JPS6143035B2 - - Google Patents

Info

Publication number
JPS6143035B2
JPS6143035B2 JP55094882A JP9488280A JPS6143035B2 JP S6143035 B2 JPS6143035 B2 JP S6143035B2 JP 55094882 A JP55094882 A JP 55094882A JP 9488280 A JP9488280 A JP 9488280A JP S6143035 B2 JPS6143035 B2 JP S6143035B2
Authority
JP
Japan
Prior art keywords
acetic acid
gel
acid bacteria
medium
bacteria
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55094882A
Other languages
Japanese (ja)
Other versions
JPS5718986A (en
Inventor
Mitsuru Wada
Akihiko Mori
Hiroichi Suzue
Junichi Oosuge
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanabe Seiyaku Co Ltd
Original Assignee
Tanabe Seiyaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanabe Seiyaku Co Ltd filed Critical Tanabe Seiyaku Co Ltd
Priority to JP9488280A priority Critical patent/JPS5718986A/en
Publication of JPS5718986A publication Critical patent/JPS5718986A/en
Publication of JPS6143035B2 publication Critical patent/JPS6143035B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は固定化酢酸菌の新規製法に関する。 微生物菌体を含むゲルをインキユベートして固
定化微生物を製する方法は既に干畑らによつて報
告されており(特開昭54−135295号)、この方法
によれば、酢酸菌含有ゲルを酢酸発酵用の液体培
地中好気性条件下にインキユベートするだけでゲ
ル表層内部に菌が密集した固定化酢酸菌を製造す
ることができる。しかしながら、このようにして
製造される固定化酢酸菌ではゲル表層内部の菌の
密集濃度が予期したほど大きくならないため、酢
酸生成能もいまだ必ずしも満足し得るものとはい
い難い。 しかるに本発明者らは種々研究を重ねた結果、
酢酸菌を含むゲルを液体培地中でインキユベート
するに際し、該培地を遊離酢酸菌の比増殖速度以
上の希釈率で入れかえてゆけば、意外にもゲル表
層内部の酢酸菌密度が著しく大きくなり、高い酢
酸生産能をもつた固定化酢酸菌が得られることを
見出した。 すなわち、本発明の固定化酢酸菌の製法は酢酸
菌を含むゲルを、液体培地中好気性条件下でかつ
遊離酢酸菌の比増殖速度以上の希釈率で培地を入
れかえながら、インキユベートすることによつて
ゲル表層内部にとりわけ濃密な酢酸菌層を形成さ
せることを特徴とするものである。 本発明において、固定化菌の調製に使用される
酢酸菌としては酢酸生産能を有するものであれば
いずれも使用することができ、例えば酢酸生産能
が強力な微工研酢酸菌1号菌、同2号菌(いずれ
もアセトバクター属菌)、アセトバクターアセチ
IFO3238の如きアセトバクター属菌、あるいは例
えばグルコノバクター・サブオキシダンス
IFO3290の如きグルコノバクター属菌等を適宜用
いることができる。 本発明において、酢酸菌を含むゲルの調製は、
例えばカラギーナン、フアーセレラン、寒天、セ
ルロース硫酸エステルなどの硫酸基を含有する多
糖類、ポリアクリルアミド、ポリビニルアルコー
ル、セルロース、サクシネート、カゼイン・サク
シネートまたは2−メチル−5−ビニルピリジ
ン・メチルアクリレート・メタクリル酸共重合体
を用いる公知のゲル包括法によつて行なうことが
できるが、その際、上記酢酸菌体はゲル基剤溶液
に対して約1×104〜108個/ml程度使用し、かつ
ゲルの厚さを2mm〜5cm、とりわけ約3〜5mmの
粒状もしくは膜状に成型するのが好ましい。上記
酢酸菌含有ゲルの調製法をより詳しく説明する
と、例えばゲル基剤としては硫酸基含有多糖類、
セルロース・サクシネート、カゼイン・サクシネ
ート、2−メチル−5−ビニルピリジン・メチル
アクリレート・メタクリル酸共重合体を用いる場
合は、これらの約1〜6%水溶液に所定量の酢酸
菌生菌体を添加混合したのち、該混合液を冷却す
るか、あるいはゲル化剤(例えば、塩化カリウ
ム、塩化カルシウム、塩化マグネシウム等)と接
触させ、生成したゲルを上記同様に成型すること
により、酢酸を含むゲルを調製することができ
る。ゲル基剤としてはカラギーナン、フアーセレ
ラン、硫酸セルロースのような分子内に硫酸基を
10%以上含有する多糖類を用いるのがとりわけ好
ましく、かかる基剤を用いて製した酢酸菌含有ゲ
ルは保形性、強度、弾力性などがよく、ゲル格子
もくずれることがない等の特徴を有する。 また、ゲル基剤としてポリアクリルアミドを用
いる場合は、所定量の酢酸菌を含む溶液にアクリ
ルアミドモノマー、架橋剤(例えばN・N′−メ
チレンビスアクリルアミド)、重合促進剤(例え
ばβ−ジメチルアミノプロピオニトリル)、重合
開始剤(例えば過硫酸カリウム)を加えて重合さ
せ、ついで生成したゲルを、上記同様成型すれば
酢酸菌を含むゲルを調製することができる。 尚、ゲルを調製するに際して使用される酢酸菌
体は微量でよいため、培養液から菌体を集菌する
ことなく培養液をそのまま使用することもでき
る。 このようにして調製した酢酸菌含有ゲルのイン
キユベートに際し用いる液体培地としては、通常
の酢酸発酵に用いられる栄養培地をいずれも用い
ることができ、例えば、エタノール約1〜7%、
酢酸約1〜10%を含むほか、更に酵母エキス、コ
ーンステイープリカー、ペプトンの如き有機窒素
源、ビタミン源、カルシウム塩、ナトリウム塩、
カリウム塩等酢酸菌の増殖に必要な栄養素を適宜
含有させたものを用いれば良い。該培地の使用量
には特に制限はないが、培地が少なすぎるとゲル
内での菌の増殖に支障をきたすので培地はゲル量
に対して少なくとも2倍以上使用するのが好まし
い。またインキユベートは液温約25〜40℃付近で
酸素を供給する如き好気性条件下に行なう。供給
する酸素としては空気、酸素ガスあるいはそれら
の混合気体等を適宜用いることができる。また、
空気を用いる場合は例えば、培地100mlに対して
毎分約100〜400mlも供給すれば充分である。しか
しながら、このようにしてインキユベートして
も、ゲル内の酢酸菌は対数増殖を行なつて懸濁培
養(液中の菌数1×108個/ml)と同程度の菌濃
度には達するものの、それ以上には菌濃度が上が
らないため固定化酢酸菌の利点をいまだ十分発揮
させることができない。 そのため本発明方法ではこのようなインキユベ
ーシヨンに際し、液体培地を遊離酢酸菌の比増殖
速度以上の希釈率で入れかえることを特徴とす
る。本発明において“遊離酢酸菌の比増殖速度”
とは、ゲル基剤で包括されていない、所謂培地中
に遊離の状態で存在する酢酸菌の比増殖速度(一
定量の菌株が一時間増殖して得られる菌増加量の
増殖前の菌量に対する比率)であり、使用する菌
の種類、培地組成その他の条件により若干異なる
が、例えば代表的な酢酸菌の1つであるアセトバ
クター・アセチIFO3238を後記実施例1に記載の
培地中通気条件下約30℃で培養した場合の最大比
増殖速度は概ね0.16である。 また、希釈率は、培地を連続的に入れかえる場
合新しい培地の供給量を毎時Fml、インキユベー
ト系の培地全液量をVmlとするとF÷Vとして求
められるが、供給量と流出量が等しくない場合は
流出量をFWml、1時間の初めの全液量をVmlと
するとF÷(V−FW+F)として求められる。
また半連続的に入れかえる場合、T時間当りの全
供給量をFiml、全流出量をFomlとすると、希釈
率はFi÷T÷(V−Fo+Fi)として求められる。
従来の連続酢酸発酵では菌株の対数増殖期に培地
の流加、流出を行なつて菌株の酢酸生成能を向上
させ得たといつた例は全く知られておらず、むし
