JPH041650B2 - - Google Patents

Info

Publication number
JPH041650B2
JPH041650B2 JP59165121A JP16512184A JPH041650B2 JP H041650 B2 JPH041650 B2 JP H041650B2 JP 59165121 A JP59165121 A JP 59165121A JP 16512184 A JP16512184 A JP 16512184A JP H041650 B2 JPH041650 B2 JP H041650B2
Authority
JP
Japan
Prior art keywords
fabric
water
fiber
dispersion medium
fibers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59165121A
Other languages
Japanese (ja)
Other versions
JPS6142314A (en
Inventor
Tokuki Goto
Itsuo Tanaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP59165121A priority Critical patent/JPS6142314A/en
Publication of JPS6142314A publication Critical patent/JPS6142314A/en
Publication of JPH041650B2 publication Critical patent/JPH041650B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Woven Fabrics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtering Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(イ) 産業上の利用分野 本発明は、コロイド溶液から微粒子と分散媒と
を分離する際に用いるコロイド状微粒子分離用織
物に関するものである。 (ロ) 従来の技術 従来、粒径が0.5〜20μm程度の微粒子のコロイ
ド溶液から、該微粒子と分散媒とを分離する際の
分離材としては、限外濾過膜がよく知られてい
る。例えば、セルローズアセテート膜、コロジオ
ン膜、ゼラチン膜、セロフアン膜、スルホン化ス
チレン膜などがある。これらの限外濾過膜は、
0.5μm以下の細孔を無数に有しており、加圧する
ことによつて、分散媒即ち水が細孔を通つて濾過
膜を容易に通過することができ、一方水中に分散
している微粒子は濾過膜を容易に通過できず、こ
の特性を利用して両者を分離することができる。
又、他の方法として、遠心分離器を使用し、コロ
イド状微粒子と分散媒との比重差を利用して分離
する方法もよく知られている。これらの方法は、
比較的多量に分離する場合などに極めて有効な方
法であるが、コロイド溶液中の微粒子又は分散媒
の検査などで、少量かつ多数の試料を短時間に行
う場合には不適当な方法である。例えば、廃水中
のコロイド状微粒子を除去した後の水の含有成分
を調査する場合などで、調査の内容によつては、
少量の試料で十分な場合があり、そのような際に
は上記のごとき分離方法は、煩雑な操作と時間を
要して不便な方法である。 (ハ) 発明が解決しようとする問題点 本発明は、少量かつ多数のコロイド溶液の、微
粒子と分散媒との分離を、従来の限外濾過法ある
いは遠心分離法のごとく煩雑な操作を要すること
なく、極めて容易に実施し得るコロイド状微粒子
分離用織物を提供しようとするものである。 (ニ) 問題点を解決するための手段及び作用 本発明は、単フイラメントの繊度1〜5d、総
繊度50〜100d、撚数100〜2000回/米の合成繊維
マルチフイラメント糸からなる、経糸密度及び緯
糸密度の和が210本/吋以上の織物であつて、該
織物中の全単フイラメントの少なくとも半数が繊
維表面に繊維軸方向に少なくとも1個の連続した
凹部を有し、さらに該織物に導水加工が施されて
なることを特徴とするコロイド状微粒子分離用織
物である。 すなわち、本発明のコロイド状微粒子分離用織
物(以下分離用織物という。)の特徴とするとこ
ろの第1点は、織物を構成する糸条が、単フイラ
メント繊度1〜5d、総繊度50〜100d、撚数100〜
2000回/米の合成繊維マルチフイラメント糸であ
つて、かつ織物中の全単フイラメントの少なくと
も半数が表面に繊維軸方向に少なくとも1個の連
続する凹部が形成されていることであり、その第
2点は、織物が経糸密度と緯糸密度の和として
210本/吋以上の織密度を有していることであり、
さらに第3点は、織物に導水加工が施されている
ことである。 そして、本発明の分離用織物は、上記の構造上
の特徴により、繊維間隙のキヤピラリ現象が有効
に作用して、加圧等のエネルギーを要することな
く、片面側に供給したコロイド溶液の分散媒のみ
を通過させて他面側へ移行させ、微粒子と分離す
ることができる。 本発明の分離用織物の素材繊維は、ポリエステ
ル系合成繊維、ポリアミド系合成繊維等の合成繊
維マルチフイラメント糸である。合成繊維は、疎
水性で吸水性が少なく、水に対して寸法安定性が
良好で、繊維間隙の形態保持性が極めて良く、特
にポリエステル系合成繊維は本発明の分離用織物
の他の特徴の一つである、導水加工を苛性ソーダ
水溶液によるエツチングなどにより容易に施すこ
とができて、最も好ましい。ポリエステル系合成
繊維としては、ポリエチレンテレフタレート繊維
のほか、ポリエチレンテレフタレートを主成分と
し、イソフタル酸、パラオキシ安息香酸等の少量
の第三成分を共重合した共重合ポリエステル繊維
も用いることができる。又ポリアミド系合成繊維
としては、ナイロン6、ナイロン66などの繊維が
あげられる。その他ポリプロピレン繊維、ポリエ
チレン繊維等のポリオレフイン系繊維も用いられ
る。又これらの繊維を混用してもよい。 本発明の分離用繊維を構成する上記合成繊維マ
ルチフイラメント糸は、単フイラメントの繊度が
1〜5d、総繊度50〜100dで、100〜2000回/米の
撚数に加撚され、さらに織物中の全単フイラメン
トの半数以上が表面に繊維軸方向に少なくとも一
個の連続した溝状の凹部を有する単フイラメン
ト、即ち繊維の横断面形状がコ字形、Y字形、十
字形、梅形、ひとで形あるいはそれらの変形状な
どの異形断面の単フイラメント(以下異形断面単
フイラメントという。)で構成されている。上記
のごとく、織物中の全単フイラメントの半数以上
が異形断面単フイラメントであることが必要であ
るが、その態様としては、例えば()全てが異
形断面単フイラメントからなるマルチフイラメン
ト糸を経糸及び緯糸の双方に用いる場合、及び経
糸又は緯糸のいずれか一方に用い、他方は通常の
円形断面単フイラメントからなるマルチフイラメ
ント糸を用いる場合、()全てが異形断面単フ
イラメントからなるマルチフイラメント糸と通常
の円形断面単フイラメントからなるマルチフイラ
メント糸と1本ないし数本ごとに交互に用いる場
合、さらに()異形断面単フイラメントと通常
の円形断面単フイラメントとを前者が半数以上と
なるごとく混繊して1本のマルチフイラメント糸
とし、それを単独で用いるか、又は全て異形断面
単フイラメントからなるマルチフイラメント糸と
混用する場合、()上記()、()、()の
組合せ、などいずれでもよいが、できるだけ前記
異形断面単フイラメントが織物全体に均一に分布
して存在するごとき態様を選定することが望まし
い。又織物中の全単フイラメント中で異形断面単
フイラメントの占める割合は、上記のごとく、半
