JPS6143286B2 - - Google Patents

Info

Publication number
JPS6143286B2
JPS6143286B2 JP56177694A JP17769481A JPS6143286B2 JP S6143286 B2 JPS6143286 B2 JP S6143286B2 JP 56177694 A JP56177694 A JP 56177694A JP 17769481 A JP17769481 A JP 17769481A JP S6143286 B2 JPS6143286 B2 JP S6143286B2
Authority
JP
Japan
Prior art keywords
zirconia
solution
hydrogen peroxide
monoclinic
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56177694A
Other languages
Japanese (ja)
Other versions
JPS5879818A (en
Inventor
Etsuro Kato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP17769481A priority Critical patent/JPS5879818A/en
Publication of JPS5879818A publication Critical patent/JPS5879818A/en
Publication of JPS6143286B2 publication Critical patent/JPS6143286B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、含まれるジルコニウムのほとんどが
結晶子30〜100Åの単斜ジルコニアであり、その
2次凝集粒子の平均が500Åを越えないことを特
徴とする結晶質ジルコニアのコロイドゾル及びそ
の製造方法に関する。ここでジルコニアとは純粋
なZrO2は勿論、一般に工業的にジルコニアと呼
ばれる程度の10%以下のHfO2、数%までの
Y2O3、その他の安定化剤や不純物を含有するも
のを含む広い意味でのジルコニアを指す。 従来ジルコニウムの塩水溶液を水熱の加圧下で
120〜300℃で加熱処理することによりジルコニア
のハイドロゾルを得る方法は知られており(米国
特許2984628)、またジルコニウム塩水溶液を長時
間煮沸することによりジルコニア微粒子懸濁液が
得られることも既知である〔エー.クリアフイー
ルド;インオーガーニツク ケミストリー第3巻
146頁1964年、(A.Clearfield;Inorg.Chem.3146
(1964)〕。 しかしながら前者では高圧下高温度でかなり長
時間を要し、また後者は一層長大な熱処理時間が
必要で、何れも工業的な大量生産に適しないい非
能率のものであるばかりか、この生成粒子の特性
は十分のものとはいえず、特に2次凝集粒子の大
きさは通常1000Åを越え、特に前者では2次粒子
の大きさが不均一であり、ほとんど工業的に応用
されなかつた。 本発明者は基礎的研究によつてこのジルコニア
微粒子の生成反応の進行の程度を定量的に決定す
る方法を始めて確立し、この方法によつ種々の条
件下で多数の実験を繰返した結果、遂に過酸化水
素の反応促進効果と超微粒子化効果を発見した。 ジルコニウム塩、例えば0.2モル/の塩化ジ
ルコニル水溶液を還流冷却器付のフラスコ中で
100時間程度煮沸し続けると溶液中のジルコニウ
ムはほぼ完全に単斜型のジルコニア結晶となり、
これは分離乾燥後、真空中400℃の熱処理でもほ
とんど変化せずX線的に単斜型のみを示す。また
ジルコニウム塩水溶液にアンモニア水を加え生成
する水酸化物の沈澱を減圧下で脱水し真空中で
400℃に熱処理したものはX線的に正方型のジル
コニアに結晶化している。従つてある時間加熱処
理した反応過程にある懸濁液にアンモニアを加
え、得られる沈澱を注意深く減圧下で乾燥し、真
空中400℃に熱処理すれば単斜型ジルコニアと正
方型ジルコニアの混合物が得られ、その量比はX
線回析で容易に知ることができ、それは溶液中で
のジルコニアの生成反応の進行の程度を示す正確
な尺度となる。 この方法による実験結果の比較は単に白濁の程
度の比較とは著しく異なる結果を与える。例えば
0.2モル/濃度の塩化ジルコニル水溶液300c.c.を
還流冷却器付のフラスコ中で20時間程度煮沸し続
けると、溶液は完全に白濁するが生成したジルコ
ニア微粒子の量は全体のジルコニアの10%程度に
過ぎないことが分かり、一方同じ0.2モル/濃
度の塩化ジルコニル水溶液を、本発明方法により
予め陰イオン交換樹脂で、Cl-を一部OH-に変え
溶液のPHを2.0とし、さらに過酸化水素水(30
%)10c.c.を加えて300c.c.とした溶液を同じフラス
コ中で同じく20時間煮沸した場合には溶液は薄く
乳濁した程度のゾルとなるのにジルコニア微粒子
の生成量は100%で生成反応が既に完了している
ことを示す。これは本発明方法が加水分解による
結晶質ジルコニアの生成反応を顕著に促進させる
ことおよびその生成物ジルコニアが極めて微細な
超微粒子であることを示すものである。 本発明は上記のように、ジルコニア生成反応の
促進、高効率化による工業生産上の利点と、生成
単斜ジルコニアの超微粒子性に基づく特性上の利
点によつて経済的価値の著しく高いものである
が、これはすべて製造において過酸化水素を出発
ジルコニウム塩水溶液に加えることに起因する。 即ち、本発明は含まれるジルコニウムのほとん
どが結晶子30〜100Åの単斜ジルコニアであり、
その2次凝集粒子の平均径が500Åを越えないこ
とを特徴とする結晶質ジルコニアのコロイドゾル
に関する。更に、その製造方法としては、濃度
0.05〜2.0モル/のジルコニウムの塩水溶液
に、過酸化水素または過酸化水素を生成する化合
物を加え、この溶液を80〜300℃に加熱処理して
水溶液中でジルコニアを単斜型に結晶化させるこ
とを特徴とし、また濃度0.05〜2.0モル/のジ
ルコニウムの塩水溶液をPH1〜3に調製するとと
もに過酸化水素または過酸化水素を生成する化合
物を加え、この溶液を80〜300℃に加熱処理して
水溶液中でジルコニアを単斜型に結晶化させるこ
とを特徴とする。 本発明方法においてジルコニウム塩溶液の濃度
は0.05モル/以下では効率が低すぎ、2.0モ
ル/以上では操作が極めて困難となり、0.05〜
2.0モル/内が実際的な濃度範囲であり、0.2〜
1.0モル/がより好ましい濃度範囲である。ジ
ルコニウムの塩水溶液をPH1〜3に調製すること
により、以下に述べるが加水分解反応がPHを調製
しない時と比較して更に促進される効果がある。 加水分解による結晶質ジルコニア生成のさらに
詳細な進行状況を種々な条件に対し比較して第1
図に示す。 第1図は0.2モル/の濃度の塩化ジルコニル
水溶液300c.c.を還流冷却器付フラスコ中で煮沸し
続けた場合の時間的変化を示し、横軸は煮沸時
間、縦軸は溶液中の全ジルコニウム量に対する生
成単斜ジルコニア微粒子の量のモル比である。こ
の分析方法は先に述べた方法で行つた。また図中
各曲線に付された数字は出発時(煮沸前)の溶液
の条件を示し、陰イオン交換樹脂で調製された溶
液のPH値および過酸化水素水(31%)の添加量
(c.c.)である。 図から明らかなように、従来の方法(図の黒
丸)の単に塩化ジルコニル水溶液を加熱処理だけ
する場合には、ジルコニア微粒子の生成反応を完
了させるのに60時間もの長時間の連続煮沸が必要
となるが、本発明方法(図の白丸)である過酸化
水素添加(0.2M,H2O2―10)によつて顕著な反
応促進効果が認められ、さらにPHを陰イオン交換
樹脂で2.0とし、且つ過酸化水素を添加すること
によつて(0.2M,PH2,H2O2―10)生成反応完
了までの時間は約1/3程度に短縮されることが分
かる。 次ぎに示す表は第1図と同様の実験において添
加する過酸化水素の量と20時間煮沸後の単斜結晶
ジルコニア微粒子生成量を比較したものであり少
量の過酸化水素添加でも既に明瞭な反応促進効果
が認められるが、溶液中ジルコニアのモル比に対
して等モル(1:1)の過酸化水素の添加の場合
に最大の促進効果が現れ、約1/2モル比以上が実
際的であることを示す。また溶液中に過酸化水素
を生成する過酸化ソーダ、過酸化マグネシウム等
も同様の促進効果を与える。
The present invention relates to a colloidal sol of crystalline zirconia, characterized in that most of the zirconium contained is monoclinic zirconia with crystallites of 30 to 100 Å, and the average size of secondary agglomerated particles does not exceed 500 Å, and a method for producing the same. Zirconia here refers to not only pure ZrO 2 but also HfO 2 of less than 10%, which is generally called zirconia industrially, and up to several % of HfO 2 .