ろ対数増殖期を経て菌株が希望する菌数となつて
はじめて培地の流加、流出を行なつており、更に
は通常の連続酢酸発酵では生育した菌株の菌数の
定常化することが必要であり、そのため菌株の増
殖速度より流出流出条件、即ちその比増殖速度以
上の希釈率で培地を入れかえることは発酵の失敗
を意味するが、本発明方法においては驚くべきこ
とに、上記式で求められる希釈率を遊離酢酸菌の
比増殖速度以上に調整することによつて、得られ
る固定化酢酸菌の酢酸性能並びに当該ゲル中の生
菌数を大巾に向上させることができる。この場
合、希釈率は原則的には遊離酢酸菌の比増殖速度
以上であればよく、ただ、操作条件のコントロー
ルのし易さという面を考えれば、比増殖速度より
約1.5倍以上高い希釈率とするのがとりわけ好ま
しい。酢酸菌含有ゲルのインキユベーシヨンの終
点は、培地組成、ゲル中に含まれる酢酸菌数、温
度、通気量等の培養条件によつて幾分変動する
が、一応の目安として表層内部に白色乃至黄色の
菌特有の濃密な菌層が一様に形成されるまで当該
インキユベーシヨンを続ければよく、かくしてゲ
ル表層内部の菌密度が高くかつ酢酸生産能も著し
く高い固定化酢酸を得ることができる。 以上の如く、酢酸菌を含むゲルを遊離酢酸菌の
比増殖速度以上の希釈率で培地を入れかえながら
インキユベートすることからなる本発明の固定化
酢酸菌の調製法は、これまで全く知られていない
新規方法であり、該本発明によればゲル表層内部
に高い菌密度を有し、高い酢酸生産能を有する固
定化酢酸菌を調製することができる。本発明方法
において、このように培地を酢酸菌の比増殖速度
以上で入れかえることがゲル表層内部の濃密な菌
体層の形成にどのように作用するのかその機構は
明らかではないが、これはおそらく培地の急速な
入れかえによつて培地中の酢酸菌の濃度が増加せ
ず、その結果、供給酸素がゲル表層内部の酢酸菌
にまで充分供給されることになるためではないか
と推測される。 以下、実験例、実施例によりさらに詳しく本発
明を説明する。なお本明細書において、濃度を%
で表わす場合、エタノールについては容量%、そ
の他については重量/容量%を意味する。 実験例 1 (1) (酢酸菌を含むゲルの調製) グルコース0.5%、ポリペプトン0.5%、リン
酸水素2カリウム0.2%、エタノール4%およ
び酢酸1%を含む酢酸菌用液体培地(PH3.92)
(以下、単に液体培地と略称する)に微工研酢
酸菌2号菌1白金耳を接種し、30℃で72時間振
とう培養した。この培養液30mlと滅菌処理した
4%カラギーナン水溶液90mlを35℃で混合し、
この混合液を滅菌処理した2%塩化カリウム水
溶液800ml中に、ノズルから滴下することによ
り酢酸菌を含む半透明な球状ゲル(直径:4
mm)を得た。本ゲル内の生菌体は肉眼では観察
されなかつた。 (2) (実験方法) 上記(1)で得た酢酸菌を含む球状ゲル(以下、
単にゲルと略称する)20mlおよび上記液体培地
40mlを200ml容三角フラスコに入れ、30℃で下
記A、B、CまたはDの条件下に振とうしつ
つ、インキユベートし、ゲルの表層内部に酢酸
菌の菌層を形成させた。 <インキユベート条件> A:通気条件;120ml/minの速度で空気を導通
した。 液体培地の供給・流出条件;各4ml/hr B:通気条件;Aに同じ 液体培地の供給・流出条件;各12ml/hr C:通気条件;Aに同じ 液体培地の供給・流出条件;各30ml/hr D:通気条件;120ml/minの速度で酸素ガスを
導通した。 液体培地の供給・流出条件;各30ml/hr (3) (結果) 第1表に示す通りである。本発明方法により
調製した固定化酢酸菌(B、CおよびD)には
ゲル表層内部に一様に0.05〜0.1mmの厚い、し
つかりした菌層が形成されていることが認めら
れ、またその菌層は希釈率が大きく、酸素の通
気量の多い方が一層厚く形成され、同時に酢酸
生産能も大きくなることが認められた。これに
対し、対照Aでは、ゲル表層内部に白い菌層が
形成されるが、その菌層の厚さは、いずれも
0.05mm以下の極く薄いものであることが認めら
れた。 なお、本菌を条件Aと同様の条件下、即ち培
地全液量60ml、通気条件空気120ml/min、30℃
で同一容器で振とうしつつ懸濁回分培養した場
合の最大比増殖速度は約0.17であつた。
The present invention relates to a new method for producing immobilized acetic acid bacteria. A method of producing immobilized microorganisms by incubating a gel containing microbial cells has already been reported by Hibata et al. Immobilized acetic acid bacteria with bacteria densely packed inside the gel surface layer can be produced simply by incubating under aerobic conditions in a liquid medium for acetic acid fermentation. However, with the immobilized acetic acid bacteria produced in this way, the concentration of bacteria inside the gel surface layer is not as high as expected, and therefore the acetic acid production ability is still not necessarily satisfactory. However, as a result of various research conducted by the present inventors,
When incubating a gel containing acetic acid bacteria in a liquid medium, if the medium is replaced at a dilution rate higher than the specific growth rate of free acetic acid bacteria, surprisingly, the density of acetic acid bacteria inside the gel surface increases significantly, resulting in a high concentration of acetic acid bacteria. We have found that immobilized acetic acid bacteria capable of producing acetic acid can be obtained. That is, the method for producing immobilized acetic acid bacteria of the present invention involves incubating a gel containing acetic acid bacteria in a liquid medium under aerobic conditions while replacing the medium at a dilution rate higher than the specific growth rate of free acetic acid bacteria. It is characterized by forming a particularly dense layer of acetic acid bacteria inside the surface layer of the gel. In the present invention, any acetic acid bacterium used to prepare the immobilized bacteria can be used as long as it has acetic acid-producing ability. Bacterium No. 2 (both Acetobacter genus), Acetobacter aceti
Acetobacter species such as IFO3238, or e.g. Gluconobacter suboxidans
