JPS6143039Y2 - - Google Patents

Info

Publication number
JPS6143039Y2
JPS6143039Y2 JP12827980U JP12827980U JPS6143039Y2 JP S6143039 Y2 JPS6143039 Y2 JP S6143039Y2 JP 12827980 U JP12827980 U JP 12827980U JP 12827980 U JP12827980 U JP 12827980U JP S6143039 Y2 JPS6143039 Y2 JP S6143039Y2
Authority
JP
Japan
Prior art keywords
liquid
container body
pipe
container
air supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12827980U
Other languages
Japanese (ja)
Other versions
JPS5750000U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP12827980U priority Critical patent/JPS6143039Y2/ja
Publication of JPS5750000U publication Critical patent/JPS5750000U/ja
Application granted granted Critical
Publication of JPS6143039Y2 publication Critical patent/JPS6143039Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

【考案の詳細な説明】 本考案は、例えば液化窒素や液状化学薬品等を
貯溜する液体貯溜容器の改良構造に関する。
[Detailed Description of the Invention] The present invention relates to an improved structure of a liquid storage container for storing, for example, liquefied nitrogen or liquid chemicals.

この種容器は、多くの場合、不透明な金属材料
等で作製されていたり、或は各種の断熱材を重積
して構成されている関係上、内填している液体の
残量を外部から直接知得する事が出来ない。
This type of container is often made of opaque metal materials, etc., or is constructed by stacking various types of insulating materials, so the remaining amount of liquid inside can be checked from the outside. It cannot be learned directly.

この為、従来にあつては、超音波センサーや各
種半導体センサーを用いて液面を測定し、これを
外部で表示して知得できる様にしたものが知られ
ている。
For this reason, it is conventionally known to measure the liquid level using an ultrasonic sensor or various semiconductor sensors, and to display this information externally.

ところがこれらセンサー類は、極めて高価であ
ると共に、その取付けが難しく、然も取扱い並び
に保守管理が煩雑である難点を有し、広く採用さ
れてはいない。
However, these sensors are extremely expensive, difficult to install, and complicated to handle and maintain, so they have not been widely adopted.

又、直接重量を測定して残量を知得する方法も
一般的であるが、これは容器重量の方が内容物
(液体)より重たい場合がほとんどであるので正
確を期す事が出来ず、精度が悪くて誤差が大きい
難点がある。
Another common method is to measure the weight directly to determine the amount remaining, but this method cannot be accurate because the weight of the container is often heavier than the contents (liquid). The disadvantage is that the accuracy is poor and the error is large.

最も一般的に使用されているのは、第5図に示
す如く比較的コストの安い差圧計を利用したもの
である。
The most commonly used one utilizes a relatively inexpensive differential pressure gauge as shown in FIG.

ところが従来の差圧計Aは、容器本体Bの上部
と底部に夫々検出管C,Dを接続してこれら両管
の間に設けてある。
However, in the conventional differential pressure gauge A, detection tubes C and D are connected to the top and bottom of a container body B, respectively, and are provided between these tubes.

然しながらこの様に構成すると、差圧計Aを取
付ける為に容器本体には、余分に2箇所の貫孔
E,Fを穿設してここに検出管C,Dを接続せね
ばならず、その製作が面倒である。又、検出管
C,D等が容器側部に位置する為、邪魔になり、
これが他物に衝突して損傷する可能性が多分にあ
る。もし、切損でもした場合には内部液体が流出
し、想わぬ事故を誘発する危惧もあつた。
However, with this configuration, in order to attach the differential pressure gauge A, two additional through holes E and F must be drilled in the container body and the detection tubes C and D must be connected thereto, making it difficult to manufacture them. is troublesome. Also, since the detection tubes C, D, etc. are located on the side of the container, they get in the way.
There is a high possibility that this will collide with other objects and cause damage. If it were to break, there was a risk that the internal liquid would leak out and cause an unexpected accident.

とりわけ、断熱材を使用する容器にあつては、
穿孔部分の断熱効果が著しく劣下し、問題が多
い。
In particular, for containers that use insulation materials,
The insulation effect of the perforated area is significantly degraded, causing many problems.

又、従来の検出器である差圧計Aは、残液量の
高さH′を差圧として測定している。
Further, the differential pressure gauge A, which is a conventional detector, measures the height H' of the residual liquid amount as a differential pressure.