It refers to zirconia in a broad sense, including Y 2 O 3 and those containing other stabilizers and impurities. Conventionally, a zirconium salt aqueous solution is heated under hydrothermal pressure.
A method for obtaining a zirconia hydrosol by heat treatment at 120 to 300°C is known (US Pat. No. 2,984,628), and it is also known that a zirconia fine particle suspension can be obtained by boiling an aqueous zirconium salt solution for a long time. There is [A. Clear Field; Inorganic Chemistry Volume 3
146 pages 1964, (A. Clearfield; Inorg. Chem. 3146
(1964)]. However, the former requires a considerable amount of time under high pressure and high temperature, and the latter requires an even longer heat treatment time, which is not only inefficient and unsuitable for industrial mass production, but also produces particles. The characteristics of the former are not satisfactory, and the size of the secondary agglomerated particles usually exceeds 1000 Å, and especially in the former, the size of the secondary particles is non-uniform, so that it has hardly been applied industrially. Through basic research, the present inventor established for the first time a method for quantitatively determining the degree of progress of the zirconia fine particle production reaction, and as a result of repeating a large number of experiments using this method under various conditions, We have finally discovered the reaction acceleration effect and ultrafine particle formation effect of hydrogen peroxide. A zirconium salt, for example, a 0.2 mol/aqueous solution of zirconyl chloride, is added in a flask equipped with a reflux condenser.
After boiling for about 100 hours, the zirconium in the solution almost completely turns into monoclinic zirconia crystals.
After separation and drying, there is almost no change even after heat treatment at 400°C in vacuum, and X-rays show only a monoclinic shape. In addition, aqueous ammonia is added to an aqueous zirconium salt solution, and the resulting hydroxide precipitate is dehydrated under reduced pressure.
The material heat-treated at 400°C has crystallized into square-shaped zirconia according to X-rays. Therefore, if ammonia is added to a suspension in the reaction process that has been heat-treated for a certain period of time, the resulting precipitate is carefully dried under reduced pressure, and heat-treated at 400°C in vacuum, a mixture of monoclinic zirconia and square zirconia can be obtained. and its quantitative ratio is
It can be easily determined by line diffraction, and is an accurate measure of the progress of the zirconia production reaction in solution. Comparison of experimental results using this method yields results that are significantly different from simply comparing the degree of cloudiness. for example
When 300 c.c. of a 0.2 mol/concentration zirconyl chloride aqueous solution is boiled for about 20 hours in a flask equipped with a reflux condenser, the solution becomes completely cloudy, but the amount of zirconia fine particles produced is about 10% of the total zirconia. On the other hand, using the method of the present invention, a zirconyl chloride aqueous solution of the same 0.2 mol/concentration was preliminarily changed from Cl - to OH - to 2.0 using an anion exchange resin, and then hydrogen peroxide was added. Water (30
%) When a solution made to 300 c.c. by adding 10 c.c. was boiled for 20 hours in the same flask, the solution became a thin emulsified sol, but the amount of zirconia fine particles produced was 100%. indicates that the production reaction has already been completed. This shows that the method of the present invention significantly accelerates the reaction for producing crystalline zirconia by hydrolysis, and that the product zirconia is extremely fine ultrafine particles. As described above, the present invention has extremely high economic value due to the advantages in industrial production due to promotion of the zirconia production reaction and high efficiency, and the advantages in characteristics based on the ultrafine particle nature of the monoclinic zirconia produced. However, this is all due to the addition of hydrogen peroxide to the starting aqueous zirconium salt solution during production. That is, in the present invention, most of the zirconium contained is monoclinic zirconia with crystallites of 30 to 100 Å,
