JPS6142314A - Fabric for separating colloidal fine particles - Google Patents

Fabric for separating colloidal fine particles

Info

Publication number
JPS6142314A
JPS6142314A JP59165121A JP16512184A JPS6142314A JP S6142314 A JPS6142314 A JP S6142314A JP 59165121 A JP59165121 A JP 59165121A JP 16512184 A JP16512184 A JP 16512184A JP S6142314 A JPS6142314 A JP S6142314A
Authority
JP
Japan
Prior art keywords
fabric
water
multifilament
fine particles
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59165121A
Other languages
Japanese (ja)
Other versions
JPH041650B2 (en
Inventor
Tokuki Goto
後藤 徳樹
Itsuo Tanaka
逸雄 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP59165121A priority Critical patent/JPS6142314A/en
Publication of JPS6142314A publication Critical patent/JPS6142314A/en
Publication of JPH041650B2 publication Critical patent/JPH041650B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To separate a large number of colloid solutions each comprising a small amount in an extremely easy manner, by applying water guiding processing to a fabric comprising fibers each having recessed parts formed to the surface thereof in the axial direction. CONSTITUTION:A polyester or polyamide synthetic fiber multifilament is constituted of monofilaments each having at least one of a continuous groove shaped recessed part provided to the surface thereof in the fiber axis direction. The fineness of the monofilament is 1-5d, the total fineness of the multifilament is 50-100d and twisting is applied so as to adjust the number of twists to 100- 2,000 times/m. This multifilament is used to obtain a fabric wherein the sum of warp yarn density and weft yarn density is 210 piece/inch or more. Water guiding processing is preliminarily applied to this fabric.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、コロイド溶液から微粒子と分散媒とを分離す
る際に用いるコロイド状微粒子分離用織物に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a fabric for separating colloidal fine particles used when separating fine particles and a dispersion medium from a colloidal solution.

(口)従来の技術 従来、粒径が0.5〜20Iin+程度の微粒子のコロ
イド溶液から、該微粒子と分散媒とを分離する際の分離
材としては、限外濾過膜がよく知られている。例えば、
セルローズアセテート膜,コロジオン膜,ゼラチン膜,
セロファン膜,スルホン化スチレン膜などがある。これ
らの限外濾過膜は、0、5μm以下の細孔を無数に有し
ており、加圧することによって、分散媒即ち水が細孔を
通って濾過膜を容易に通過することができ、一方水中に
分散している微粒子は濾過膜を容易に通過できず、この
特性を利用して両者を分離することができる。
(Example) Conventional technology Ultrafiltration membranes have been well known as a separation material for separating fine particles and a dispersion medium from a colloidal solution of fine particles with a particle size of about 0.5 to 20 Iin+. . for example,
Cellulose acetate membrane, collodion membrane, gelatin membrane,
Examples include cellophane membranes and sulfonated styrene membranes. These ultrafiltration membranes have countless pores of 0.5 μm or less, and by applying pressure, the dispersion medium, that is, water, can easily pass through the filtration membrane through the pores. Fine particles dispersed in water cannot easily pass through a filtration membrane, and this property can be used to separate the two.

又、他の方法として、遠心分離器を使用し、コロイド状
微粒子と分散媒との比重差を利用して分離する方法もよ
く知られている。これらの方法は、比較的多量に分離す
る場合などに極めて有効な方法であるが、コロイド溶液
中の微粒子又は分散媒の検査などで、少量かつ多数の試
料を短時間に行う場合には不適当な方法である。例えば
、廃水中のコロイド状微粒子を除去した後の水の含有成
分を調査する場合などで、調査の内容によっては、少量
の試料で十分な場合があり、そのような際には上記のご
とき分離方法は、煩雑な操作と時間を要して不便な方法
である。
Another well-known method is to use a centrifugal separator and utilize the difference in specific gravity between colloidal particles and a dispersion medium to separate them. Although these methods are extremely effective when separating relatively large amounts, they are not suitable when testing a large number of small quantities of samples in a short period of time, such as when inspecting fine particles in colloidal solutions or dispersion media. This is a great method. For example, when investigating the contents of water after colloidal particles have been removed from wastewater, a small amount of sample may be sufficient depending on the nature of the investigation. This method is inconvenient as it requires complicated operations and time.