従つて液体の残量が少なくなればなるほど差圧
が小さくなり、測定誤差が大きくなつて、実際の
残量を正確に知得する事が出来なかつた。
Therefore, as the remaining amount of liquid decreases, the differential pressure decreases, and the measurement error increases, making it impossible to accurately determine the actual remaining amount.

本考案は、叙上の問題点に鑑み、これを解消す
る為に創案されたもので、その主たる目的は、差
圧を検知する検出器を取付ける為に容器本体に余
分な穿孔を施す事なくこれが配設でき、その製作
が極めて簡便であると共に、コストの低減が図れ
て無用なトラブルが起生しない液体貯溜容器を提
供するにある。
This invention was devised in view of the above-mentioned problems and to solve them, and its main purpose is to avoid making extra holes in the container body in order to install a detector for detecting differential pressure. It is an object of the present invention to provide a liquid storage container that can be arranged, is extremely simple to manufacture, can reduce costs, and does not cause unnecessary troubles.

本考案の他の目的は、容器本体内の液体の残量
が減少すればする程その揚程が増大して的確に検
出器を作動せしめ、残液量を極めて正確に知得で
きる液体貯溜容器を提供するにある。
Another object of the present invention is to provide a liquid storage container in which the lower the amount of liquid remaining in the container body, the higher its lift height, which will cause the detector to operate more accurately, allowing the amount of remaining liquid to be determined extremely accurately. It is on offer.

本考案の更に他の目的は、容器本体を、上部に
液体注入用の開口を備えて該開口を開閉自在に閉
塞する蓋体を有する構造にすると共に、送気管と
排液管とを、前記蓋体に貫通して設けた構造に
し、所謂この様な容器を採用して送気管の入口側
と排液管の出口側との間に検出管を介して検出器
を設ける事に依り、容器本体には液体注入用の開
口を設けるだけで良く、その他の穿孔が全く不要
で極めて理想的な液体貯溜容器を提供するにあ
る。
Still another object of the present invention is to provide the container body with a structure in which the container body has an opening for liquid injection at the upper part and a lid body that closes the opening so as to be openable and closable, and to connect the air supply pipe and the liquid drainage pipe to the liquid injection pipe. By adopting a structure that penetrates the lid body, adopting a so-called container, and installing a detector via a detection tube between the inlet side of the air pipe and the outlet side of the drain pipe, the container The object of the present invention is to provide an extremely ideal liquid storage container in which the main body only needs to be provided with an opening for liquid injection, and no other perforations are required.

以下、本考案の実施例を示す図面に基づきその
詳細を説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of embodiments of the present invention will be explained below based on the drawings.

本考案の液体貯溜容器1は、容器本体2と、排
液管3と、送気管4と、気体供給装置5と、検出
管6,7と、液柱圧型の差圧検出器とからその主
要部が構成される。
The liquid storage container 1 of the present invention consists of a container body 2, a drain pipe 3, an air supply pipe 4, a gas supply device 5, detection pipes 6 and 7, and a liquid column pressure type differential pressure detector. Department will be formed.

前記容器本体2は、第1図に示す本実施例で
は、上部に液体注入用の開口9を備えると共に、
該開口9を開閉自在に閉塞する蓋体10を設けた
構造を呈する。
In the present embodiment shown in FIG. 1, the container body 2 is provided with an opening 9 for liquid injection in the upper part, and
It has a structure in which a lid body 10 is provided to open and close the opening 9 freely.

排液管3は、所謂サイホン管であり、容器本体
2の底部近傍から上部を経て外部に達する略倒立
L型のパイプで、容器本体2内の液体はここを通
つて外部に排送される。本実施例の場合、排液管
3の垂直管部の上部は蓋体10を貫通させて構成
している。排液管3の水平管部の出口には、適宜
ホース等が接続される。
The drain pipe 3 is a so-called siphon pipe, and is a substantially inverted L-shaped pipe that extends from the vicinity of the bottom of the container body 2 to the outside via the top, and the liquid in the container body 2 is discharged to the outside through this pipe. . In the case of this embodiment, the upper part of the vertical pipe portion of the drain pipe 3 is configured to pass through the lid body 10. An appropriate hose or the like is connected to the outlet of the horizontal pipe portion of the drain pipe 3.

