JPS6142894A - Thin film el panel - Google Patents

Thin film el panel

Info

Publication number
JPS6142894A
JPS6142894A JP59161812A JP16181284A JPS6142894A JP S6142894 A JPS6142894 A JP S6142894A JP 59161812 A JP59161812 A JP 59161812A JP 16181284 A JP16181284 A JP 16181284A JP S6142894 A JPS6142894 A JP S6142894A
Authority
JP
Japan
Prior art keywords
zns
panel
thin film
insulating layer
beo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59161812A
Other languages
Japanese (ja)
Inventor
富造 松岡
純 桑田
雅博 西川
洋介 藤田
任田 隆夫
阿部 惇
新田 恒治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59161812A priority Critical patent/JPS6142894A/en
Publication of JPS6142894A publication Critical patent/JPS6142894A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は今後情報化社会の流れに沿って、特にOAの分
野において必要性が大きくなってくるフラットディスプ
レイパネルの中で、薄膜ELパネルに関するものである
。ELパネルは液晶やエレクトロクロミックディスプレ
イパネルと異シ全固体式の自己発光型で暗所でも見易く
、視野角依存性も少ない。また薄型、軽量で画面の高f
#細度化が容易であり、更にチラッキがないという特徴
を持つため、パソコンやワードプロセッサーのキャラク
タ−およびグラフィックディスプレイとして最適なもの
である。
[Detailed Description of the Invention] Industrial Application Field The present invention relates to a thin film EL panel among flat display panels that will become increasingly necessary in the future, especially in the field of office automation, in line with the trend of information society. be. EL panels differ from liquid crystal and electrochromic display panels in that they are all-solid-state, self-luminous, easy to see even in the dark, and less dependent on viewing angle. It is also thin, lightweight, and has a high screen f.
# Because it is easy to refine and has the characteristics of no flicker, it is ideal for character and graphic displays for personal computers and word processors.

従来例の構成とその問題点 一般にELフラットパネルは、ガラス基板の上に、透明
電極、第1絶縁層、螢光体層、第2絶縁層、および背面
電極の順に積層した構造を持つ。
Conventional Structure and Problems Generally, an EL flat panel has a structure in which a transparent electrode, a first insulating layer, a phosphor layer, a second insulating layer, and a back electrode are laminated in this order on a glass substrate.

透明電極としては、InとSn  の混晶酸化物、絶縁
体層は、Y2O3,Ta205.A12o3.Si3N
4゜T iO2、S r T 103. B a T 
t O3およびP b T iOs等が従来用いられて
きた。また螢光体層としてはZnS:MnあるいはZ 
n S ’、 T b F 3が多く使用されている。
The transparent electrode is a mixed crystal oxide of In and Sn, and the insulator layer is Y2O3, Ta205. A12o3. Si3N
4°T iO2, S r T 103. B a T
tO3 and PbTiOs have been conventionally used. In addition, as the phosphor layer, ZnS:Mn or Z
n S ', T b F 3 are often used.

上記構成でストライプ状透明電極および背面電極で直交
マトリックスを形成し、線順次駆動方式で動作させた場
合、スキャン側すなわち横ライン電極の数が増すほどパ
ネルの輝度が下り、現在のところパネルの大型化に限度
がある、横ラインが5oo本以上は実用的に輝度が不足
している。
In the above configuration, when an orthogonal matrix is formed with striped transparent electrodes and back electrodes and operated in a line-sequential driving method, the brightness of the panel decreases as the number of scan side, ie, horizontal line electrodes increases. If there are more than 50 horizontal lines, the brightness is insufficient for practical use.

発明の目的 本発明は従来より高い輝度を持つ薄膜ELパネルを提供
することを目的とする。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a thin film EL panel that has higher brightness than the prior art.

発明の構成 ELパネルの明るさは、たとえばZnS:Mn螢光体層
を用いた場合、その厚さが一定とすると、Mnの濃度、
ZnS:Mn層と絶縁体層の界面状態およびZnS:M
n層の結晶性に依存する。界面状態については不明な点
が多いが、Mn 濃度はほぼ0.8原子チが最適であり
、結晶性は良ければ良い程高い輝度が得られる。
For example, when using a ZnS:Mn phosphor layer and assuming a constant thickness, the brightness of an EL panel according to the structure of the invention depends on the concentration of Mn,
Interface state between ZnS:Mn layer and insulator layer and ZnS:M
It depends on the crystallinity of the n-layer. Although there are many unknowns regarding the interface state, the optimal Mn concentration is approximately 0.8 atoms, and the better the crystallinity, the higher the brightness can be obtained.