数以上の範囲で使用目的に応じ、糸、織密度、等
の条件との関連で決定すれば良い。そして織物中
の全単フイラメントの少なくとも半数が上記のご
とく、表面に繊維軸方向に連続した溝状の凹部を
有する1〜5dの異形断面単フイラメントであり、
かつ各マルチフイラメント糸が100〜2000回/米
の撚を有することにより、前記異形断面単フイラ
メント表面の溝状凹部と単フイラメント間の間隙
とが撚により微妙に調整され、導水加工効果と相
挨つて、微粒子は通さず、分散媒のみを通過させ
得る、いわゆるキヤピラリ現象を効果的に発現し
うる微細な連続した空隙が形成される。従つてマ
ルチフイラメント糸の撚数は極めて重要であり、
100回/米未満では、十分キヤピラリ現象を発現
させることができず、又2000回/米を超えると空
隙が減少し、さらに2重撚などを生じ不適当であ
る。なおマルチフイラメント糸の総繊度は、単フ
イラメントの繊度、本数あるいは織物密度、厚さ
等とも関連するが、上記のごとく50〜100dが適
当である。 次に、本発明の分散用織物は、経糸及び緯糸を
形成するマルチフイラメント糸、特に異形断面単
フイラメントからなるマルチフイラメント糸の有
する空隙のキヤピラリ効果によつてコロイド溶液
の微粒子と分散媒を分離するという目的から、製
織の際可能な限り織組織を密にすることが望まし
く、経糸密度と緯糸密度とがよく調和し、かつそ
の和として210本/吋以上であることが必要であ
り、210本/吋未満の場合は経糸及び緯糸となる
マルチフイラメント糸が上記の条件を満足するも
のであつても、織物の組織として大きな間隙を生
じることになつて、所期の分離性能を得ることが
困難である。 さらに本発明の分離用織物には、導水加工が施
されている。本発明の分離用織物の素材繊維であ
る合成繊維は、上記のごとく、疎水性であつて、
水に対する寸法安定性がすぐれているものの、そ
の反面繊維表面の水による“ぬれ”が生じにく
い。従つて織物を構成する糸条及び織密度が、上
記のごときキヤピラリ現象を効果的に発現し得る
物理的構造を有していても、それだけでは、それ
らの微細な空隙表面の“ぬれ”が少ないため、十
分にキヤピラリ現象を発現させることができな
い。これに対し、本発明の分離用織物は、導水加
工が施されていることにより、織物の糸条及び織
組織によつて形成された微細な空隙の表面が親水
化されて、水による“ぬれ”が大きく、十分にキ
ヤピラリ減少が発現し、コロイド溶液の分散媒で
ある水のみを効率よく通し、所期の分離性能を発
揮することができる。 導水加工としては、ポリエステル系合成繊維の
場合、苛性ソーダ水溶液による繊維表面のアルカ
リエツチング処理法、又は酸素を含む気体の低温
プラズマ処理法が適しており、より高度な性能が
要求される場合は、前者のアルカリエツチング処
理を行つた後、さらに後者の酸素を含む気体の低
温プラズマ処理を行えばよい。前者のアルカリエ
ツチング処理は、通常行われているポリエステル
繊維布帛の減量処理の条件とほぼ同様の条件で行
えばよく、減量率として、5〜20%の範囲で適宜
選定すればよい。後者の酸素を含む気体の低温プ
ラズマ処理は、試料織物を入れた容器に酸素又は
酸素と窒素、アルゴン、炭酸ガス等の混合ガス又
は空気を満たし、真空ポンプにて減圧し、圧力
0.1〜20Torrに調整した後、電気エネルギーを印
加してグロー放電を発生させることにより行うこ
とができる。この場合電気エネルギー源としては
高周波(1KHz〜30MHz)がよいが、プラズマ発
生の安定性、均一性、電波法の規制等から、通常
13.56MHzを用いる。高周波出力は、0.1〜1.0W/
cm2、処理時間10〜120秒で、所期の性能を得るこ
とができる。 又ポリアミド系合成繊維、ポリオレフイン系合
成繊維の場合も、前記の酸素を含む気体の低温プ
ラズマ処理により効果的に導水加工を施すことが
できる。 本発明の分離用織物は、上記のごとき構成によ
り、少量かつ多数のコロイド溶液試料を、微粒子
と分散媒とに分離する際などに用いて極めて有効
であり、例えば前記の廃水中のコロイド状微粒子
を分離除去した後の水に含有される成分を分析す
る際などにも用いられる。特に廃水中のある溶解
成分を比色検査する際、分散微粒子の存在が検査
の障害となる場合などにおいて、本発明の分離用
織物の片面に試料液を滴下して、分散媒を微粒子
と分離して他面側へ滲出させ、この滲出液につい
て必要な検査を行うことができる。そのほか同様
の手法により、血液の血球成分と血漿成分とを分
離して、それぞれについて必要な検査を行う場合
などにも重宝に用いることができる。 (ホ) 実施例 円形及び異形断面のポリエチレンテレフタレー
トマルチフイラメント糸(75d/48f)を経糸及び
緯糸に用い、撚数及び織密度を変えてシヤトル織
機により平織組織で製織した。単フイラメントの
断面形状、撚数及び織密度は第1表に示すとおり
である。各織物は、常法により糊抜、精練を行つ
た後、3等分し、一つは苛性ソーダ水溶液による
アルカリエツチング処理を行い、一つは低温プラ
ズマ処理を行つて、それぞれ導水加工を施した。
各処理条件は次のとおりである。 () アルカリエツチング処理 処理浴:NaOH40g/、浴比:50倍、 温度:98℃、時間:60分、その後水洗及び乾
燥。 () 低温プラズマ処理 使用気体:酸素100%、圧力:1Torr 高周波周波数:13.56MHz、出力:0.4W/
cm2、 時間:1分 得られた各処理織物及び精練上り織物につい
て、下記の方法により分離性能の評価を行つた。
その結果を第1表に示す。 粒径1〜15μmのカーボンを水中に分散させた
濃度0.5g/、温度20℃のコロイド溶液を、分
離用織物試料の表面に20μ滴下し、1分後の該
分離用織物の裏面への水及びカーボンの通過状況
を、裏面の“ぬれ”程度及びカーボンによる着色
状態
(a) Industrial Application Field The present invention relates to a fabric for separating colloidal fine particles used when separating fine particles and a dispersion medium from a colloidal solution. (b) Prior Art Conventionally, ultrafiltration membranes are well known as a separation material for separating fine particles and a dispersion medium from a colloidal solution of fine particles having a particle size of about 0.5 to 20 μm. Examples include cellulose acetate membranes, collodion membranes, gelatin membranes, cellophane membranes, and sulfonated styrene membranes. These ultrafiltration membranes are
It has countless pores of 0.5 μm or less, and by applying pressure, the dispersion medium, that is, water, can easily pass through the filtration membrane through the pores, while the fine particles dispersed in the water cannot easily pass through a filtration membrane, and this property can be used to separate the two.