送気管4は、一端が容器本体2内の上部の開口
して他端が外部に達するもので、加圧空気、或は
加圧不活性ガス等の気体を容器本体2内に導びく
為のものである。
The air supply pipe 4 has one end opening at the top inside the container body 2 and the other end reaching the outside, and is used to guide gas such as pressurized air or pressurized inert gas into the container body 2. It is something.

第1図に示す本実施例の場合、容器本体2に直
接設けたのではなく、蓋体10に設けた場合を例
示している。この例の場合、排液管3とは所謂2
重管になる様に配置構成し、その外周管を送気管
4にしてある。内管となる排液管3は送気管4内
で略直角に折曲し、その水平管部は送気管4の管
壁を貫いて外部に達している。勿論貫通部分は溶
接等が施されて気密状態を保持している。
In the case of the present embodiment shown in FIG. 1, the case is illustrated in which it is not provided directly on the container body 2 but on the lid 10. In this example, the drain pipe 3 is the so-called 2
The pipes are arranged so as to form a double pipe, and the outer peripheral pipe is used as the air supply pipe 4. The drain pipe 3 serving as an inner pipe is bent at a substantially right angle within the air pipe 4, and its horizontal pipe portion penetrates the wall of the air pipe 4 to reach the outside. Of course, the penetrating portion is welded or the like to maintain an airtight state.

送気管4は、前述の構成を達し易くする為、段
径管と為され、その細径管部の末端、つまり入口
には気体供給装置5が接続される。
The air supply pipe 4 is formed into a stepped diameter pipe in order to facilitate the above-mentioned configuration, and a gas supply device 5 is connected to the end, that is, the inlet, of the small diameter pipe portion.

本実施例の場合、送気管4の大径管部の下方
は、蓋体10を貫通して居らず、蓋体10の上面
に接着してある。而して、蓋体10には排液管3
を遊嵌する連通貫孔4′が穿設されている。この
連通貫孔4′は送気管4の一部を為すものであ
る。
In the case of this embodiment, the lower part of the large-diameter pipe portion of the air supply pipe 4 does not penetrate through the lid 10, but is bonded to the upper surface of the lid 10. Therefore, a drain pipe 3 is provided in the lid body 10.
A communication through-hole 4' is formed into which the holder is loosely fitted. This communication through hole 4' forms a part of the air pipe 4.

勿論、本実施例の如く構成する必要はなく、要
は送気管4に依り加圧気体が容器本体2内へ送給
されるべく構成すれば良いのである。
Of course, it is not necessary to configure it as in this embodiment, and it is sufficient to configure it so that the pressurized gas is fed into the container body 2 through the air supply pipe 4.

送気管4の入口に接続される気体供給装置5
は、気体を加圧して送気管4を経て容器本体2内
にこれを圧送する為のものである。
A gas supply device 5 connected to the inlet of the air pipe 4
is for pressurizing gas and force-feeding it into the container body 2 through the air supply pipe 4.

第1図に示す本実施例の場合、中空ゴム球11
を採用した所謂ポンプを用いている。該中空ゴム
球11は流入口と流出口に夫々逆止弁12,12
を備えた簡単な構造を呈し、中空ゴム球11を収
縮させればこの内部の気体、この場合空気が流出
側の逆止弁12を押し開いて圧送され、拡復する
際には外気を入口側の逆止弁12から吸込むとい
う形態のものである。
In the case of this embodiment shown in FIG.
A so-called pump is used. The hollow rubber ball 11 has check valves 12 and 12 at its inlet and outlet, respectively.
When the hollow rubber bulb 11 is contracted, the gas inside, in this case air, pushes open the check valve 12 on the outflow side and is pumped out, and when expanding, the outside air is passed through the inlet. It is of the form that suction is taken from the check valve 12 on the side.

第2図は、中空ゴム球11を連設した例を示し
て居り、逆止弁12も一個追加されている。この
様な二連球の簡易ポンプにあつては、次段目の中
空ゴム球11′が存する事に依り吸入加圧空気が
整流・整圧され、安定した加圧空気にする事が可
能になる。
FIG. 2 shows an example in which hollow rubber balls 11 are arranged in series, and one check valve 12 is also added. In the case of such a simple double-bulb pump, the presence of the next-stage hollow rubber bulb 11' allows the intake pressurized air to be rectified and pressure-regulated, making it possible to create stable pressurized air. Become.