本発明はこの結晶性に着眼し、ZnS:Mn薄膜の形成
条件が同じなら、ZnS:Mnを形成する下地の化合物
すなわち第1絶縁層の種類に結晶性が大きく影響を受け
ることを見い出し、種々検討した結果、BeOが下地の
場合極端にZnS:Mn膜の結晶性改善に効果的であっ
たので、それを応用してELパネルの輝度向上を図るこ
とに成功したものである。このBeO薄膜で第1絶縁層
のすべてを形成してもよいし、また、ZnS:Mn薄膜
と接する一部分のみに形成した2層以上の第1絶縁層の
形であっても効果がある。後者の場合、絶縁破壊耐圧の
高い絶縁膜と組合せて第一絶縁層を形成し、安定なEL
パネルを作成できる。
The present invention focused on this crystallinity, and found that if the formation conditions of the ZnS:Mn thin film are the same, the crystallinity is greatly influenced by the underlying compound for forming the ZnS:Mn, that is, the type of the first insulating layer. As a result of the study, it was found that BeO as the base is extremely effective in improving the crystallinity of the ZnS:Mn film, and by applying this, they succeeded in improving the brightness of EL panels. The entire first insulating layer may be formed of this BeO thin film, or it is also effective to form the first insulating layer of two or more layers only in a portion in contact with the ZnS:Mn thin film. In the latter case, the first insulating layer is formed in combination with an insulating film with high dielectric breakdown voltage, resulting in stable EL.
You can create panels.

実施例の説明 以下本発明の実施例について詳細に説明する。Description of examples Examples of the present invention will be described in detail below.

実施例 1 1n、Sn混晶酸化物透明電極(ITO)をIn。Example 1 1n, Sn mixed crystal oxide transparent electrode (ITO).

Sn合金をターゲットとした直流活性スパッター法でガ
ラス上に形成した基板を2枚用意した。一方に、Yメタ
ルを用いたEB活性蒸着法でY2O3薄膜12500人
、他方にBeO酸化物をターゲットにした高周波スパッ
ター法でBeO薄膜を同じ(2500Aの厚さに形成し
た。両者とも基板温度は200Cで、ガスおよびそ゛の
圧力はY2O3が4X10  torrの02 、 B
 e Oが6 X 10  torrのAr+5040
2である。
Two substrates formed on glass by direct current activated sputtering using a Sn alloy as a target were prepared. On the one hand, a 12,500 Y2O3 thin film was formed using the EB active evaporation method using Y metal, and on the other hand, a BeO thin film of the same thickness (2,500 A) was formed using a high-frequency sputtering method targeting BeO oxide.The substrate temperature for both was 200C. The gas and its pressure are 02, B, where Y2O3 is 4X10 torr.
e O is 6 x 10 torr Ar+5040
It is 2.

以後の調造プロセスにおいては上記2枚の基板について
全く同時に作成していった。まず、O,S原子−のMn
を含むZnS:Mn螢光体薄膜をEB蒸着法で4000
人の厚さに形成し、その後真空中で560℃の温度で1
時間アニールを行った。
In the subsequent preparation process, the above two substrates were prepared at the same time. First, O, S atoms - Mn
ZnS:Mn phosphor thin film containing
Formed to human thickness and then heated at 560°C in vacuum for 1
Time annealing was performed.

ついで前記Y2O3膜を同じ製法で再び2600人形成
し、最後忙背面電極としてA7金属を蒸着した。
Next, 2,600 Y2O3 films were formed again using the same manufacturing method, and A7 metal was deposited as a final back electrode.

以上のようにして作成したELパネルを5KHzの正弦
波で駆動し、その電圧、輝度特性を第1図に示した。図
中曲線1はガラス/ITo/Y2O3/ Z n S 
: Mn / Y2O3/ A、llパネルの、2はガ
ラス/ITo/BeO/ZnS:Mn/Y2O3/Al
パネルの特性を示した。ZnS:Mn螢光膜の厚さが同
じであるKもかかわらず、第1絶縁層としてBeO薄膜
を使用したパネルは約1.5倍の輝度向上が見られる。
The EL panel prepared as described above was driven with a 5 KHz sine wave, and its voltage and brightness characteristics are shown in FIG. Curve 1 in the figure is glass/ITo/Y2O3/ZnS
: Mn/Y2O3/A, 1 panel, 2 is glass/ITo/BeO/ZnS: Mn/Y2O3/Al
The characteristics of the panel were shown. Although the thickness of the ZnS:Mn phosphor film is the same, the brightness of the panel using the BeO thin film as the first insulating layer is about 1.5 times higher.