(ハ)発明が解決しようとする問題点 本発明は、少量かつ多数のコロイド溶液の、微粒子と分
散媒との分離を、従来の限外濾過法あるいは遠心分離法
のごとく煩雑な操作を要することなく、極めて容易に実
施し得るコロイド状微粒子分離用織物を提供しようとす
るものである。
(c) Problems to be Solved by the Invention The present invention requires complicated operations similar to conventional ultrafiltration or centrifugation methods to separate fine particles from a dispersion medium in a small amount of a large number of colloidal solutions. The object of the present invention is to provide a fabric for separating colloidal particles that can be carried out extremely easily.

(ニ)問題点を解決するための手段及び作用本発明は、
単フィラメントの繊度1〜5d、総繊度50〜100d
、撚数100〜2000回/米の合成繊維マルチフィラ
メント糸からなる、経糸密度及び緯糸密度の和が210
本/吋以上の織物であって、該織物中の全単フィラメン
トの少なくとも半数が繊維表面に繊維軸方向に少なくと
も1個の連続した凹部を有し、さらに該織物に導水加工
が施されてなることを特徴とするコロイド状微粒子分離
用織物である。
(d) Means and action for solving the problems The present invention includes:
Single filament fineness 1~5d, total fineness 50~100d
, made of synthetic fiber multifilament yarn with 100 to 2000 twists per rice, the sum of warp density and weft density is 210
A woven fabric having a diameter of 1/2 or more, in which at least half of all single filaments in the woven fabric have at least one continuous recess in the fiber axis direction on the fiber surface, and the woven fabric is further subjected to a water-conducting treatment. This is a fabric for separating colloidal particles, which is characterized by the following.

すなわち、本発明のコロイド状微粒子分離用織物(以下
分離用織物という、)の特徴とするところの第1点は、
織物を構成する糸条が、単フィラメント繊度1〜5d、
総繊度50〜100d、IM数100〜2000回/米
の合成繊維マルチフィラメント糸であって、かつ織物中
の全単フィラメントの少なくとも半数が表面に繊維軸方
向に少なくとも1個の連続する凹部が形成されているこ
とであり、その第2点は、織物が経糸密度と緯糸密度の
和として210本/吋以上の織密度を有していることで
あり、さらに第3点は、織物に導水加工が施されている
ことである。
That is, the first feature of the colloidal fine particle separation fabric of the present invention (hereinafter referred to as separation fabric) is:
The yarn constituting the fabric has a single filament fineness of 1 to 5 d,
Synthetic fiber multifilament yarn with a total fineness of 50 to 100 d and an IM number of 100 to 2,000 times/US, and at least half of all single filaments in the woven fabric have at least one continuous concavity formed on the surface in the fiber axis direction. The second point is that the woven fabric has a weaving density of 210 threads/inch or more as the sum of the warp density and the weft density, and the third point is that the woven fabric has a water conductive treatment. This means that

そして、本発明の分離用織物は、上記の構造−1xの特
徴により、繊維間隙のキャピラリ現象が有効に作用して
、加圧等のエネルギーを要することなく、片面側に供給
したコロイド溶液の分散媒のみを通過させて他面側へ移
行させ、微粒子と分離することができる。
Due to the feature of the structure-1x described above, the separation fabric of the present invention allows the capillary phenomenon in the fiber gaps to effectively act to disperse the colloidal solution supplied to one side without requiring energy such as pressurization. Only the medium is allowed to pass through and transferred to the other side, allowing it to be separated from the fine particles.