Gluconobacter bacteria such as IFO3290 can be used as appropriate. In the present invention, preparation of a gel containing acetic acid bacteria involves
For example, carrageenan, furcerelan, agar, polysaccharides containing sulfate groups such as cellulose sulfate, polyacrylamide, polyvinyl alcohol, cellulose, succinate, casein succinate or 2-methyl-5-vinylpyridine/methyl acrylate/methacrylic acid copolymer. This can be carried out by a known gel entrapment method using coalescence, but in this case, the above-mentioned acetic acid bacteria cells are used at about 1×10 4 to 10 8 cells/ml to the gel base solution, and the gel is It is preferable to mold it into a granular or film shape with a thickness of 2 mm to 5 cm, especially about 3 to 5 mm. To explain in more detail the method for preparing the gel containing acetic acid bacteria, for example, as a gel base, a sulfate group-containing polysaccharide,
When using cellulose succinate, casein succinate, or 2-methyl-5-vinylpyridine/methyl acrylate/methacrylic acid copolymer, add and mix a predetermined amount of live acetic acid bacteria to an approximately 1-6% aqueous solution of these. After that, a gel containing acetic acid is prepared by cooling the mixture or bringing it into contact with a gelling agent (e.g., potassium chloride, calcium chloride, magnesium chloride, etc.) and molding the resulting gel in the same manner as above. can do. Gel bases include carrageenan, farcerelan, and cellulose sulfate, which have sulfate groups in their molecules.
It is particularly preferable to use a polysaccharide containing 10% or more, and the acetic acid bacteria-containing gel produced using such a base has good shape retention, strength, elasticity, etc., and the gel lattice does not collapse. have In addition, when polyacrylamide is used as a gel base, acrylamide monomer, a crosslinking agent (e.g. N·N'-methylenebisacrylamide), a polymerization accelerator (e.g. β-dimethylaminopropylamide), A gel containing acetic acid bacteria can be prepared by adding a polymerization initiator (for example, potassium persulfate) and polymerizing the gel, and then molding the resulting gel in the same manner as described above. In addition, since only a small amount of acetic acid bacteria cells are used in preparing the gel, the culture solution can be used as it is without collecting the bacteria from the culture solution. As the liquid medium used for incubating the acetic acid bacteria-containing gel prepared in this way, any nutrient medium used for normal acetic acid fermentation can be used, such as about 1 to 7% ethanol,
In addition to containing approximately 1-10% acetic acid, it also contains yeast extract, cornstarch liquor, organic nitrogen sources such as peptone, vitamin sources, calcium salts, sodium salts,
It is sufficient to use a material that appropriately contains nutrients necessary for the growth of acetic acid bacteria, such as potassium salt. There is no particular restriction on the amount of the medium to be used, but if the amount of the medium is too small, the growth of bacteria within the gel will be hindered, so it is preferable to use the medium at least twice the amount of the gel. Incubation is carried out under aerobic conditions such as at a liquid temperature of about 25 to 40° C. and oxygen is supplied. As the oxygen to be supplied, air, oxygen gas, a mixture thereof, or the like can be used as appropriate. Also,