該気体供給装置5は、中空ゴム球11に替えて
コンプレツサー等を用い、気体源に接続する事も
出来る。勿論、封入気体を加圧する構造のもので
も良い。
The gas supply device 5 can also be connected to a gas source by using a compressor or the like instead of the hollow rubber bulb 11. Of course, a structure that pressurizes the enclosed gas may also be used.

尚、送気管4の大径管部の一部には、枝管13
が接続され、これにはブロー弁14が設けてあ
る。このブロー弁14は、容器本体2内に貯溜し
てある液体が自然気化したものを排出する為のも
ので、適時開放すると共に、長時間容器を保存す
る際には開放状態にして置く。これは、容器本体
2内の気体圧力が上昇して液体が意に反して排液
管3を経て排流されるのを防止する為である。
Note that a branch pipe 13 is provided in a part of the large diameter pipe portion of the air supply pipe 4.
is connected, and is provided with a blow valve 14. This blow valve 14 is for discharging naturally vaporized liquid stored in the container body 2, and is opened at appropriate times and left open when storing the container for a long time. This is to prevent the gas pressure within the container body 2 from rising and the liquid from being unintentionally discharged through the drain pipe 3.

本考案は、上述した様な容器に採用されるもの
である。
The present invention is applied to containers such as those described above.

本考案は、送気管4の入口側Xに第一の検出管
6を分岐して設けると共に、排液管3の出口側Y
に第二の検出管7を同じく分岐して設け、両検出
管6,7の末端に差圧計等の如く差圧を検出する
検出器8を接続したものである。
In the present invention, the first detection pipe 6 is branched and provided on the inlet side X of the air supply pipe 4, and the first detection pipe 6 is provided branched on the inlet side
A second detection tube 7 is similarly branched and provided, and a detector 8 for detecting the differential pressure, such as a differential pressure gauge, is connected to the ends of both detection tubes 6 and 7.

容器本体2内に貯溜する液体が、例えば液化窒
素の場合には、第3図に示す如く、検出管7の一
部を同レベル(同高さ)を呈すべく彎曲させる
と、この彎曲管部7′内を液化窒素が通過するに
従つて気化されてしまうので、検出管6,7の末
端は、共に気体となり、例えばマグネヘリツク型
の差圧計(商品名)を使用する事ができる。
If the liquid stored in the container body 2 is, for example, liquefied nitrogen, as shown in FIG. Since the liquefied nitrogen is vaporized as it passes through 7', the ends of the detection tubes 6 and 7 both become gas, and for example, a magnetic helix type differential pressure gauge (trade name) can be used.

勿論、気体と液体との差圧を計測する差圧計で
あれば、検出管7を前述の如く構成する必要はな
い。
Of course, if it is a differential pressure gauge that measures the differential pressure between gas and liquid, the detection tube 7 does not need to be configured as described above.

又、気体どうしの差圧しか計測できない差圧計
を使用する場合、然も窒素の如く簡単に気化でき
ない液体の場合は、検出管7の一部に、液体を遮
断してその圧力だけを伝える。例えばダイヤフラ
ムがピストン式シリンダ等を介設し、該隔絶機構
と差圧計との間の管路には気体を封入した構造に
して置けば良い。
Furthermore, when using a differential pressure gauge that can only measure the differential pressure between gases, and in the case of a liquid that cannot be easily vaporized, such as nitrogen, a part of the detection tube 7 is blocked from the liquid and only that pressure is transmitted. For example, a diaphragm may be provided with a piston-type cylinder or the like interposed therein, and a gas may be filled in the conduit between the isolation mechanism and the differential pressure gauge.

この様にすれば、液体圧が直接差圧計に掛ら
ず、気体に一旦伝達された上で掛るので当該差圧
計が損傷する事がない。
In this way, the liquid pressure is not directly applied to the differential pressure gauge, but is applied after being transmitted to the gas, so that the differential pressure gauge is not damaged.

次に作用を説明する。 Next, the action will be explained.

第1図に於いて、気体供給装置5である中空ゴ
ム球11を手で把持して拡縮させ、外気を入口か
ら吸込んで加圧した上、送気管4並びに連通貫孔
4′を経て容器本体2内へ加圧空気を圧送する。
In FIG. 1, a hollow rubber bulb 11, which is a gas supply device 5, is held in a hand to expand and contract, and outside air is sucked in from the inlet and pressurized, and then passed through the air supply pipe 4 and the communication through hole 4' to the container body. Pressurized air is pumped into 2.