Another well-known method is to use a centrifugal separator and utilize the difference in specific gravity between colloidal particles and a dispersion medium to separate them. These methods are
Although this method is extremely effective when separating a relatively large amount, it is inappropriate when testing a large number of small quantities of samples in a short period of time, such as when inspecting fine particles in a colloidal solution or a dispersion medium. For example, when investigating the contents of water after removing colloidal particles from wastewater, depending on the content of the investigation,
There are cases where a small amount of sample is sufficient, and in such cases, the above separation method is inconvenient as it requires complicated operations and time. (c) Problems to be Solved by the Invention The present invention requires complicated operations similar to conventional ultrafiltration or centrifugation methods to separate fine particles from a dispersion medium in a small amount of a large number of colloidal solutions. The object of the present invention is to provide a fabric for separating colloidal particles that can be carried out extremely easily. (d) Means and action for solving the problems The present invention is a synthetic fiber multifilament yarn with a single filament fineness of 1 to 5 d, a total fineness of 50 to 100 d, and a twist count of 100 to 2000 twists per rice. and a woven fabric having a sum of weft yarn density of 210 filaments/inch or more, at least half of all the single filaments in the woven fabric have at least one continuous recess in the fiber axis direction on the fiber surface, and the woven fabric further includes: This is a fabric for separating colloidal particles, which is characterized by being subjected to a water-conducting process. That is, the first feature of the colloidal particle separation fabric of the present invention (hereinafter referred to as separation fabric) is that the yarns constituting the fabric have a single filament fineness of 1 to 5 d and a total fineness of 50 to 100 d. , number of twists 100~
2000 times/US synthetic fiber multifilament yarn, and at least half of all the single filaments in the fabric have at least one continuous recess formed in the fiber axis direction on the surface, and the second The point is that the fabric is the sum of warp density and weft density.
It has a weaving density of 210 strands/inch or more,
The third point is that the fabric is treated to conduct water. Due to the above-mentioned structural features, the separating fabric of the present invention allows the capillary phenomenon of the fiber gaps to effectively act, and the dispersion medium of the colloidal solution supplied to one side of the fabric can be used without requiring energy such as pressurization. Only the particles can pass through and migrate to the other side, and can be separated from the fine particles. The material fibers of the separating fabric of the present invention are synthetic fiber multifilament yarns such as polyester synthetic fibers and polyamide synthetic fibers. Synthetic fibers are hydrophobic, have low water absorption, have good dimensional stability against water, and have extremely good shape retention in fiber gaps.In