When using air, for example, it is sufficient to supply approximately 100 to 400 ml per minute per 100 ml of the medium. However, even when incubating in this way, the acetic acid bacteria in the gel undergo logarithmic growth and reach a bacterial concentration similar to suspension culture (1 x 10 8 bacteria/ml in the solution). However, since the bacterial concentration does not increase beyond this point, the advantages of immobilized acetic acid bacteria cannot be fully demonstrated. Therefore, the method of the present invention is characterized in that during such incubation, the liquid medium is replaced at a dilution rate higher than the specific growth rate of free acetic acid bacteria. In the present invention, “specific growth rate of free acetic acid bacteria”
is the specific growth rate of acetic acid bacteria that exists in a free state in a so-called culture medium that is not enclosed in a gel base (the amount of bacteria before growth of the increased amount of bacteria obtained by growing a certain amount of bacteria for one hour). Although it varies slightly depending on the type of bacteria used, medium composition, and other conditions, for example, Acetobacter aceti IFO3238, which is one of the representative acetic acid bacteria, was used under the medium aeration conditions described in Example 1 below. The maximum specific growth rate when cultured at about 30°C is approximately 0.16. In addition, when the medium is replaced continuously, the dilution rate can be calculated as F÷V, where the supply of new medium is Fml per hour and the total volume of the incubating medium is Vml, but if the supply volume and outflow volume are not equal. is calculated as F÷(V-FW+F), where the flow rate is FWml and the total liquid volume at the beginning of one hour is Vml.
In addition, in the case of semi-continuous replacement, if the total supply amount per T time is Fiml and the total outflow amount is Foml, the dilution rate is calculated as Fi÷T÷(V-Fo+Fi).
In conventional continuous acetic acid fermentation, there is no known example in which the acetic acid production ability of a bacterial strain could be improved by adding or draining the medium during the logarithmic growth phase of the strain; The culture medium is fed and drained only when the desired number of bacteria has been reached.Furthermore, in normal continuous acetic acid fermentation, it is necessary to stabilize the number of grown strains, and therefore the growth rate of the strains is Replacement of the medium at a dilution rate higher than its specific growth rate means failure of the fermentation, but surprisingly in the method of the present invention, the dilution rate determined by the above formula is By adjusting the specific growth rate to a level higher than the specific growth rate, the acetic acid performance of the resulting immobilized acetic acid bacteria and the number of viable bacteria in the gel can be greatly improved. In this case, in principle, the dilution rate should be at least the specific growth rate of free acetic acid bacteria, but considering the ease of controlling the operating conditions, the dilution rate should be approximately 1.5 times or more higher than the specific growth rate. It is particularly preferable that The end point of incubation for acetic acid bacteria-containing gel varies somewhat depending on the culture conditions such as the medium composition, the number of acetic acid bacteria contained in the gel, temperature, and aeration volume, but as a rough guide, the end point is a white color inside the surface layer. It is sufficient to continue the incubation until a dense bacterial layer peculiar to yellow bacteria is uniformly formed, thus obtaining immobilized acetic acid with a high bacterial density inside the gel surface layer and a significantly high acetic acid production ability. I can do it. As described above, the method for preparing immobilized acetic acid bacteria of the present invention, which involves incubating a gel containing acetic acid bacteria while replacing the medium at a dilution