そうすると、容器本体2内に貯溜された液体L
の液面が前記気体Gに押され、液体Lは排液管3
の下部開口から流入して同管3内を上昇して出口
に至る。
Then, the liquid L stored in the container body 2
The liquid level is pushed by the gas G, and the liquid L flows into the drain pipe 3.
It flows in from the lower opening of the tube 3 and rises inside the same tube 3 to reach the outlet.

他方、検出器8は、検出管6,7を介して排液
管3の出口側Yの圧力と送気管4の入口側Xの圧
力とを検知してその差圧を測定表示する。
On the other hand, the detector 8 detects the pressure on the outlet side Y of the drain pipe 3 and the pressure on the inlet side X of the air supply pipe 4 via the detection tubes 6 and 7, and measures and displays the differential pressure.

本考案の場合、液体Lの液面から排液管3の出
口側Yまでの高さが揚程Hとなり、液体Lが減少
すればする程、これが大きくなる。
In the case of the present invention, the height from the liquid level of the liquid L to the outlet side Y of the drain pipe 3 is the head H, and the more the liquid L decreases, the greater this head H becomes.

従つて検出器8で差圧を計測する場合、その精
度が増大し、残液量を正確に知得する事ができ
る。
Therefore, when the differential pressure is measured by the detector 8, the accuracy is increased and the amount of remaining liquid can be accurately determined.

尚、本考案は、第1図に示す本実施例の如く、
蓋体10の処に排液管3と送気管4とを設けた構
造のもの、及び両管3,4が二重管になつている
構造のものに限定される事はない。
Incidentally, the present invention, as shown in the present embodiment shown in Fig. 1,
The present invention is not limited to a structure in which a drain pipe 3 and an air supply pipe 4 are provided at the lid 10, or a structure in which both pipes 3 and 4 are a double pipe.

例えば、第1図に示す如く排液管3と送気管4
とは容器本体2自体に設けられ、容器本体2の別
の処に穿設した注液用の開口9を蓋体10にて閉
塞する容器であつても良い。
For example, as shown in FIG.
may be a container that is provided in the container body 2 itself, and in which a liquid injection opening 9 formed elsewhere in the container body 2 is closed with a lid 10.

もし、排液管3か、若しくは送気管4を用いて
液体を注入できるのであれば、前記した開口9並
びに蓋体10を割愛した構造の容器でも良い訳で
ある。
If liquid can be injected using the drain pipe 3 or the air supply pipe 4, a container having a structure in which the opening 9 and the lid 10 described above are omitted may be used.

更に、第6図に示す如く気体供給装置5を改変
し、これに排液管3・送気管4・蓋体10とをコ
ンパクトにまとめた所謂加圧装置として構成した
ものにも本考案を採用し得る。
Furthermore, as shown in FIG. 6, the present invention is also adopted in a device in which the gas supply device 5 is modified and configured as a so-called pressurization device in which a liquid drain pipe 3, an air supply pipe 4, and a lid body 10 are compactly assembled. It is possible.

該加圧装置は、周知の如く液化窒素や液化酸素
等の液化物を取扱う場合に頻用される。
As is well known, the pressurizing device is frequently used when handling liquefied substances such as liquefied nitrogen and liquefied oxygen.

而してその原理的な構成は、送気管4の途中に
気化室15を形成すると共に、同室15に連通し
て容器本体2の底部まで延びる吸液管16を設
け、該吸液管16の一部分と、気化室15の出口
部分とに夫々逆止弁17,18を配設してある。
The basic structure is that a vaporizing chamber 15 is formed in the middle of the air supply pipe 4, and a liquid suction pipe 16 is provided that communicates with the chamber 15 and extends to the bottom of the container body 2. Check valves 17 and 18 are provided in one portion and the outlet portion of the vaporization chamber 15, respectively.

この場合、中空ゴム球11″は、内部気体を加
圧する密封タイプのものを採用する。
In this case, the hollow rubber bulb 11'' is of a sealed type that pressurizes the internal gas.

図中、19はパツキンを示す。 In the figure, 19 indicates a packing.

この様な構成のものにあつては、中空ゴム球1
1″を拡縮すると、先ず、吸液管16の下端から
逆止弁17を押開いて液化物が吸い上げられて気
化室15の底部に貯溜される。
In the case of such a configuration, hollow rubber bulb 1
1'', first, the check valve 17 is pushed open from the lower end of the liquid suction pipe 16, and the liquefied substance is sucked up and stored at the bottom of the vaporization chamber 15.