particular, polyester synthetic fibers have other characteristics of the separation fabric of the present invention. One of the most preferable methods is that it can be easily carried out by etching with an aqueous solution of caustic soda. As polyester synthetic fibers, in addition to polyethylene terephthalate fibers, copolymerized polyester fibers in which polyethylene terephthalate is the main component and a small amount of a third component such as isophthalic acid or paraoxybenzoic acid are copolymerized can also be used. Examples of polyamide synthetic fibers include fibers such as nylon 6 and nylon 66. Other polyolefin fibers such as polypropylene fibers and polyethylene fibers can also be used. Also, these fibers may be used in combination. The synthetic fiber multifilament yarn constituting the separating fiber of the present invention has a single filament fineness of 1 to 5 d, a total fineness of 50 to 100 d, is twisted 100 to 2,000 times per twist, and is further twisted in the fabric. More than half of all single filaments in the single filament have at least one continuous groove-like recess on the surface in the direction of the fiber axis, that is, the cross-sectional shape of the fiber is U-shaped, Y-shaped, cross-shaped, plum-shaped, or human-shaped. Alternatively, it is composed of a single filament with a modified cross section (hereinafter referred to as a single filament with a modified cross section). As mentioned above, it is necessary that more than half of all the single filaments in the fabric are single filaments of irregular cross section.For example, (2) multifilament yarns consisting of single filaments of irregular cross section should be used in the warp and weft. (2) When using a multifilament yarn consisting of a single filament with an irregular cross section and a multifilament yarn consisting of a single filament with an irregular cross section with the other being used for either the warp or the weft, When using a multi-filament yarn consisting of a single filament with a circular cross section and one or several filaments alternately, (2) a single filament with an irregular cross section and a single filament with a normal circular cross section are mixed so that the former accounts for more than half; When using a real multifilament yarn either alone or in combination with a multifilament yarn consisting entirely of single filaments of irregular cross section, any of the above (), (), combinations of (), etc. may be used. It is desirable to select an embodiment in which the irregular cross-section single filaments are distributed as uniformly throughout the fabric as possible. Furthermore, the proportion of the irregular cross-section single filaments in all the single filaments in the woven fabric may be determined within the range of half or more depending on the purpose of use and in relation to the conditions such as the yarn, weaving density, etc., as described above. As described above, at least half of all the single filaments in the fabric are single filaments with irregular cross sections of 1 to 5 d having groove-like recesses continuous in the fiber axis direction on the surface,