rate higher than the specific growth rate of free acetic acid bacteria, has not been known to date. This is a novel method, and according to the present invention, immobilized acetic acid bacteria having a high bacterial density inside the gel surface layer and a high acetic acid production ability can be prepared. In the method of the present invention, the mechanism of how replacing the medium at a rate higher than the specific growth rate of acetic acid bacteria affects the formation of a dense bacterial layer inside the gel surface layer is not clear, but this is probably because It is speculated that this is because the concentration of acetic acid bacteria in the medium does not increase due to rapid replacement of the medium, and as a result, the supplied oxygen is sufficiently supplied to the acetic acid bacteria inside the gel surface layer. Hereinafter, the present invention will be explained in more detail using experimental examples and examples. In this specification, concentration is expressed as %
When expressed as , it means volume % for ethanol and weight/volume % for others. Experimental example 1 (1) (Preparation of gel containing acetic acid bacteria) Liquid medium for acetic acid bacteria (PH3.92) containing 0.5% glucose, 0.5% polypeptone, 0.2% dipotassium hydrogen phosphate, 4% ethanol, and 1% acetic acid.
(hereinafter simply referred to as liquid medium) was inoculated with 1 platinum loop of Acetobacillus acetic acid bacteria No. 2 from the Microtech Institute, and cultured with shaking at 30°C for 72 hours. 30 ml of this culture solution and 90 ml of a sterilized 4% carrageenan aqueous solution were mixed at 35°C.
By dropping this mixture dropwise from a nozzle into 800 ml of a sterilized 2% potassium chloride aqueous solution, a translucent spherical gel (diameter: 4 ml) containing acetic acid bacteria was formed.
mm) was obtained. No viable bacterial cells within this gel were observed with the naked eye. (2) (Experimental method) Spherical gel containing acetic acid bacteria obtained in (1) above (hereinafter referred to as
(simply abbreviated as gel) 20ml and the above liquid medium
40 ml of the gel was placed in a 200 ml Erlenmeyer flask and incubated at 30° C. with shaking under conditions A, B, C or D below to form a bacterial layer of acetic acid bacteria inside the surface layer of the gel. <Incubation conditions> A: Ventilation conditions; Air was passed through at a rate of 120 ml/min. Liquid medium supply/outflow conditions: 4 ml/hr each B: Ventilation conditions; Same liquid medium supply/outflow conditions as A; 12 ml/hr each C: Ventilation conditions; Same liquid medium supply/outflow conditions as A; 30 ml each /hr D: Venting conditions; oxygen gas was passed at a rate of 120 ml/min. Liquid medium supply and outflow conditions: 30 ml/hr each (3) (Results) As shown in Table 1. It was observed that the immobilized acetic acid bacteria (B, C, and D) prepared by the method of the present invention had a uniformly thick and firm bacterial layer of 0.05 to 0.1 mm formed inside the gel surface layer. It was observed that the bacterial layer was formed thicker when the dilution rate was higher and the amount of oxygen aeration was higher, and at the same time, the acetic acid production ability was also higher. On the other hand, in control A, a white bacterial layer is formed inside the gel surface layer, but the thickness of the bacterial layer is
It was confirmed that it was extremely thin, less than 0.05 mm. This bacterium was grown under the same conditions as Condition A, i.e. total volume of medium 60 ml, aeration conditions air 120 ml/min, 30°C.
The maximum specific growth rate was approximately 0.17 when suspension batch culture was carried out in the same container with shaking.