X線回折で両者のZnS:Mn薄膜を調べた結果、第1
絶縁層がBeOの方が111ピークの強度が約2倍大き
かった。この結晶性の良さが輝度向上に結びついている
As a result of examining both ZnS:Mn thin films by X-ray diffraction, the first
When the insulating layer was BeO, the intensity of the 111 peak was about twice as high. This good crystallinity is linked to improved brightness.

実施例 2 実施例1と同じITOをコートしたガラス基板上に、S
rTiO3薄膜をその酸化物セラミックをターゲットと
し、8X10  torrの80%O2を含むArガス
中、基板温度400℃で高周波スパッター法でESOO
Oへの厚さに形成した。5rTiQ3薄膜を付けた後そ
れを2分割し、一方に更に実施例1と同じ方法でBeO
薄膜を600人積層した。
Example 2 S was placed on the same ITO-coated glass substrate as in Example 1.
The rTiO3 thin film was subjected to ESOO using the high-frequency sputtering method at a substrate temperature of 400°C in Ar gas containing 80% O2 at 8X10 torr using its oxide ceramic as a target.
It was formed to a thickness of O. After applying the 5rTiQ3 thin film, it was divided into two parts, and one part was further coated with BeO in the same manner as in Example 1.
600 people laminated the thin film.

以後2枚とも実施例1と同様にして同時にZnS:Mn
Thereafter, both ZnS:Mn sheets were processed in the same manner as in Example 1.
.

Y2O3およびAlと積み重ねてゆき、ELパネルを完
成した。それらの電圧、輝度特性を図の3゜4曲線ニ示
しり。曲線3は、/77 ス/ I T O/ S r
’r 103/ Z n S :Mn / Y 20 
s / A l 、 4はガラス/ITO/5rTio
  /Bed/ZnS:Mn/Y2O3/A/  バネ
ルの特性を示した。SrTiO3薄膜は誘電率が約14
0と高いため、発光開始電圧が実施例1の第1絶縁層と
してY2O3やBooを用いた場合よりも低い。
By stacking it with Y2O3 and Al, an EL panel was completed. Their voltage and brightness characteristics are shown in the 3°4 curve in the figure. Curve 3 is /77 S/ I T O/ S r
'r 103/ZnS:Mn/Y20
s/A l, 4 is glass/ITO/5rTio
/Bed/ZnS:Mn/Y2O3/A/ The characteristics of the panel were shown. The dielectric constant of SrTiO3 thin film is about 14
0, the emission start voltage is lower than that in the case of using Y2O3 or Boo as the first insulating layer in Example 1.

曲線3,4の比較からBooをZnS:Mn側にしたS
 r T 103+ B e Oの2層形第1絶縁層の
方が単に5rTiOsの場合よシも約1.5倍輝度が高
い。
From the comparison of curves 3 and 4, S with Boo on the ZnS:Mn side
The bilayer type first insulating layer of r T 103+ B e O has a brightness about 1.5 times higher than that of just 5rTiOs.

一般にSrTiO3上にZnS:Mnを形成すると、Y
2O3の場合と比較してもZnS:Mnの111X線回
ビークはかなり弱い。しかし上記の様にZnS:1vl
nと接する側をBeOにした2層形第1絶縁層の場合は
その上に積層するZnS:Mnの111回折ピークがB
eOがない場合に比較し4倍程度強くなる。このことが
ELパネルの輝度向上に結びついている。
Generally, when ZnS:Mn is formed on SrTiO3, Y
The 111 X-ray peak of ZnS:Mn is considerably weaker than that of 2O3. However, as mentioned above, ZnS: 1vl
In the case of a two-layer first insulating layer with BeO on the side in contact with n, the 111 diffraction peak of ZnS:Mn layered thereon is B
It becomes about 4 times stronger than when there is no eO. This leads to improved brightness of the EL panel.