This invention relates to a colloidal sol of crystalline zirconia, characterized in that the average diameter of secondary agglomerated particles does not exceed 500 Å. Furthermore, as for its production method, the concentration
Hydrogen peroxide or a compound that generates hydrogen peroxide is added to a 0.05 to 2.0 mole/aqueous solution of zirconium salt, and the solution is heated to 80 to 300°C to crystallize zirconia in a monoclinic form in the aqueous solution. In addition, an aqueous zirconium salt solution with a concentration of 0.05 to 2.0 mol/mole is prepared to a pH of 1 to 3, hydrogen peroxide or a compound that generates hydrogen peroxide is added, and this solution is heated to 80 to 300°C. It is characterized by crystallizing zirconia in a monoclinic form in an aqueous solution. In the method of the present invention, if the concentration of the zirconium salt solution is less than 0.05 mol/L, the efficiency is too low, and if it is 2.0 mol/L or more, the operation becomes extremely difficult.
The practical concentration range is within 2.0 mol/, and 0.2~
A more preferred concentration range is 1.0 mol/. By preparing the zirconium salt aqueous solution to a pH of 1 to 3, there is an effect that the hydrolysis reaction is further accelerated compared to when the pH is not adjusted, as will be described below. The detailed progress of crystalline zirconia formation by hydrolysis was compared under various conditions.
As shown in the figure. Figure 1 shows the change over time when 300 c.c. of a zirconyl chloride aqueous solution with a concentration of 0.2 mol/cm is continuously boiled in a flask equipped with a reflux condenser. This is the molar ratio of the amount of produced monoclinic zirconia fine particles to the amount of zirconium. This analysis method was performed as described above. In addition, the numbers attached to each curve in the figure indicate the conditions of the solution at the time of starting (before boiling), the PH value of the solution prepared with anion exchange resin and the amount of hydrogen peroxide (31%) added (cc ). As is clear from the figure, when simply heating a zirconyl chloride aqueous solution using the conventional method (black circles in the figure), continuous boiling for as long as 60 hours is required to complete the zirconia fine particle production reaction. However, the addition of hydrogen peroxide (0.2M, H 2 O 2 -10), which is the method of the present invention (white circle in the figure), has a remarkable effect of accelerating the reaction, and furthermore, the pH can be adjusted to 2.0 using an anion exchange resin. , and by adding hydrogen peroxide (0.2M, PH2, H 2 O 2 -10), it can be seen that the time to complete the production reaction is shortened to about 1/3. The following table compares the amount of hydrogen peroxide added and the amount of monoclinic zirconia fine particles produced after 20 hours of boiling in an experiment similar to that shown in Figure 1, and shows that even with the addition of a small amount of hydrogen peroxide, a clear reaction was already observed. A promoting effect is observed, but the maximum promoting effect appears when hydrogen peroxide is added in an equimolar ratio (1:1) to the molar ratio of zirconia in the solution, and a molar ratio of about 1/2 or more is practical. Show that something is true. Also, sodium peroxide, magnesium peroxide, etc., which generate hydrogen peroxide in solution, have a similar promoting effect.