【表】 実験例 2 実験例1−(1)と同様にして得たゲルを、実験例
1−(2)と同様にして、30℃で下記E、FまたはG
の条件下に振とうしつつインキユベートし、ゲル
の表層内部に酢酸菌の菌層を形成させた。 <インキユベート条件> E:通気条件;120ml/minの速度で空気を導通し
た。 培地の入れかえ;入れかえせず F:通気条件;Eに同じ 培地の入れかえ;8時間ごとに全量入れかえ G:通気条件;Eに同じ 培地の入れかえ;4時間ごとに全量入れかえ (結果) 第2表に示す通りである。本発明方法により調
製した固定化酢酸菌(G)には、ゲル表層内部に一様
に0.05〜0.1mmのしつかりした菌層が形成されて
いることが認められ、また、その菌層は希釈率が
大きく、空気の通気量の多い方が一層厚く形成さ
れ、同時に酢酸生産能も大きくなることが認めら
れた。 これに対し、対照Eではゲル表層がまばらに白
くなる程度の菌層しか形成されず、また対照Fで
はゲル表面内部が一様に白くはなるものの、ゲル
表層内部に形成された菌層はいずれも0.05mm以下
の極く薄いものであつた。
[Table] Experimental Example 2 Gel obtained in the same manner as in Experimental Example 1-(1) was treated with the following E, F or G at 30°C in the same manner as in Experimental Example 1-(2).
The gel was incubated under shaking conditions to form a bacterial layer of acetic acid bacteria inside the surface layer of the gel. <Incubation conditions> E: Venting conditions; Air was passed through at a rate of 120 ml/min. Replace the medium; do not replace F: Aeration conditions; Replace the same medium in E; replace the entire volume every 8 hours G: Aerate conditions; replace the same medium in E; replace the entire volume every 4 hours (results) Table 2 As shown. In the immobilized acetic acid bacteria (G) prepared by the method of the present invention, it was observed that a firm bacterial layer of 0.05 to 0.1 mm was uniformly formed inside the gel surface layer, and the bacterial layer was diluted. It was found that the larger the ratio and the greater the amount of air aeration, the thicker the film was formed, and at the same time the acetic acid production capacity was also greater. On the other hand, in Control E, only a sparsely white bacterial layer was formed on the gel surface layer, and in Control F, although the inside of the gel surface became uniformly white, the bacterial layer formed inside the gel surface layer eventually disappeared. It was also extremely thin, less than 0.05 mm.