実施例 3 実施例2と全く同じ構造であるがZnS:Mnのかわり
に緑色発光のZ n S :T b F s螢光体薄膜
を用いた。ZnSに対して2重量%のTbF3を含んだ
粉末をターゲットにして2X10  torrのAr中
で、基板温度200℃で高周波スパッター法にてZ n
 S ”、 T b F s薄膜を作成した。その後の
アニール温度は400℃で1時間である。ELパネルの
電圧、輝度特性を第1図の6.6曲線で示した。6はガ
ラx / I T O/ S r T 103/ Z 
n S :T b F s/Y20s/AI I 6は
ガラス/ITo/SrTiO3/BeO/ZnS:Tb
F3/Y2o3/Ag構造のELパネルの特性を示した
。実施例1.2と同様なりeOの効果が観測された。
Example 3 The structure was exactly the same as in Example 2, but a green-emitting ZnS:TbFs phosphor thin film was used instead of ZnS:Mn. Using a powder containing 2% by weight of TbF3 with respect to ZnS as a target, Zn was sputtered using high frequency sputtering at a substrate temperature of 200°C in Ar at 2X10 torr.
S'', T b Fs thin film was created.The subsequent annealing temperature was 400°C for 1 hour.The voltage and brightness characteristics of the EL panel are shown in curve 6.6 in Figure 1. 6 is a glass x/ I T O/ S r T 103/ Z
n S: T b F s/Y20s/AI I 6 is glass/ITo/SrTiO3/BeO/ZnS:Tb
The characteristics of the EL panel with F3/Y2o3/Ag structure were shown. Similar to Example 1.2, the effect of eO was observed.

発明の効果 以上のように本発明によれば実施例1,2.3で示され
たように、BeOまたはBooと他の絶縁層を重ねた複
合第1絶縁層を用いることによってELパネルの輝度を
約1.6倍にでき、パネルの大型化に効果的で、ELパ
ネルの実用性を一層高め得る。
Effects of the Invention As described above, according to the present invention, as shown in Examples 1 and 2.3, by using a composite first insulating layer in which BeO or Boo and another insulating layer are stacked, the brightness of an EL panel can be improved. can be increased by about 1.6 times, which is effective for increasing the size of the panel, and can further improve the practicality of the EL panel.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の薄膜ELパネル説明のための特性図である
The figure is a characteristic diagram for explaining the thin film EL panel of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  ガラス基板上に透明電極を、その上に第1絶緑層を、
その上にZnS系螢光体層をその上に第2絶縁層および
背面電極を積層し、前記第1絶縁層の全部あるいは一部
をBeOで構成し、このBeOが必ず螢光体層に接する
ようにしたことを特徴とする薄膜ELパネル。
A transparent electrode is placed on a glass substrate, and a first green layer is placed on top of the transparent electrode.
A ZnS-based phosphor layer is laminated thereon, and a second insulating layer and a back electrode are laminated thereon, and all or part of the first insulating layer is made of BeO, and this BeO is always in contact with the phosphor layer. A thin film EL panel characterized by:
JP59161812A 1984-08-01 1984-08-01 Thin film el panel Pending JPS6142894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59161812A JPS6142894A (en) 1984-08-01 1984-08-01 Thin film el panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59161812A JPS6142894A (en) 1984-08-01 1984-08-01 Thin film el panel

Publications (1)

Publication Number Publication Date
JPS6142894A true JPS6142894A (en) 1986-03-01

Family

ID=15742377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59161812A Pending JPS6142894A (en) 1984-08-01 1984-08-01 Thin film el panel

Country Status (1)

Country Link
JP (1) JPS6142894A (en)

Similar Documents

Publication Publication Date Title
EP0111568A1 (en) Thin film electric field light-emitting device
JPS6142894A (en) Thin film el panel
JPH0148631B2 (en)
JPS63279597A (en) Thin film electroluminescent element and manufacture thereof
JPS6359519B2 (en)
JPH0516158B2 (en)
JPS63994A (en) Manufacture of thin film electric field light emission device
JPS6035496A (en) El panel
JPS6345797A (en) Thin film light emitting device
JPH03112089A (en) Thin film el element
JPS6298597A (en) Thin film el device
JPH0214711B2 (en)
JPS61188895A (en) Thin film el panel
JPS5832393A (en) Thin film electric field light emitting element
JPH0634389B2 (en) Method of manufacturing thin film light emitting device
JPS62237694A (en) Thin film el device and manufacture of the same
JPS6314833B2 (en)
JPS63224187A (en) Method of forming ferrodielectric thin film
JPS63213292A (en) Manufacture of thin film el device
JPS60200491A (en) El panel
JPH0726196B2 (en) Method of forming alumina thin film
JPS63224188A (en) Method of forming ferrodielectric thin film
JPH02213090A (en) Thin film el panel and manufacture thereof
JPH0632308B2 (en) Thin film electroluminescent device and method of manufacturing the same
JPS62113389A (en) Thin film el device