本発明の分離用織物の素材繊維は、ポリエステル系合成
繊維、ポリアミド系合成繊維等の合成繊維マルチフィラ
メント糸である。合成繊維は、疎水性で吸水性が少なく
、水に対して寸法安定性が良好で、繊維間隙の形態保持
性が極めて良く、特にポリエステル系合成繊維は本発明
の分離用織物の他の特徴の一つである、導水加工を苛性
ソーダ水溶液によるエツチングなどにより容易に施すこ
とができて、最も好ましい。ポリエステル系合成繊維と
しては、ポリエチレンテレフタレート繊維のほか、ポリ
エチレンテレフタレートを主成分とし、イソフタル酸、
バラオキシ安息香酸等の少量の第三成分を共重合した共
重合ポリエステル繊維も用いることができる。又ポリア
ミド系合成繊維としては、ナイロン6、ナイロン66な
どの繊維があげられる。その他ポリプロピレン繊維、ポ
リエチレン繊維等のポリオレフィン系繊維も用いられる
。又これらの繊維を混用してもよい。
The material fibers of the separating fabric of the present invention are synthetic fiber multifilament yarns such as polyester synthetic fibers and polyamide synthetic fibers. Synthetic fibers are hydrophobic, have low water absorption, have good dimensional stability against water, and have extremely good shape retention in fiber gaps.In particular, polyester synthetic fibers have other characteristics of the separation fabric of the present invention. One of the most preferable methods is that it can be easily carried out by etching with an aqueous solution of caustic soda. In addition to polyethylene terephthalate fibers, polyester synthetic fibers include polyethylene terephthalate as a main component, isophthalic acid,
Copolymerized polyester fibers copolymerized with a small amount of a third component such as roseoxybenzoic acid can also be used. Examples of polyamide synthetic fibers include fibers such as nylon 6 and nylon 66. Other polyolefin fibers such as polypropylene fibers and polyethylene fibers can also be used. Also, these fibers may be used in combination.

本発明の分離用織物を構成する上記合成繊維マルチフィ
ラメント糸は、単フィラメントの繊度が1〜5d、総繊
度50〜100dで、100〜2000回/米の撚数に
加燃され、さらに織物中の全単フィラメントの半数以上
が表面に繊維軸方向に少な(とも−個の連続した溝状の
凹部を有する単フィラメント、即ち繊維の横断面形状が
コ字形、Y字形。
The synthetic fiber multifilament yarn constituting the separation fabric of the present invention has a single filament fineness of 1 to 5 d, a total fineness of 50 to 100 d, is heated to a twist number of 100 to 2000 twists per square inch, and is further twisted in the woven fabric. More than half of all single filaments have a small number of continuous groove-like recesses in the fiber axis direction on the surface, that is, the cross-sectional shape of the fiber is U-shaped or Y-shaped.

十字形、梅形、ひとで形あるいはそれらの変形状などの
異形断面の単フィラメント(以下異形断面単フィラメン
トという。)で構成されている。上記のごとく、織物中
の全単フィラメントの半数以上が異形断面単フィラメン
トであることが必要であるが、その態様としては、例え
ばi)全てが異形断面単フィラメントからなるマルチフ
ィラメント糸を経糸及び緯糸の双方に用いる場合、及び
経糸又は緯糸のいずれか一方に用い、他方は通常の円形
断面単フィラメントからなるマルチフィラメント糸を用
いる場合、ii)全てが異形断面単フィラメントからな
るマルチフィラメント糸と通常の円形断面単フィラメン
トからなるマルチフィラメント糸とを1本ないし数本ご
とに交互に用いる場合。
It is composed of single filaments with irregular cross-sections such as cross-shaped, plum-shaped, human-shaped, or modified shapes (hereinafter referred to as irregular cross-section single filaments). As mentioned above, it is necessary that more than half of all the single filaments in the fabric are single filaments of irregular cross section.For example, i) multifilament yarns consisting entirely of single filaments of irregular cross section are used in the warp and weft. ii) When using a multifilament yarn consisting of a single filament with an irregular cross section and a multifilament yarn consisting of a single filament with an irregular cross section and a single filament with a regular circular cross section, When one or several multifilament yarns consisting of circular cross-section single filament yarns are used alternately.