【表】 さらに第2図は塩化ジルコニルの濃度の高い場
合での本発明の効果を示したもので、溶液のPH調
製にアンモニア水を加えた例である。第1図と同
様、図中に溶液300c.c.に対するアンモニア水(28
%)の溶液(c.c.)を示した。水溶液中の塩化ジル
コニルの濃度が高くなると本発明の効果は一層顕
著であり、単に溶液を煮沸しただけでは0.5モ
ル/では40時間以上始めて僅かにジルコニアが
生成し始め、0.8モル/以上の濃度のものでは
ジルコニアは全く生成しないが、過酸化水素とア
ンモニアの添加によつて高濃度溶液からでも比較
的短時間に単斜結晶ジルコニア超微粒子が生成す
る。図は溶液中に含有するジルコニウム量と生成
結晶化するジルコニアのモル比であるから、高濃
度のものが如何に高能率となるかが分る。 本発明方法における加熱処理は必ずしも煮沸を
要しない。本発明は100℃以下でも効果がありま
た加圧雰囲気下の高温処理でも同様の効果を示
す。この実際的な処理温度範囲は生成速度および
装置などから80〜300℃である。第3図は100℃以
上での本発明の効果を示すもので、0.2モル/
の塩化ジルコニル溶液を水蒸気加圧下で130℃に
保持した結果である。この場合にも予め過酸化水
素を添加後1時間煮沸した透明液は無添加溶液に
比べ倍以上の生成速度を示す。 本発明により生成する単斜結晶ジルコニア超微
粒子は粉末X線回折のピークの半値幅から求めた
結晶子径がすべて30〜100Åで、唯単に溶液を煮
沸処理または低温で水熱処理した場合とほとんど
同じであるが、電子顕微鏡観察によればその2次
凝集粒子の大きさには顕著な差異がある。すなわ
ち通常はジルコニア生成反応の完了時に2次凝集
粒子の径は1000Å以上となりこれは容易に分割さ
れない強固な結合をなすが、本発明方法による2
次凝集粒子は反応完了時でも500Å以下のであ
る。 本発明で過酸化水素の作用の本質は必ずしも明
らかでないが、生成するジルコニアの2次凝集粒
子の微細化には不可欠であり、従つて過酸化水素
は結晶成長よりもむしろ結晶核生成に効果がある
と考えられる。 またアンモニアあるいはPH調製は2次凝集微粒
子の微細化に直接的に役立たないから核生成より
もむしろ結晶成長促進に効果があると考えられ
る。何れにしても、本発明方法は単斜結晶ジルコ
ニア微粒子の生成を高効率化し、生成物を超微細
化する。すなわち、単斜結晶ジルコニア超微粒子
の工業的大量生産を可能にするとともに、超微粒
子化によつてその応用製品を高品位化するもので
ある。 本発明によつて得られる結晶質ジルコニア超微
粒子よりなるゾルは2次凝集粒子が極めて超微細
なため、安定性が高く、高品位であり、合成繊維
の艷消し、耐熱塗布剤等として応用する場合、従
来品に比べ、同一のジルコニア濃度で数倍の被覆
特性を発揮できる。またこのゾルにアンモニア等
の塩基を加え懸濁粒子を凝集沈降させ、アルコー
ル、アセトン等の極性溶媒で水分を置換し乾燥す
れば、結晶質ジルコニアの孤立した超微粒子から
なる微粉末が得られるが、これは従来得られた如
何なるジルコニア粉末よりも易焼結性であり、特
異である。例えばこの粉末成形物は1100℃の低温
でほとんど理論密度の単斜結晶のみからなる高純
度ジルコニア焼結体を与える。これは従来ホツト
プレスあるいは水熱下の特殊な方法でしか得られ
ていないものである。また本発明のゾル及び該ゾ
ルより得られる粉末は2次凝集粒子が極めて超微
細なため、他の粉末との混合性に優れ、ジルコン
酸鉛の製造等固体反応用原料として使用すれば接
触面積の増大の結果著しく高反応性、低温焼結性
であり、その他のセラミツク用添加剤として最も
高分散性であり、微量の均一な添加が可能とな
る。 第1図、第2図、第3図および表は本発明方法
が従来法に比べて、結晶質ジルコニア微粒子の生
成速度、効率が非常に優れていることが示す実施
例であるが、更に以下の本発明の結晶質ジルコニ
アのコロイドゾル及びそれより得られ微粉末につ
いて具体的な実施例を示す。 実施例 1 特級試薬塩化ジルコニル(ZrOCl28H2O)約20
gを蒸留水約300c.c.に溶解して約0.2モル/の溶
液とし、陰イオン交換樹脂(アンバーライトIR
―45)で処理して溶液のPHを2.0とし、これに過
酸化水素水(31%)を10c.c.加え、この溶液を還流
冷却器付フラスコ中で20時間煮沸して半透明乳濁
のゾルを得た。この懸濁粒子は粉末X線回折によ
れば結晶子約50Åであり、電子顕微鏡観察によれ
ばこの懸濁粒子は結晶子の凝集した2次粒子でそ
の大きさは平均300Åであつた。 実施例 2 特級試薬塩化ジルコニル(ZrOCl28H2O)97g
を蒸留水約300c.c.に溶解して約1.0モル/の溶液
とし、これに過酸化水素水(31%)を90c.c.加えて
撹拌し、さらにアンモニア水(28%)30c.c.を徐々
に加え、このこの溶液を還流冷却器付フラスコ中
で50時間煮沸して半透明乳濁のゾルを得た。この
ゾルにアンモニア水を加えると懸濁粒子は凝集沈
降するので、デカンテーシヨンし、水をアセトン
で置換し、濾過、乾燥させた。この粉末は光学顕
微鏡および電子顕微鏡の観察によれば、比較的大
きな凝集粒子は単に物理的な付着に近に壊れ易い
ものであり、強固な2次凝集粒子の大きさは500
Å以下でかつ、粒径がほぼ均一であることが認め
られる。この粉末は乾燥したものをそのまま金型
中2t/cm2の成形圧で直径16mmの円板に成形後空気
中で1100℃に1時間焼成しただけで、理論密度の
96%のかさ密度の単斜結晶のみからなる高純度緻
密な多結晶体を与えた。
[Table] Furthermore, Fig. 2 shows the effect of the present invention when the concentration of zirconyl chloride is high, and is an example in which aqueous ammonia is added to adjust the pH of the solution. Similar to Figure 1, the diagram shows ammonia water (28
%) solution (cc). The effect of the present invention becomes even more remarkable as the concentration of zirconyl chloride in the aqueous solution increases.If the solution is simply boiled at 0.5 mol/ml, a small amount of zirconia begins to be produced after 40 hours or more; However, by adding hydrogen peroxide and ammonia, ultrafine particles of monoclinic crystal zirconia are produced in a relatively short time even from a highly concentrated solution. The figure shows the molar ratio of the amount of zirconium contained in the solution to the amount of zirconia that is formed and crystallized, so it can be seen how the higher the concentration, the higher the efficiency. The heat treatment in the method of the present invention does not necessarily require boiling. The present invention is effective even at temperatures below 100°C, and exhibits similar effects even during high-temperature treatment in a pressurized atmosphere. The practical temperature range for this treatment is 80 to 300°C, depending on the production rate and equipment. Figure 3 shows the effect of the present invention at temperatures above 100°C, with 0.2 mol/