気化室15に導入された液化物は、断熱された
容器本体2から出てこない外気温度に温められる
為に気化し、その体積を増大して行く。勿論気化
ガスは中空ゴム球11″まで充満し、今度は当該
気化ガスが加圧されるのである。
The liquefied material introduced into the vaporization chamber 15 is heated to an outside temperature that prevents it from coming out of the insulated container body 2, so it vaporizes and increases its volume. Of course, the vaporized gas fills up to the hollow rubber bulb 11'', and the vaporized gas is then pressurized.

而してこの加圧気体は、気化室15の出口に設
けた逆止弁18を押開いて容器本体2の内部に導
入され、この内部に貯溜されている液化物を押圧
するのである。
This pressurized gas pushes open the check valve 18 provided at the outlet of the vaporization chamber 15, is introduced into the interior of the container body 2, and presses the liquefied material stored therein.

斯くの如く構成したものは、加圧気体を自ら作
り出すので外気を利用する事はない。
A device configured in this way does not use outside air because it generates its own pressurized gas.

この為、容器本体2内に、外気と共に不純物を
吸入する事がないと同時に、常温の外気を取入れ
て内部の液化物(低温)に支障を与える事が全く
ない。
Therefore, impurities are not sucked into the container body 2 along with the outside air, and at the same time, outside air at room temperature is not taken in and the liquefied material (low temperature) inside is not affected at all.

更に、少量の液化物を気化させ、その気化ガス
を利用するので、気化されたガスの体積は相当大
きく、この為中空ゴム球11″を拡縮させる回数
が少なくて済み、貯溜液化物を極めて容易に排出
できる。
Furthermore, since a small amount of liquefied material is vaporized and the vaporized gas is used, the volume of the vaporized gas is considerably large, and therefore the number of times the hollow rubber bulb 11'' is expanded and contracted is reduced, making it extremely easy to remove the stored liquefied material. can be discharged.

外気を導入するタイプのものは、貯溜液化物が
例えば液化窒素などの場合、これが低温であるの
で常温の外気は冷却されてその体積が減少する
為、中空ゴム球をかなりの回数だけ拡縮させない
と圧力が上らず、貯溜液体の排液に時間が掛る。
In the case of the type that introduces outside air, if the stored liquefied material is liquefied nitrogen, for example, this is at a low temperature, so the outside air at room temperature is cooled and its volume decreases, so the hollow rubber bulb must be expanded and contracted quite a number of times. Pressure does not build up and it takes time to drain the stored liquid.

本考案は、この様な構造のものにも容易に適用
できる。
The present invention can be easily applied to such a structure.

つまり、中空ゴム球11″から気化室15まで
配された送気管4の一部の所謂入口側Xに検出管
6を接続すると共に、排液管3の出口側Yに検出
管7を接続し、両検出管6,7の末端に検出器8
である差圧計を取付けるのである。
That is, the detection tube 6 is connected to the so-called inlet side X of a part of the air pipe 4 arranged from the hollow rubber bulb 11'' to the vaporization chamber 15, and the detection tube 7 is connected to the outlet side Y of the drain pipe 3. , a detector 8 is installed at the end of both detection tubes 6 and 7.
This is to install a differential pressure gauge.

この様にしたものにあつても先例と同等の作用
効果を期待し得る。
Even with something like this, it can be expected to have the same effects as the previous example.

前記検出管6の接続点は、第6図に示す処に限
定される事はない。
The connection point of the detection tube 6 is not limited to the location shown in FIG. 6.

勿論、本考案の主旨に基づき前記実施例以外の
構造に適宜設計変更し得る事は云うまでもない。
Of course, it goes without saying that the design can be appropriately modified to a structure other than the above-described embodiment based on the gist of the present invention.

以上既述した如く、本考案に依れば検出器を取
付ける為に容器本体に余分な穿孔を施す事がな
く、その配設が極めて容易で、コストの低減を図
る事が出来る。
As described above, according to the present invention, there is no need to make an extra hole in the container body in order to attach the detector, and the arrangement is extremely easy and costs can be reduced.