さらにiii )異形断面単フィラメントと通常の円形
断面単フィラメントとを前者が半数以上となるごとく混
繊して1本のマルチフィラメント糸とし、それを単独で
用いるか、又は全て異形断面単フィラメントからなるマ
ルチフィラメント糸と混用する場合、iv)上記i )
 、  ii) 、  1ii)の組合せ、などいずれ
でもよいが、できるだけ前記異形断面単フィラメントが
織物全体に均一に分布して存在するごとき態様を選定す
ることが望ましい。又織物中の全単フィラメント中で異
形断面単フィラメントの占める割合は、上記のごとく、
半数以上の範囲で使用目的に応じ、糸、織密度1等の条
件との関連で決定すれば良い。そして織物中の全単フィ
ラメントの少なくとも半数が上記のごとく、表面に繊維
軸方向に連続した溝状の凹部を有する1〜5dの異形断
面単フィラメントであり、かつ各マルチフィラメント糸
が100〜2000回/米の撚を有することにより、前
記異形断面単フィラメント表面の溝状凹部と単フィラメ
ント間の間隙とが撚により微妙に調整され、導水加工効
果と相俟って、微粒子は通さず、分散媒のみを通過させ
得る、いわゆるキャピラリ現象を効果的に発現しうる微
細な連続した空隙が形成される。従ってマルチフィラメ
ント糸の撚数は極めて重要であり、100回/米未満で
は、十分キャピラリ現象を発現させることができず、又
2000回/米を超えると空隙が減少し、さらに2重l
然などを生じ不適当である。なおマルチフィラメント糸
の総繊度は、単フィラメントの繊度1本数あるいは織物
密度、厚さ等とも関連するが、上記のごと<50〜10
0dが適当である。
Furthermore, iii) A single multifilament yarn of irregular cross-section and a regular circular cross-section single filament is mixed so that the former accounts for more than half of the fibers, and the yarn is used alone, or it is made entirely of irregular cross-section single filaments. When mixed with multifilament yarn, iv) above i)
, ii), 1ii), etc., but it is desirable to select an embodiment in which the single filaments with irregular cross sections are distributed as uniformly throughout the fabric as possible. In addition, the proportion of irregular cross-section single filaments in all the single filaments in the fabric is as described above.
It may be determined in the range of half or more depending on the purpose of use and in relation to conditions such as yarn and weave density 1. As mentioned above, at least half of all the single filaments in the fabric are single filaments with irregular cross sections of 1 to 5 d having continuous groove-like recesses in the fiber axis direction on the surface, and each multifilament yarn is / By having the rice twist, the groove-like recesses on the surface of the irregular cross-section single filament and the gaps between the single filaments are finely adjusted by the twisting, and together with the water-conducting effect, fine particles do not pass through and the dispersion medium Fine, continuous voids are formed that can effectively exhibit the so-called capillary phenomenon, which allows the passage of only microorganisms. Therefore, the number of twists of the multifilament yarn is extremely important; if it is less than 100 twists per square meter, the capillary phenomenon cannot be sufficiently expressed, and if it exceeds 2000 twists per square meter, the voids will decrease, and
This is inappropriate as it may cause natural disasters. The total fineness of the multifilament yarn is related to the single filament fineness, the number of single filaments, the density of the fabric, the thickness, etc., but as mentioned above, <50 to 10
0d is appropriate.

次に、本発明の分離用織物は、経糸及び緯糸を形成する
マルチフィラメント糸、特に異形断面単フィラメントか
らなるマルチフィラメント糸の有する空隙のキャピラリ
効果によってコロイド溶液の微粒子と分散媒を分離する
という目的から、製織の際可能な限り織組織を密にする
ことが望ましく、経糸密度と緯糸密度とがよく調和し、
かつその和として210本/吋以上であることが必要で
あり、210本/吋未満の場合は経糸及び緯糸となるマ
ルチフィラメント糸が上記の条件を満足するものであっ
ても、織物の組織として大きな間隙を生じることになっ
て、所期の分離性情を得ることが困難である。
Next, the purpose of the separating fabric of the present invention is to separate fine particles of a colloidal solution and a dispersion medium by the capillary effect of the voids in multifilament yarns forming the warp and weft, particularly multifilament yarns made of single filaments with irregular cross sections. Therefore, it is desirable to make the weave structure as dense as possible during weaving, and the warp density and weft density are in good harmony.
The sum of these must be 210 yarns/inch or more, and if it is less than 210 yarns/inch, even if the multifilament yarns serving as the warp and weft satisfy the above conditions, the texture of the fabric is This creates a large gap, making it difficult to obtain the desired separation property.

さらに本発明の分離用織物には、導水加工が施されてい
る。本発明の分離用織物の素材繊維である合成繊維は、
上記のごとく、疎水性であって、水に対する寸法安定性
がすぐれているものの、その反面繊維表面の水による“
ぬれ”が生じにくい。
Furthermore, the separation fabric of the present invention is subjected to a water-conducting treatment. The synthetic fibers that are the material fibers of the separation fabric of the present invention are:
As mentioned above, although it is hydrophobic and has excellent dimensional stability against water, on the other hand, the water on the surface of the fiber
Less likely to cause wetting.

