total solid content.
Steam-cured lightweight cellular concrete with excellent impact resistance, containing ~3.0% by weight.
JP9000779A 1979-07-16 1979-07-16 Antishock steammcured lightweight foamed concrete Granted JPS5614469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9000779A JPS5614469A (en) 1979-07-16 1979-07-16 Antishock steammcured lightweight foamed concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9000779A JPS5614469A (en) 1979-07-16 1979-07-16 Antishock steammcured lightweight foamed concrete

Publications (2)

Publication Number Publication Date
JPS5614469A JPS5614469A (en) 1981-02-12
JPS6143316B2 true JPS6143316B2 (en) 1986-09-26

Family

ID=13986573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9000779A Granted JPS5614469A (en) 1979-07-16 1979-07-16 Antishock steammcured lightweight foamed concrete

Country Status (1)

Country Link
JP (1) JPS5614469A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS598654A (en) * 1982-06-30 1984-01-17 松下電工株式会社 Manufacture of fiber reinforced cement hardened body
ITRM20070212A1 (en) * 2007-04-16 2008-10-17 Ulderico Ceccarelli AUTOCLAVED CELLULAR CONCRETE WITH REDUCED PHENOMENON OF WITHDRAWAL FOR THE REALIZATION OF BLOCKS AND / OR FLOOR AND / OR REINFORCED AND UNRESTED BUILDING PANELS.

Also Published As

Publication number Publication date
JPS5614469A (en) 1981-02-12

Similar Documents

Publication Publication Date Title
US4824811A (en) Lightweight ceramic material for building purposes, process for the production thereof and the use thereof
US3834918A (en) Raw batch for forming porous architectural structures and method of preparing same
WO2004050582A1 (en) Composition of materials for use in cellular lightweight concrete and methods thereof
US4398960A (en) Concrete mixes
CN111302733A (en) Low-shrinkage creep wet joint ultra-high-strength concrete material and preparation method thereof
AU2002302913A1 (en) Low density calcium silicate hydrate strength accelerant additive for cementitious products
CN109608152A (en) A kind of green strong concrete and its preparation process
CN108516863A (en) A kind of solid waste foam concrete and preparation method thereof
CN104987005A (en) Air-added ceramsite concrete and preparation method thereof
KR102210337B1 (en) High strength lightweight mortar composition comprising pre-wetted artificial lightweight fine aggregate with recycled water of ready mixed concrete
CN107009484A (en) A kind of preparation method of high performance concrete Self-heat-insulation composite building block
CN106747253A (en) A kind of ferronickel slag magnesium phosphate cement mortar and its application
CN111099851A (en) Autoclaving-free admixture for PHC (prestressed high strength concrete) pipe pile and method for preparing PHC pipe pile
US2880100A (en) Methods for the manufacture of light-weight concrete
RU2365561C1 (en) Mass for manufacturing of fire-proof heat-insulating materials and products
JPS6143316B2 (en)
CN108726942A (en) A kind of air-mixed concrete pieces and preparation method thereof
Klak et al. Compressive Strength of Cement Mortar with white cement and limestone
JPS6442345A (en) Slurry for producing fiber reinforced cement mortar or concrete and its production
CN116477911B (en) Preparation method and application of inorganic/organic composite A-level heat-insulating board
JPH0569787B2 (en)
US8435342B2 (en) Concrete composition
SU1161497A1 (en) Method of preparing light concrete mix
JPH05310454A (en) Production of light-weight concrete having low shrinkage
JPS6257600B2 (en)