This is the result of maintaining a zirconyl chloride solution at 130°C under steam pressure. In this case as well, a transparent liquid that has been boiled for 1 hour after adding hydrogen peroxide in advance exhibits a production rate that is more than twice as high as that of a solution without the addition of hydrogen peroxide. The monoclinic crystalline zirconia ultrafine particles produced by the present invention all have crystallite diameters of 30 to 100 Å determined from the half width of powder X-ray diffraction peaks, which are almost the same as those obtained by simply boiling the solution or hydrothermally treating the solution at low temperatures. However, according to electron microscopic observation, there is a significant difference in the size of the secondary agglomerated particles. That is, normally, when the zirconia production reaction is completed, the diameter of the secondary agglomerated particles is 1000 Å or more, which forms a strong bond that cannot be easily split.
The size of the secondary agglomerated particles is less than 500 Å even at the completion of the reaction. Although the nature of the action of hydrogen peroxide in the present invention is not necessarily clear, it is essential for the miniaturization of the secondary agglomerated particles of zirconia that is produced, and therefore hydrogen peroxide has an effect on crystal nucleation rather than crystal growth. It is believed that there is. Furthermore, since ammonia or PH adjustment does not directly contribute to the miniaturization of secondary agglomerated particles, it is thought that they are effective in promoting crystal growth rather than nucleation. In any case, the method of the present invention improves the efficiency of producing monoclinic zirconia fine particles and makes the product ultrafine. That is, it enables industrial mass production of monoclinic crystalline zirconia ultrafine particles and improves the quality of applied products by making the ultrafine particles. The sol made of ultrafine crystalline zirconia particles obtained by the present invention has extremely fine secondary agglomerated particles, so it has high stability and high quality, and can be applied as a matting agent for synthetic fibers, a heat-resistant coating agent, etc. In this case, it can exhibit several times the coating properties at the same zirconia concentration compared to conventional products. Furthermore, if a base such as ammonia is added to this sol to cause the suspended particles to coagulate and settle, and the water is replaced with a polar solvent such as alcohol or acetone and dried, a fine powder consisting of isolated ultrafine particles of crystalline zirconia can be obtained. This is unique in that it is easier to sinter than any conventionally obtained zirconia powder. For example, this powder compact provides a high-purity zirconia sintered body consisting only of monoclinic crystals with almost theoretical density at a low temperature of 1100°C. This has conventionally been obtained only by hot pressing or a special method under hydrothermal heat. In addition, the sol of the present invention and the powder obtained from the sol