従って織物を構成する糸条及び織密度が、上記のごとき
キャピラリ現象を効果的に発現し得る物理的構造を有し
ていても、それだけでは、それらの微細な空隙表面の“
ぬれ”が少ないため、十分にキャピラリ現象を発現させ
ることができない。これに対し、本発明の分離用織物は
、導水加工が施されていることにより、織物の糸条及び
織組織によって形成された微細な空隙の表面が親水化さ
れて、水による“ぬれ”が大きく、十分にキャピラリ現
象が発現し、コロイド溶液の分散媒である水のみを効率
よく通し、所期の分離性情を発揮することができる。
Therefore, even if the yarns and weaving density that make up the fabric have a physical structure that can effectively express the capillary phenomenon as described above, this alone cannot cause the "
Due to the lack of "wetness", it is not possible to sufficiently develop the capillary phenomenon.In contrast, the separation fabric of the present invention has been subjected to a water-conducting treatment, so that the separation fabric formed by the threads and texture of the fabric cannot be fully expressed. The surface of the microscopic voids is made hydrophilic, and "wetting" by water is large, and the capillary phenomenon is sufficiently developed, allowing only water, which is the dispersion medium of the colloidal solution, to pass through efficiently and exhibiting the desired separation properties. I can do it.

導水加工としては、ポリエステル系合成繊維の場合、苛
性ソーダ水溶液による繊維表面のアルカリエツチング処
理法、又は酸素を含む気体の低温プラズマ処理法が適し
ており、より高度な性能が要求される場合は、前者のア
ルカリエツチング処理を行った後、さらに後者の酸素を
含む気体の低温プラズマ処理を行えばよい。前者のアル
カリエツチング処理は、通常行われているポリエステル
繊維布帛の減量処理の条件とほぼ同様の条件で行えばよ
く、減量率として、5〜20%の範囲で適宜選定すれば
よい。後者の酸素を含む気体の低温プラズマ処理は、試
料織物を入れた容器に酸素又は酸素と窒素、アルゴン、
炭酸ガス等の混合ガス又は空気を満たし、真空ポンプに
て減圧し、圧力0.1〜20Torrに調整した後、電
気エネルギーを印加してグロー放電を発生させることに
より行うことができる。この場合電気エネルギー源とし
ては高周波(IKHz〜30MHz )がよいが、プラ
ズマ発生の安定性、均一性、電波法の規制等から、通常
13.56MHzを用いる。直間波出力は、0.1〜1
.OW/cut。
In the case of polyester-based synthetic fibers, suitable water conduction treatments include alkaline etching treatment of the fiber surface with aqueous caustic soda solution, or low-temperature plasma treatment with oxygen-containing gas; if more advanced performance is required, the former is recommended. After performing the alkaline etching treatment, the latter low-temperature plasma treatment using a gas containing oxygen may be performed. The former alkali etching treatment may be carried out under substantially the same conditions as those for the conventional weight loss treatment of polyester fiber fabrics, and the weight loss rate may be appropriately selected within the range of 5 to 20%. The latter low-temperature plasma treatment using a gas containing oxygen involves adding oxygen or oxygen and nitrogen, argon, or
This can be carried out by filling a mixed gas such as carbon dioxide gas or air, reducing the pressure with a vacuum pump, adjusting the pressure to 0.1 to 20 Torr, and then applying electrical energy to generate glow discharge. In this case, a high frequency (IKHz to 30 MHz) is preferable as the electrical energy source, but 13.56 MHz is usually used from the viewpoint of stability and uniformity of plasma generation, radio law regulations, etc. Direct wave output is 0.1 to 1
.. OW/cut.

処理時間10〜120秒で、所期の性能を得ることかで
きる。
The desired performance can be obtained with a processing time of 10 to 120 seconds.

又ポリアミド系合成繊維、ポリオレフィン系合成繊維の
場合も、前記の酸素を含む気体の低温プラズマ処理によ
り効果的に導水加工を施すことができる。
Also, in the case of polyamide-based synthetic fibers and polyolefin-based synthetic fibers, water conductive processing can be effectively performed by the low-temperature plasma treatment using the oxygen-containing gas.