In addition, since each multifilament yarn has twists of 100 to 2000 times per square inch, the groove-like recesses on the surface of the irregular cross-section single filament and the gaps between the single filaments are finely adjusted by twisting, which improves the water-conducting effect and the interaction. As a result, fine continuous voids are formed that can effectively exhibit the so-called capillary phenomenon, which allows only the dispersion medium to pass through and not the fine particles. Therefore, the number of twists of multifilament yarn is extremely important.
If it is less than 100 times per square meter, the capillary phenomenon cannot be sufficiently expressed, and if it exceeds 2000 times per square meter, the voids will decrease and double twisting will occur, which is unsuitable. The total fineness of the multifilament yarn is related to the fineness and number of single filaments, fabric density, thickness, etc., but as mentioned above, 50 to 100 d is appropriate. Next, the dispersion fabric of the present invention separates the fine particles of the colloidal solution and the dispersion medium by the capillary effect of the voids in the multifilament yarns forming the warp and weft, especially the multifilament yarns made of single filaments with irregular cross sections. For this purpose, it is desirable to make the weave structure as dense as possible during weaving, and it is necessary that the warp density and weft density are in good harmony, and that the sum is 210 threads/inch or more. If it is less than 1/2 inch, even if the multifilament yarns serving as the warp and weft satisfy the above conditions, large gaps will occur in the fabric structure, making it difficult to obtain the desired separation performance. It is. Furthermore, the separation fabric of the present invention is subjected to a water-conducting treatment. As mentioned above, the synthetic fiber that is the material fiber of the separation fabric of the present invention is hydrophobic, and
Although it has excellent dimensional stability against water, on the other hand, it is difficult for the fiber surface to "wet" with water. Therefore, even if the yarns and weaving density that make up the fabric have a physical structure that can effectively express the capillary phenomenon as described above, this alone will not "wet" the surfaces of those minute voids. Therefore, the capillary phenomenon cannot be sufficiently expressed. On the other hand, the separation fabric of the present invention has been subjected to a water-conducting process, so that the surface of the fine voids formed by the threads and texture of the fabric becomes hydrophilic, making it "wettable" by water. ” is large, sufficient capillary reduction occurs, and only water, which is the dispersion medium of the colloidal solution, is efficiently passed through, allowing the desired separation performance to be achieved. In the case of polyester-based synthetic fibers, suitable water conduction treatments include alkaline etching treatment of the fiber surface with aqueous caustic soda solution, or low-temperature plasma treatment with oxygen-containing gas; if more advanced performance is required, the former is recommended. After performing the alkaline etching treatment, the latter low-temperature plasma treatment using a gas containing oxygen may be performed. The former alkali etching treatment may be carried out under substantially the same conditions as those for the conventional weight loss treatment of polyester fiber fabrics, and the weight loss rate may be appropriately selected within the range of 5 to 20%. The latter low-temperature plasma treatment of a gas containing oxygen involves filling a container containing the sample fabric with oxygen or a mixed gas of oxygen and nitrogen, argon, carbon dioxide, etc., or reducing the pressure with a vacuum pump.