have extremely fine secondary agglomerated particles, so they have excellent miscibility with other powders, and when used as raw materials for solid reactions such as the production of lead zirconate, the contact area As a result of this increase, it has extremely high reactivity and low-temperature sintering properties, and has the highest dispersibility among other ceramic additives, making it possible to uniformly add small amounts. Figures 1, 2, 3 and the table are examples showing that the method of the present invention is extremely superior in the production rate and efficiency of crystalline zirconia fine particles compared to the conventional method. Specific examples of the crystalline zirconia colloidal sol of the present invention and the fine powder obtained therefrom will be shown below. Example 1 Special grade reagent zirconyl chloride (ZrOCl 2 8H 2 O) approx. 20
Dissolve g in about 300 c.c. of distilled water to make a solution of about 0.2 mol/g, and add anion exchange resin (Amberlite IR
-45) to adjust the pH of the solution to 2.0, add 10 c.c. of hydrogen peroxide (31%), and boil this solution for 20 hours in a flask with a reflux condenser to form a translucent emulsion. Obtained a sol. According to powder X-ray diffraction, the suspended particles had crystallites of about 50 Å, and according to electron microscope observation, the suspended particles were secondary particles of agglomerated crystallites and had an average size of 300 Å. Example 2 Special grade reagent zirconyl chloride (ZrOCl 2 8H 2 O) 97g
Dissolve it in about 300 c.c. of distilled water to make a solution of about 1.0 mol/c., add 90 c.c. of hydrogen peroxide (31%) and stir, and then add 30 c.c. of aqueous ammonia (28%). was gradually added, and this solution was boiled for 50 hours in a flask equipped with a reflux condenser to obtain a translucent emulsion sol. When aqueous ammonia was added to this sol, the suspended particles coagulated and settled, so the sol was decanted, the water replaced with acetone, filtered, and dried. According to observation using an optical microscope and an electron microscope, the relatively large aggregated particles of this powder are easily broken due to physical adhesion, and the size of the strong secondary aggregated particles is 500 mm.
It is observed that the particle size is less than Å and the particle size is almost uniform. This powder was dried and molded into a 16 mm diameter disc in a mold at a molding pressure of 2 t/cm 2 , and then fired in air at 1100°C for 1 hour.
A highly pure, dense polycrystalline body consisting only of monoclinic crystals with a bulk density of 96% was obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法と従来方法における煮沸時
間と単斜ZrO2の生成率の変化を示す。第2図は
ジルコニウム塩濃度を変えた時の本発明方法と従
来方法における煮沸時間と単斜ZrO2の生成率の
変化を示す。第3図は水熱下での本発明方法と従
来方法における煮沸時間と単斜ZrO2の生成率の
変化を示す。 何れも白丸が本発明方法で黒丸が従来方法であ
る。
FIG. 1 shows changes in boiling time and production rate of monoclinic ZrO 2 in the method of the present invention and the conventional method. FIG. 2 shows the changes in boiling time and production rate of monoclinic ZrO 2 in the method of the present invention and the conventional method when the zirconium salt concentration is changed. FIG. 3 shows changes in boiling time and production rate of monoclinic ZrO 2 in the method of the present invention and the conventional method under hydrothermal conditions. In each case, white circles indicate the method of the present invention, and black circles indicate the conventional method.