本発明の分離用織物は、上記のごとき構成により、少量
かつ多数のコロイド溶液試料を、微粒子と分散媒とに分
離する際などに用いて極めて有効であり、例えば前記の
廃水中のコロイド状微粒子を分離除去した後の水に含有
される成分を分析する際などにも用いられる。特に廃水
中のある熔解成分を比色検査する際、分散微粒子の存在
が検査の障害となる場合などにおいて、本発明の分離用
織物の片面に試料液を滴下して、分散媒を微粒子と分離
して他面側へ滲出させ、この滲出液について必要な検査
を行うことができる。そのほか同様の手法により、血液
の血球成分と血ジn成分とを分離して、それぞれについ
て必要な検査を行う場合などにも重宝に用いることがで
きる。
The separation fabric of the present invention has the above-described structure, and is extremely effective when used to separate a small number of colloidal solution samples into fine particles and a dispersion medium. It is also used when analyzing the components contained in water after it has been separated and removed. Particularly when performing a colorimetric test for dissolved components in wastewater, when the presence of dispersed fine particles poses an obstacle to the test, a sample liquid is dropped onto one side of the separation fabric of the present invention to separate the dispersion medium from the fine particles. This exudate can be allowed to ooze out to the other side, and necessary tests can be performed on this exudate. In addition, similar techniques can be used to separate the blood cell component and the blood cell component and perform necessary tests on each component.

(ホ)実施例 円形及び異形断面のポリエチレンテレフタレートマルチ
フィラメント糸(75d/48f )を経糸及び緯糸に
用い、撚数及び織密度を変えてシャトル織機により平織
組織で製織した。単フィラメントの断面形状3撚数及び
織密度は第1表に示すとおりである。各織物は、常法に
より糊抜、精練を行った後、3等分し、一つは苛性ソー
ダ水/8液によるアルカリエツチング処理を行い、一つ
は低温プラズマ処理を行って、それぞれ導水加工を施し
た。
(e) Example Polyethylene terephthalate multifilament yarns (75d/48f) with circular and irregular cross sections were used for the warp and weft, and the yarns were woven in a plain weave structure using a shuttle loom with varying twist numbers and weaving densities. The cross-sectional shape, number of twists, and weaving density of the single filament are as shown in Table 1. After each fabric was desized and refined in the usual way, it was divided into three equal parts, one part was subjected to alkaline etching treatment using caustic soda water/8 liquid, and the other part was subjected to low temperature plasma treatment, and each part was subjected to water conductive treatment. provided.

各処理条件は次のとおりである。Each processing condition is as follows.

i)アルカリエツチング処理 処理浴: NaOH40g/ 7!、浴比:50倍。i) Alkaline etching treatment Treatment bath: NaOH40g/7! , bath ratio: 50 times.

温度:98℃5時間=60分、その後水洗及び乾燥。Temperature: 98°C 5 hours = 60 minutes, then washed with water and dried.

ii)低温プラズマ処理 使用気体:酸素100%、圧カニ l Torr高周波
周波数: 13.56MHz、出カニ  0.4 W/
c+d。
ii) Low-temperature plasma treatment Gas used: 100% oxygen, pressure l Torr high frequency frequency: 13.56 MHz, output crab 0.4 W/
c+d.

時間=1分 得られた各処理織物及び精練上り織物について、下記の
方法により分離性能の評価を行った。その結果を第1表
に示す。
Time = 1 minute The separation performance of each of the obtained treated fabrics and scoured fabrics was evaluated by the following method. The results are shown in Table 1.

粒径1〜15μmのカーボンを水中に分散させた濃度0
.5g/ 1 、温度20°Cのコロイド溶液を、分離
用織物試料の表面に20μp、?Fa下し、1分後の該
分離用織物の裏面への水及びカーボンの通過状況を、裏
面の“ぬれ”程度及びカーボンによる着色状態第1表 (2)下余白) から判定した。
Carbon with a particle size of 1 to 15 μm dispersed in water at a concentration of 0
.. 5g/1 of colloid solution at 20°C was applied to the surface of the separation fabric sample for 20μp, ? The passage of water and carbon to the back side of the separation fabric 1 minute after the Fa was removed was determined based on the degree of "wetness" on the back side and the state of coloration due to carbon (see Table 1 (2) bottom margin).

(判定基準)■・・・水の浸透性極めて大きく、カーボ
ンによる着色無し。
(Judgment criteria) ■... Extremely high water permeability, no coloring due to carbon.