This can be done by adjusting the temperature to 0.1 to 20 Torr and then applying electrical energy to generate a glow discharge. In this case, a high frequency (1KHz to 30MHz) is good as an electrical energy source, but it is usually
Uses 13.56MHz. High frequency output is 0.1~1.0W/
cm 2 and a processing time of 10 to 120 seconds to achieve the desired performance. Also, in the case of polyamide-based synthetic fibers and polyolefin-based synthetic fibers, water conductive processing can be effectively performed by the low-temperature plasma treatment using the oxygen-containing gas. The separation fabric of the present invention has the above-described structure, and is extremely effective when used to separate a small number of colloidal solution samples into fine particles and a dispersion medium. It is also used when analyzing the components contained in water after it has been separated and removed. Particularly when performing a colorimetric test for dissolved components in wastewater, when the presence of dispersed fine particles poses an obstacle to the test, a sample liquid is dropped onto one side of the separation fabric of the present invention to separate the dispersion medium from the fine particles. This exudate can be allowed to ooze out to the other side, and necessary tests can be performed on this exudate. In addition, similar techniques can be used to separate blood cell components and plasma components and perform necessary tests on each component. (E) Example Polyethylene terephthalate multifilament yarns (75d/48f) with circular and irregular cross sections were used for the warp and weft, and the number of twists and weaving density were varied, and the yarns were woven in a plain weave structure using a shuttle loom. The cross-sectional shape, number of twists, and weaving density of the single filament are as shown in Table 1. Each fabric was desized and refined in a conventional manner, and then divided into three equal parts.One part was subjected to an alkaline etching treatment using a caustic soda aqueous solution, and one part was subjected to a low-temperature plasma treatment to perform a water conductive treatment.
The processing conditions are as follows. () Alkaline etching treatment Treatment bath: NaOH40g/, bath ratio: 50 times, temperature: 98℃, time: 60 minutes, then washing with water and drying. () Low temperature plasma treatment Gas used: 100% oxygen, Pressure: 1Torr High frequency: 13.56MHz, Output: 0.4W/
cm 2 , time: 1 minute The separation performance of each of the obtained treated fabrics and scoured fabrics was evaluated by the following method.
The results are shown in Table 1. A 20 μm drop of a colloidal solution of carbon with a particle size of 1 to 15 μm dispersed in water at a concentration of 0.5 g/distance and a temperature of 20°C is applied to the surface of the separation fabric sample, and after 1 minute, the water is poured onto the back side of the separation fabric sample. The passage of carbon is measured by the degree of “wetness” on the back side and the state of coloration caused by carbon.