検出管は、送気管並びに排液管の容器本体外部
の上方に設けられ、検出器も同部位に配されるの
で、これらが他物に衝つて損傷する事が少ないと
共に、差圧を判読し易い利点がある。
The detection tube is installed above the air supply tube and the drain tube outside the container body, and the detector is also placed in the same location, so there is less chance of damage from hitting other objects, and it is easy to read the differential pressure. It has the advantage of being easy.

本考案にあつては、液体の残量が減少すればす
る程、その揚程が増大するので、精度良く差圧が
測定でき、誤差の少ない的確な残液量を知得でき
る。
In the present invention, as the remaining amount of liquid decreases, the lift height increases, so the differential pressure can be measured with high precision, and the accurate amount of remaining liquid can be determined with little error.

その上、第1図並びに第6図に示す如く蓋体に
送気管と排液管が存する容器に本考案を適用した
場合には、容器本体の開口部分は、液体を注入す
る開口のみとなり、他に一切の開口がない為、製
作が極めて簡単化される。
Furthermore, when the present invention is applied to a container in which the lid has an air supply pipe and a liquid drain pipe as shown in FIGS. 1 and 6, the opening of the container body is only an opening for injecting liquid; Since there are no other openings, manufacturing is extremely simplified.

とりわけ、断熱材を使用する場合にあつては、
開口に依る損失が著しく低減され、理想的な容器
にする事ができる等諸種の効果を奏するものであ
る。
Especially when using insulation materials,
This has various effects such as significantly reducing losses due to openings and making it possible to create an ideal container.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案に係る液体貯溜容器を示す縦
断面図。第2図は、中空ゴム球を二連にして気体
供給装置にした場合の要部縦断面図。第3図は、
液化窒素等を貯溜する場合に於ける検出管の変形
例を示す要部斜視図。第4図は、送気管並びに排
液管が容器本体に直接設けられ、蓋体はこことは
別の配設された構造を示す縦断概要図。第5図
は、従来の構造に係る縦断概要図。第6図は、本
考案の更に他の実施例を示す要部縦断面図であ
る。 1……液体貯溜容器、2……容器本体、3……
排液管、4……送気管、5……気体供給装置、
6,7……検出管、8……検出器、9……開口、
10……蓋体、11″……密封型中空ゴム球、1
5……気化室、16……吸液管、17,18……
逆止弁、G……気体、L……液体、X……入口
側、Y……出口側。
FIG. 1 is a longitudinal sectional view showing a liquid storage container according to the present invention. FIG. 2 is a vertical cross-sectional view of the main part of a gas supply device in which two hollow rubber balls are connected. Figure 3 shows
The main part perspective view which shows the modification of the detection tube in the case of storing liquefied nitrogen etc. FIG. 4 is a longitudinal cross-sectional schematic diagram showing a structure in which an air supply pipe and a drain pipe are provided directly on the container body, and a lid is provided separately. FIG. 5 is a vertical schematic diagram of a conventional structure. FIG. 6 is a longitudinal sectional view of a main part showing still another embodiment of the present invention. 1...Liquid storage container, 2...Container body, 3...
Drainage pipe, 4... Air supply pipe, 5... Gas supply device,
6, 7...detection tube, 8...detector, 9...opening,
10...Lid body, 11''...Sealed hollow rubber bulb, 1
5... Vaporization chamber, 16... Liquid suction pipe, 17, 18...
Check valve, G...Gas, L...Liquid, X...Inlet side, Y...Outlet side.

Claims (1)