0・・・水の浸透性大きく、カーボンによる着色無し。0: High water permeability, no coloring due to carbon.

△・・・水の浸透性小さく、カーボンによる着色無し。△...Low water permeability, no coloring due to carbon.

×・・・水の浸透性小さく、カーボンによる着色やや有
り。
×: Water permeability is low, and there is some coloring due to carbon.

××・・・水の浸透性大きく、カーボンによる着色有り
XX...Water permeability is high, and there is coloring due to carbon.

×××・・・水の浸透性極めて大きく、カーボンによる
着色強い。
×××...Water permeability is extremely high and coloring due to carbon is strong.

第1表に示すごとく、単フィラメントの断面形状が円形
の場合、撚数及び織密度が低い織物(試料No、1)は
、精練上りで、水の浸透性は小さいものの若干カーボン
粒子が通過しており、導水加工を施せば、カーボンによ
る着色が著しくなり、又撚数及び織密度が本発明の条件
を満たす織物(試料No、2)は、導水加工を行っても
水の浸透性が小さい。さらに単フィラメントの断面形状
がコ字形の、繊維表面に繊維軸方向に連続した溝状の凹
部を有する異形断面糸であっても、撚数が少ない場合(
試料No、3>及び織密度が低い場合(試料No、4)
は、精練上りでは水の浸透性が小さく、導水加工を施す
とカーボン粒子が透過して、調整が困難である。試料N
o、5.6.7.8の織物のアルカリエツチング処理し
たもの、及び低温プラズマ処理したものは、本発明の実
施例であり、水の浸透性が大きく、しかもカーボン粒子
は全く透過せず、分離用織物として非常にずくれたもの
であった。
As shown in Table 1, when the cross-sectional shape of a single filament is circular, the fabric with a low number of twists and low weave density (Sample No. 1) has a small water permeability after scouring, but some carbon particles can pass through it. However, if the water conductive treatment is applied, the coloring due to carbon becomes significant, and the fabric (sample No. 2) whose number of twists and weave density meet the conditions of the present invention has low water permeability even if the water conduction treatment is applied. . Furthermore, even if the cross-sectional shape of the single filament is U-shaped and the fiber surface has a groove-like concave portion continuous in the fiber axis direction, if the number of twists is small (
Sample No. 3> and when the weave density is low (sample No. 4)
After scouring, water permeability is low, and when water is treated, carbon particles pass through, making adjustment difficult. Sample N
The alkali-etched and low-temperature plasma-treated fabrics of 5.6.7.8 are examples of the present invention, and have high water permeability, and carbon particles do not penetrate at all. As a separation fabric, it was extremely loose.

(へ)発明の効果 本発明の分離用織物は、上記のごとく、加圧等の何らの
エネルギーを使用することなく、単に織物の片面にコロ
イド溶液を供給するだけで、繊維間隙のキャピラリ現象
を効果的に発現して、織物の他面側へ分散媒を浸透、移
行させ、微粒子と分散媒とを分離することができる。従
って、少量かつ多数のコロイド溶液の微粒子と分散媒と
の分離を、簡便かつ短時間に行うことができ、微粒子及
び/又は分散媒の検査等を行う際などに極めて有用であ
る。
(F) Effects of the Invention As mentioned above, the separation fabric of the present invention can suppress the capillary phenomenon in the fiber gaps by simply supplying a colloidal solution to one side of the fabric without using any energy such as pressurization. It is possible to effectively develop the dispersion medium to permeate and transfer to the other side of the fabric, and to separate the fine particles and the dispersion medium. Therefore, it is possible to easily and quickly separate a small amount and a large number of particles of a colloidal solution from a dispersion medium, which is extremely useful when inspecting particles and/or a dispersion medium.