Claims (1)

【特許請求の範囲】 1 含まれるジルコニウムのほとんどが結晶子30
〜100Åの単斜ジルコニアであり、その2次凝集
粒子の平均径が500Åを越えないことを特徴とす
る結晶質ジルコニアのコロイドゾル。 2 濃度0.05〜2.0モル/のジルコニウムの塩
水溶液に、過酸化水素または過酸化水素を生成す
る化合物を加え、この溶液を80〜300℃に加熱処
理して水溶液中でジルコニアを単斜型に結晶化さ
せることを特徴とする結晶質ジルコニアのコロイ
ドゾルの製造方法。 3 濃度0.05〜2.0モル/のジルコニウムの塩
水溶液をPH1〜3に調製するとともに過酸化水素
または過酸化水素を生成する化合物を加え、この
溶液を80〜300℃に加熱処理して水溶液中でジル
コニアを単斜型に結晶化させることを特徴とする
結晶質ジルコニアのコロイドゾルの製造方法。
[Claims] 1 Most of the zirconium contained is crystallite 30
A colloidal sol of crystalline zirconia, which is monoclinic zirconia with a diameter of ~100 Å, and the average diameter of its secondary agglomerated particles does not exceed 500 Å. 2 Add hydrogen peroxide or a compound that generates hydrogen peroxide to a zirconium salt aqueous solution with a concentration of 0.05 to 2.0 mol/h, heat the solution to 80 to 300°C, and crystallize zirconia in a monoclinic form in the aqueous solution. A method for producing a colloidal sol of crystalline zirconia, the method comprising: 3 Prepare a zirconium salt aqueous solution with a concentration of 0.05 to 2.0 mol/pH to 1 to 3, add hydrogen peroxide or a compound that generates hydrogen peroxide, and heat the solution to 80 to 300°C to form zirconia in the aqueous solution. A method for producing a colloidal sol of crystalline zirconia, characterized by crystallizing it into a monoclinic form.
JP17769481A 1981-11-05 1981-11-05 Colloidal sol, fine powder of crystalline zirconia and preparation thereof Granted JPS5879818A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17769481A JPS5879818A (en) 1981-11-05 1981-11-05 Colloidal sol, fine powder of crystalline zirconia and preparation thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17769481A JPS5879818A (en) 1981-11-05 1981-11-05 Colloidal sol, fine powder of crystalline zirconia and preparation thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP60266830A Division JPH0764563B2 (en) 1985-11-27 1985-11-27 Fine powder of crystalline zirconia and method for producing the same