【表】 から判定した。 (判定基準) ◎…水の浸透性極めて大きく、カーボンによる着
色無し。 ○…水の浸透性大きく、カーボンによる着色無
し。 △…水の浸透性小さく、カーボンによる着色無
し。 ×…水の浸透性小さく、カーボンによる着色やや
有り。 ××…水の浸透性大きく、カーボンによる着色有
り。 ×××…水の浸透性極めて大きく、カーボンによ
る着色強い。 第1表に示すごとく、単フイラメントの断面形
状が円形の場合、撚数及び織密度が低い織物(試
料No.1)は、精練上りで、水の浸透性は小さいも
のの若干カーボン粒子が通過しており、導水加工
を施せば、カーボンによる着色が著しくなり、又
撚数及び織密度が本発明の条件を満たす織物(試
料No.2)は、導水加工を行つても水の浸透性が小
さい。さらに単フイラメントの断面形状がコ字形
の、繊維表面に繊維軸方向に連続した溝状の凹部
を有する異形断面糸であつても、撚数が少ない場
合(試料No.3)及び織密度が低い場合(試料No.
4)は、精練上りでは水の浸透性が小さく、導水
加工を施すとカーボン粒子が透過して、調整が困
難である。試料No.5、6、7、8の織物のアルカ
リエツチング処理したもの、及び低温プラズマ処
理したものは、本発明の実施例であり、水の浸透
性が大きく、しかもカーボン粒子は全く透過せ
ず、分離用織物として非常にすぐれたものであつ
た。 (ヘ) 発明の効果 本発明の分離用織物は、上記のごとく、加圧等
の何らのエネルギーを使用することなく、単に織
物の片面にコロイド溶液を供給するだけで、繊維
間隙のキヤピラリ現象を効果的に発現して、織物
の他面側へ分散媒を浸透、移行させ、微粒子と分
散媒とを分離することができる。従つて、少量か
つ多数のコロイド溶液の微粒子と分散媒との分離
を、簡便かつ短時間を行うことができ、微粒子及
び/又は分散媒の検査等を行う際などに極めて有
用である。
Judgment was made from [Table]. (Judgment criteria) ◎...Extremely high water permeability, no coloring due to carbon. ○…High water permeability, no coloring due to carbon. △…Low water permeability, no coloring due to carbon. ×...Water permeability is low, and there is some coloring due to carbon. ××…Water permeability is high, and there is coloring due to carbon. ×××…Water permeability is extremely high and coloration due to carbon is strong. As shown in Table 1, when the cross-sectional shape of the single filament is circular, the fabric with a low number of twists and weaving density (Sample No. 1) has a low water permeability after scouring, but some carbon particles can pass through it. However, if the water conductive treatment is applied, the coloration due to carbon becomes significant, and the fabric (sample No. 2) whose twist number and weave density meet the conditions of the present invention has low water permeability even if the water conduction treatment is applied. . Furthermore, even if the cross-sectional shape of the single filament is U-shaped and the fiber surface has a groove-like concave portion continuous in the fiber axis direction, the yarn has a small number of twists (Sample No. 3) and a low weaving density. Case (sample no.
Regarding 4), water permeability is low after scouring, and carbon particles permeate through the water-conducting process, making adjustment difficult. The fabrics of samples Nos. 5, 6, 7, and 8 that were subjected to alkali etching treatment and those that were subjected to low-temperature plasma treatment are examples of the present invention, and have high water permeability and no carbon particles permeate at all. It was an excellent separation fabric. (F) Effects of the Invention As mentioned above, the separation fabric of the present invention can suppress the capillary phenomenon in the fiber gaps by simply supplying a colloidal solution to one side of the fabric without using any energy such as pressurization. It is possible to effectively develop the dispersion medium to permeate and transfer to the other side of the fabric, and to separate the fine particles and the dispersion medium. Therefore, it is possible to easily and quickly separate a small amount and a large number of particles of a colloidal solution from a dispersion medium, which is extremely useful when inspecting particles and/or a dispersion medium.