Claims (1)

【特許請求の範囲】[Claims] (1)単フィラメントの繊度1〜5d、総繊度50〜1
00d、撚数100〜2000回/米の合成繊維マルチ
フィラメント糸からなる、経糸密度及び緯糸密度の和が
210本/吋以上の織物であって、該織物中の全単フィ
ラメントの少なくとも半数が繊維表面に繊維軸方向に少
なくとも1個の連続した凹部を有し、さらに該織物に導
水加工が施されてなることを特徴とするコロイド状微粒
子分離用織物。
(1) Single filament fineness 1-5d, total fineness 50-1
00d, a woven fabric consisting of synthetic fiber multifilament yarn with a twist count of 100 to 2000 twists per inch, with a sum of warp and weft densities of 210 threads/inch or more, in which at least half of all single filaments in the fabric are fibers. A woven fabric for separating colloidal particles, the woven fabric having at least one continuous recess in the fiber axis direction on its surface, and further having a water-conducting finish applied to the woven fabric.
JP59165121A 1984-08-07 1984-08-07 Fabric for separating colloidal fine particles Granted JPS6142314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59165121A JPS6142314A (en) 1984-08-07 1984-08-07 Fabric for separating colloidal fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59165121A JPS6142314A (en) 1984-08-07 1984-08-07 Fabric for separating colloidal fine particles

Publications (2)

Publication Number Publication Date
JPS6142314A true JPS6142314A (en) 1986-02-28
JPH041650B2 JPH041650B2 (en) 1992-01-13

Family

ID=15806312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59165121A Granted JPS6142314A (en) 1984-08-07 1984-08-07 Fabric for separating colloidal fine particles

Country Status (1)

Country Link
JP (1) JPS6142314A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135514A (en) * 1987-11-20 1989-05-29 Terumo Corp Filter for separating leukocytes
JP2002246707A (en) * 2001-02-16 2002-08-30 Dainippon Printing Co Ltd Wet-etched insulator and electronic circuit component
JP2006334474A (en) * 2005-05-31 2006-12-14 Mitsubishi Rayon Co Ltd Filtration cloth for separating acrylonitrile based polymer in water-based suspension polymerization step and separation method of polymer by continuous rotation type filtration machine attached with the filtration cloth

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135514A (en) * 1987-11-20 1989-05-29 Terumo Corp Filter for separating leukocytes
JP2002246707A (en) * 2001-02-16 2002-08-30 Dainippon Printing Co Ltd Wet-etched insulator and electronic circuit component
JP2006334474A (en) * 2005-05-31 2006-12-14 Mitsubishi Rayon Co Ltd Filtration cloth for separating acrylonitrile based polymer in water-based suspension polymerization step and separation method of polymer by continuous rotation type filtration machine attached with the filtration cloth

Also Published As

Publication number Publication date
JPH041650B2 (en) 1992-01-13

Similar Documents

Publication Publication Date Title
US4451534A (en) Synthetic fibers imparted with an irregular surface and a process for their production
CN110306274A (en) A kind of moisture-inhibiting Double-layer polyester fabric and preparation method thereof
JPS63287517A (en) Cylindrical filter
CN112023525B (en) Self-cleaning purification filter cloth and preparation method thereof
ES2875590T3 (en) High performance polyphenylene sulfide fiber structure, production method and use of same
US5534336A (en) Fabric superior in anti-drape stiffness, stiffness and soft handle, and manufacture thereof
NO148267B (en) Water electrolysis diaphragm.
JPS6142314A (en) Fabric for separating colloidal fine particles
US3277226A (en) Viscose rayon fiber and method of making same
EP3447177B1 (en) Polyphenylene sulfide woven fabric for water electrolyser and manufacturing method thereof
JPS583064B2 (en) Method for manufacturing silky-like polyester fabric
JP2581162B2 (en) Polyester filament yarn
JPH04257334A (en) Conjugate hard twisted yarn
EP4361341A1 (en) Method for scouring fiber product and method for scouring fiber product to produce scoured fiber product
CN107574525B (en) Blending diaphragm cloth for water electrolyzer
CN115125655A (en) Low-cost dust-free wiping cloth for sea island microfiber and manufacturing method thereof
JP3166778B2 (en) Method for dyeing regenerated cellulose fiber fabric
Kawai et al. The structure and characteristics of Polynosic fibres
WO1992017629A1 (en) A cellulose-based fibre
JPS6022083B2 (en) Viscose method Production method of recycled cellulose fiber
JPS61119784A (en) Dyeing of fiber structure
JPS6311466B2 (en)
Faterpekar et al. Dyeing of Grafted Polyester Fiber Part I. Effect of Polyvinylacetate Graft on Dyeing Characteristics
JPH0748754A (en) Woven fabric having specific handle
CN109881474A (en) A kind of reflective denim fabric and its production method