Publications (2)

Publication Number Publication Date
JPS5879818A JPS5879818A (en) 1983-05-13
JPS6143286B2 true JPS6143286B2 (en) 1986-09-26

Family

ID=16035467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17769481A Granted JPS5879818A (en) 1981-11-05 1981-11-05 Colloidal sol, fine powder of crystalline zirconia and preparation thereof

Country Status (1)

Country Link
JP (1) JPS5879818A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9902655B2 (en) 2013-10-18 2018-02-27 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconium oxide-titanium oxide composite sol and production method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2578241B1 (en) * 1985-03-01 1990-03-30 Rhone Poulenc Spec Chim STABILIZED ZIRCONIA, ITS PREPARATION PROCESS AND ITS APPLICATION IN CERAMIC COMPOSITIONS
JPS61201623A (en) * 1985-03-04 1986-09-06 Etsuro Kato Production of spherical flocculated particle of zirconia ultrafine crystal
JPH0651568B2 (en) * 1985-11-29 1994-07-06 電気化学工業株式会社 Method for producing fine zirconium oxide powder
JPH0712930B2 (en) * 1985-12-10 1995-02-15 悦朗 加藤 Fiber bundle oriented aggregated particles of monoclinic zirconia ultrafine crystals and manufacturing method
JP2550547B2 (en) * 1986-12-19 1996-11-06 日産化学工業株式会社 Modification method of ceramic molded products
US5223176A (en) * 1988-09-30 1993-06-29 Nissan Chemical Industries, Ltd. Zirconia sol and method for making the same
US5037579A (en) * 1990-02-12 1991-08-06 Nalco Chemical Company Hydrothermal process for producing zirconia sol
JP4106037B2 (en) 2004-03-01 2008-06-25 富士フイルム株式会社 Inkjet recording medium
WO2006115043A1 (en) 2005-04-18 2006-11-02 Nissan Chemical Industries, Ltd. Acidic zirconia sol and method for producing same
JP4582789B2 (en) * 2005-07-25 2010-11-17 多木化学株式会社 Ceria-zirconia solid solution sol and method for producing the same
JP5253095B2 (en) * 2007-12-20 2013-07-31 日揮触媒化成株式会社 Method for producing zirconia sol

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
POWDER TECHNOLOGY=1980 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9902655B2 (en) 2013-10-18 2018-02-27 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Zirconium oxide-titanium oxide composite sol and production method thereof

Also Published As

Publication number Publication date
JPS5879818A (en) 1983-05-13

Similar Documents

Publication Publication Date Title
EP0229657B1 (en) High-dispersion sol or gel of monoclinic zirconia supermicrocrystals and a process for its production
US5900223A (en) Process for the synthesis of crystalline powders of perovskite compounds
JP2540880B2 (en) Method for producing fine zirconium oxide powder
US4810680A (en) Preparation of high purity, homogeneous zirconia mixtures
Matsui et al. Formation mechanism of hydrous‐zirconia particles produced by hydrolysis of ZrOCl2 solutions
JPS6143286B2 (en)
JPH0660015B2 (en) Method for producing ceric oxide having novel morphological characteristics
JP4399592B2 (en) Zirconium oxide crystal particles and production method thereof
JP3284413B2 (en) Method for producing hydrated zirconia sol and zirconia powder
JPH0472774B2 (en)
US4873073A (en) Method for production of bismuth (III) oxide
KR20060009876A (en) Method for producing zirconium oxide and zirconium-based mixed oxide
US4810484A (en) Method for manufacturing fine lead titanate powders
JP2004517020A (en) Zirconia in the form of fine powder, zirconia hydroxycarbonate and methods for producing them
JPH0346407B2 (en)
JPS61141620A (en) Crystalline zirconia fine powder, and production thereof
JPS6197134A (en) Powder of zirconia agglomerated particle and preparation thereof
JP3265344B2 (en) Synthesis method of zircon powder
JPH04930B2 (en)
JPH0238527B2 (en)
JPS58213633A (en) Production of aluminum oxide
JPH0472775B2 (en)
JP3254694B2 (en) Hydrated zirconia sol and method for producing the same
RU2820108C1 (en) Method of producing weakly aggregated dispersed zirconium dioxide powder
JPS5939727A (en) Manufacture of fine zirconia particle for fine ceramic