【実用新案登録請求の範囲】 1 液体を貯留する容器本体と、この底部近傍か
ら容器本体の上部を経て外部に達する排液管
と、容器本体内の上部から容器本体の外部に達
する送気管と、該送気管に接続され加圧気体を
送給する気体供給装置とを具有し、前記容器本
体内に加圧気体を送給する事に依り容器本体内
の液体が排液管を経て排送される液体貯溜容器
に於て、前記送気管の入口側と排液管の出口側
との間に夫々検出管を介して両者の差圧を測定
する液柱型の差圧検出器を設け、液体の液面と
排液管出口側との間の揚程Hに相当する差圧か
ら、容器本体内の液体残量を検知する構成とし
た事を特徴とする液体貯溜容器。 2 容器本体を、上部に液体注入用の開口を備え
て該開口を開閉自在に閉塞する蓋体を設けた構
造にすると共に、送気管と排液管とを、前記蓋
体に貫通して設けた構造にした事を特徴とする
実用新案登録請求の範囲第1項に記載の液体貯
溜容器。 3 気体供給装置を、送気管の一部に設けた気化
室と、該気化室に接続した密封型の中空ゴム球
と、前記気化室に連通して容器本体の底部まで
達する吸液管と、該吸液管の一部に設けた逆止
弁と、気化室の出口に設けた他の逆止弁とから
成る構造にした事を特徴とする実用新案登録請
求の範囲第1項に記載の液体貯溜容器。
[Scope of Claim for Utility Model Registration] 1. A container body that stores liquid, a drain pipe that reaches the outside from near the bottom of the container body through the upper part of the container body, and an air supply pipe that reaches the outside of the container body from the upper part of the container body. , a gas supply device connected to the air supply pipe for supplying pressurized gas, and by supplying the pressurized gas into the container body, the liquid in the container body is discharged through the drain pipe. In the liquid storage container, a liquid column type differential pressure detector is provided between the inlet side of the air supply pipe and the outlet side of the drain pipe for measuring the differential pressure between the two via detection pipes, respectively, A liquid storage container characterized in that the amount of liquid remaining in the container body is detected from the differential pressure corresponding to the lift height H between the liquid level and the outlet side of the drain pipe. 2. The container body has a structure in which an opening for liquid injection is provided at the upper part and a lid body that closes the opening so that the opening can be opened and closed, and an air supply pipe and a liquid drain pipe are provided to penetrate the lid body. A liquid storage container according to claim 1 of the utility model registration claim, characterized in that the liquid storage container has a structure. 3. A vaporization chamber in which a gas supply device is provided in a part of the air pipe, a sealed hollow rubber bulb connected to the vaporization chamber, and a liquid suction pipe that communicates with the vaporization chamber and reaches the bottom of the container body. Claim 1 of the utility model registration claim is characterized in that the structure includes a check valve provided in a part of the liquid suction pipe and another check valve provided at the outlet of the vaporization chamber. Liquid storage container.
JP12827980U 1980-09-08 1980-09-08 Expired JPS6143039Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12827980U JPS6143039Y2 (en) 1980-09-08 1980-09-08

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12827980U JPS6143039Y2 (en) 1980-09-08 1980-09-08

Publications (2)

Publication Number Publication Date
JPS5750000U JPS5750000U (en) 1982-03-20
JPS6143039Y2 true JPS6143039Y2 (en) 1986-12-05

Family

ID=29488669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12827980U Expired JPS6143039Y2 (en) 1980-09-08 1980-09-08

Country Status (1)

Country Link
JP (1) JPS6143039Y2 (en)

Also Published As

Publication number Publication date
JPS5750000U (en) 1982-03-20

Similar Documents

Publication Publication Date Title
EP3757538B1 (en) System and method for detecting a possible loss of integrity of a flexible bag for biopharmaceutical product
JPS62223640A (en) System for detecting leakage in liquid storage tank
US6405872B1 (en) Method and device of improving the shelflife of tonometered fluids
EP3690419B1 (en) System and method for detecting a possible loss of integrity of a flexible bag for biopharmaceutical product
EP1522786A3 (en) Tank comprising a valve-box
US11585489B2 (en) Differential pressure filling system and method for a dosing vessel
CN104797916B (en) The method for testing leak detection system
US3885414A (en) Package for calibration fluids and process
JPS6143039Y2 (en)
US11898938B2 (en) Method and system, using a colorimetric indicator, for detecting a possible loss of integrity of a flexible bag for biopharmaceutical product
CN109813388A (en) A kind of method and device measuring galvanized iron package container comprehensive performance
US6148854A (en) System for leak detection from underground and aboveground fuel storage tanks
CN207279274U (en) Cryogenic storage tank pressure obtaning device
CN207472411U (en) A kind of liquid flow measuring device
JPS60553Y2 (en) Low temperature liquefied gas container
US20080092634A1 (en) Storage Tank Leak Monitoring and Venting Apparatus
CN205910089U (en) Store hydrogen testing arrangement
CN209673304U (en) Height pressure difference liquid-filling machine
JP3123016B2 (en) Drum can liquid level indicator
JPS56150322A (en) Method and device for leakage inspection of storage tank
JPH0230750Y2 (en)
JPS5932918Y2 (en) Instrument for measuring the tightness of conduits or pressure vessels
US2751755A (en) Pressure tank
JPH0686975B2 (en) Adsorption amount measuring device
JPH0263425U (en)