Claims (1)

【特許請求の範囲】[Claims] 1 単フイラメントの繊度1〜5d、総繊度50〜
100d、撚数100〜2000回/米の合成繊維マルチフ
イラメント糸からなる、経糸密度及び緯糸密度の
和が210本/吋以上の織物であつて、該織物中の
全単フイラメントの少なくとも半数が繊維表面に
繊維軸方向に少なくとも1個の連続した凹部を有
し、さらに該織物に導水加工が施されてなること
を特徴とするコロイド状微粒子分離用織物。
1 Single filament fineness 1~5d, total fineness 50~
100d, 100 to 2000 twists per US synthetic fiber multifilament yarn, with a sum of warp and weft density of 210 threads/inch or more, at least half of all single filaments in the textile are fibers. A woven fabric for separating colloidal particles, the woven fabric having at least one continuous recess in the fiber axis direction on its surface, and further having a water-conducting finish applied to the woven fabric.
JP59165121A 1984-08-07 1984-08-07 Fabric for separating colloidal fine particles Granted JPS6142314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59165121A JPS6142314A (en) 1984-08-07 1984-08-07 Fabric for separating colloidal fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59165121A JPS6142314A (en) 1984-08-07 1984-08-07 Fabric for separating colloidal fine particles

Publications (2)

Publication Number Publication Date
JPS6142314A JPS6142314A (en) 1986-02-28
JPH041650B2 true JPH041650B2 (en) 1992-01-13

Family

ID=15806312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59165121A Granted JPS6142314A (en) 1984-08-07 1984-08-07 Fabric for separating colloidal fine particles

Country Status (1)

Country Link
JP (1) JPS6142314A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01135514A (en) * 1987-11-20 1989-05-29 Terumo Corp Filter for separating leukocytes
JP4766214B2 (en) * 2001-02-16 2011-09-07 大日本印刷株式会社 Wireless suspension for insulators, laminates and hard disk drives
JP4806213B2 (en) * 2005-05-31 2011-11-02 三菱レイヨン株式会社 Separation of acrylonitrile polymer in aqueous suspension polymerization process and separation method of polymer by continuous rotary filter equipped with filter cloth

Also Published As

Publication number Publication date
JPS6142314A (en) 1986-02-28

Similar Documents

Publication Publication Date Title
WO2022048219A1 (en) Self-cleaning filter cloth and preparation method
EP3342909B1 (en) High-performance polyphenylene sulphide fibre structure, preparation method therefor and use thereof
JPH041650B2 (en)
EP3388565A1 (en) Double-sided water-absorbing fabric, and manufacturing method and application thereof
JP2023142606A (en) Diaphragm base material for water electrolysis and diaphragm for water electrolysis
JPH05287671A (en) Production of polyester-based fiber structure
WO2024135267A1 (en) Textile
JPS6311466B2 (en)
Teli et al. Electrokinetic properties of modified polyester fibers
JP3166778B2 (en) Method for dyeing regenerated cellulose fiber fabric
JP2581162B2 (en) Polyester filament yarn
JPH08291461A (en) Cellulosic fiber and treatment of fabric comprising the same with alkali
US2809089A (en) Process of making regenerated cellulose balloon fabric comprising shrinking with strong alkali and steam blasting and product produced thereby
WO2022270254A1 (en) Method for scouring fiber product and method for scouring fiber product to produce scoured fiber product
JPH04257334A (en) Conjugate hard twisted yarn
JPH09195161A (en) Production of modified cellulose acetate fiber
JPH0382817A (en) Polyester fiber having excellent color-developing property
US3425787A (en) Process for improving the creep resistance in rayon industrial yarns,cords and the like
US2825663A (en) Antivesicant filter fabric
Faterpekar et al. Dyeing of Grafted Polyester Fiber Part I. Effect of Polyvinylacetate Graft on Dyeing Characteristics
JPS6022083B2 (en) Viscose method Production method of recycled cellulose fiber
JPH0675658B2 (en) ▲ Ro ▼
JPH0748754A (en) Woven fabric having specific handle
Moreau Comparison of sized open-end and ring spun yarns
JPS5953927B2 (en) Manufacturing method for strong linen fabric