【表】 実施例 1 リンゴ果汁のアルコール発酵液(5%エタノー
ル含有)50%、酵母エキス0.1%、変性アルコー
ル(95%エタノール含有)2.5%、アルコール酢
(10%酢酸含有)20%からなる液体培地(PH
3.16)に、アセトバクター・アセチIFO3238の1
白金耳を接種し、30℃で80時間振とう培養した。
この培養液を実験例1−(1)と同様に処理すること
により直径4mmの球状ゲルを製した。 このゲル20mlに上記培地40mlを加え、木下式ボ
ールフイルターを液体培地中に挿入し、酸素ガス
を毎分120mlで通気しつつ、33℃で振とう下にイ
ンキユベートした。同時に液体培地を、30ml/h
の速度で連続して供給し、同時に同一速度で流出
させた。 かくしてインキユベート開始後4日目に、酢酸
生産能22.5ml酢酸/ml−ゲル・hr、ゲル中の生菌
数7×109個/ml−ゲルを有する固定化酢酸菌が
得られた。 この固定化酢酸菌を用いて連続酢酸発酵を行な
つたところ、固定化酢酸菌の酢酸生産能は長期間
低下せず安定した状態を維持することが認められ
た。 実施例 2 麦芽汁のアルコール発酵液(5%エタノール含
有)50%、変性アルコール(95%エタノール含
有)2.5%、アルコール酢(10%酢酸含有)20%
からなる液体培地(PH2.87)に、グルコノバクタ
ー・サブオキシダンスIFO3290の1白金耳を接種
し、30℃で72時間振とう培養した。この培養液
を、実験例1−(1)と同様に処理することにより直
径4mmの球状ゲルを製した。 このゲル20mlに上記培地40mlを加え、木下式ボ
ールフイルターを液体培地中に挿入し、酸素ガス
と空気の混合気体(1:1)を毎分120mlで通気
しつつ、30℃で振とう下にインキユベートし、4
時間ごとに培地を全量入れかえた。なお、本菌を
上記と同一容器、同一条件下で懸濁回分培養した
場合の最大比増殖速度は約0.15であつた。 かくしてインキユベート開始後4日目に、酢酸
生産能3.1mg酢酸/ml−ゲル・hr、ゲル中の生菌
数1×109個/ml−ゲルを有する固定化酢酸菌を
得た。 この固定化酢酸菌を用いて酢酸発酵をくり返し
行なつたところ、固定化酢酸菌の酢酸生産能は10
回くり返しても低下せず安定した状態を維持する
ことが認められた。
[Table] Example 1 Liquid consisting of 50% alcoholic fermentation liquid of apple juice (containing 5% ethanol), 0.1% yeast extract, 2.5% denatured alcohol (containing 95% ethanol), and 20% alcohol vinegar (containing 10% acetic acid) Medium (PH
3.16), Acetobacter aceti IFO3238 1
Platinum loops were inoculated and cultured with shaking at 30°C for 80 hours.
This culture solution was treated in the same manner as in Experimental Example 1-(1) to produce a spherical gel with a diameter of 4 mm. 40 ml of the above medium was added to 20 ml of this gel, a Kinoshita ball filter was inserted into the liquid medium, and the mixture was incubated at 33°C with shaking while aerating oxygen gas at 120 ml/min. At the same time, add liquid medium at 30ml/h.
It was fed continuously at a rate of , and simultaneously discharged at the same rate. Thus, on the fourth day after the start of incubation, immobilized acetic acid bacteria having an acetic acid production capacity of 22.5 ml acetic acid/ml-gel/hr and a number of viable bacteria in the gel of 7 x 109 cells/ml-gel were obtained. When continuous acetic acid fermentation was carried out using this immobilized acetic acid bacteria, it was found that the acetic acid production ability of the immobilized acetic acid bacteria did not decrease over a long period of time and remained stable. Example 2 Alcoholic fermentation liquid of wort (containing 5% ethanol) 50%, denatured alcohol (containing 95% ethanol) 2.5%, alcoholic vinegar (containing 10% acetic acid) 20%
One platinum loopful of Gluconobacter suboxidans IFO3290 was inoculated into a liquid medium (PH 2.87) consisting of Gluconobacter suboxidans IFO3290, and cultured with shaking at 30°C for 72 hours. This culture solution was treated in the same manner as in Experimental Example 1-(1) to produce a spherical gel with a diameter of 4 mm. Add 40 ml of the above medium to 20 ml of this gel, insert a Kinoshita ball filter into the liquid medium, and aerate a mixed gas of oxygen gas and air (1:1) at 120 ml per minute while shaking at 30°C. incubate, 4
The entire amount of the medium was replaced every hour. Furthermore, when this bacterium was cultured in suspension batches in the same container and under the same conditions as above, the maximum specific growth rate was approximately 0.15. Thus, on the fourth day after the start of incubation, immobilized acetic acid bacteria having an acetic acid production capacity of 3.1 mg acetic acid/ml-gel/hr and a number of viable bacteria in the gel of 1 x 109 cells/ml-gel were obtained. When acetic acid fermentation was repeated using this immobilized acetic acid bacteria, the acetic acid production capacity of the immobilized acetic acid bacteria was 10
It was observed that the temperature remained stable even after repeated cycles without decreasing.

Claims (1)

【特許請求の範囲】[Claims] 1 酢酸菌を含むゲルを、液体培地中好気性条件
下でかつ遊離酢酸菌の比増殖速度以上の希釈率で
培地を入れかえながら、インキユベートすること
を特徴とする固定化酢酸菌の製法。
1. A method for producing immobilized acetic acid bacteria, which comprises incubating a gel containing acetic acid bacteria in a liquid medium under aerobic conditions while replacing the medium at a dilution rate higher than the specific growth rate of free acetic acid bacteria.
JP9488280A 1980-07-10 1980-07-10 Production of immobilized acetobacter cells Granted JPS5718986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9488280A JPS5718986A (en) 1980-07-10 1980-07-10 Production of immobilized acetobacter cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9488280A JPS5718986A (en) 1980-07-10 1980-07-10 Production of immobilized acetobacter cells

Publications (2)

Publication Number Publication Date
JPS5718986A JPS5718986A (en) 1982-01-30
JPS6143035B2 true JPS6143035B2 (en) 1986-09-25

Family

ID=14122414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9488280A Granted JPS5718986A (en) 1980-07-10 1980-07-10 Production of immobilized acetobacter cells

Country Status (1)

Country Link
JP (1) JPS5718986A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU599987B2 (en) * 1986-06-13 1990-08-02 House Food Industrial Company Limited Method for reducing off-flavor in food materials with acetic acid bacteria

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135295A (en) * 1978-04-07 1979-10-20 Tanabe Seiyaku Co Ltd Immobilization of microorganisms

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54135295A (en) * 1978-04-07 1979-10-20 Tanabe Seiyaku Co Ltd Immobilization of microorganisms

Also Published As

Publication number Publication date
JPS5718986A (en) 1982-01-30

Similar Documents

Publication Publication Date Title
Park et al. Cellulose production by Gluconacetobacter hansenii in a medium containing ethanol
Moraine et al. Kinetics of the xanthan fermentation
CN109468259B (en) Culture medium for promoting spore generation
JPS61209590A (en) Novel immobilized cell and method for fermentative production utilizing same
CA2011845A1 (en) Biosynthesis of hyaluronic acid
US4535059A (en) Muconic acid productivity by a stabilized mutant microorganism population
Berry et al. Effect of growing conditions of recombinant E. coli in carrageenan gel beads upon biomasse production and plasmid stability
US4692408A (en) Fermentation process for the production of polysaccharides
Nampoothiri et al. Immobilization of Brevibacterium cells for the production of L-glutamic acid
JPS6154292A (en) Two-phase mathane fermenting method by immobilized microbe
JP7151049B2 (en) How to grow microorganisms
JPS6143035B2 (en)
JPS58158185A (en) Breeding of amino acid-producing bacteria having improved rate of growth
US4166004A (en) Process for the preparation of single cell protein using Methylmonas clara ATCC 31226
US5273891A (en) Process for the production of microbial cellulose
JPH10127298A (en) Fermentation by controlling osmol concentration for preparation of acarbose
CA1327536C (en) Process for the production of microbial cellulose
JP3074781B2 (en) Production method of L-lysine by fermentation method
JPH01225487A (en) Method for utilizing cellulose in bioreactor carrier aiming at production of citric or gluconic acid with aspergillus niger
CN111172212A (en) Fermentation method of high-content polyglutamic acid
US4042460A (en) Method for producing glucose isomerase
Simpson et al. Use of pH auxostats to grow filamentous fungi in continuous flow culture at maximum specific growth rate
SU1694643A1 (en) Strain of bacteria escherichia coli - a producer of l-threonine
JPS6154291A (en) Formation of methane by immobilized microbe
KR910000464B1 (en) Producing method for single cell protein