JPS6142311Y2 - - Google Patents

Info

Publication number
JPS6142311Y2
JPS6142311Y2 JP7733681U JP7733681U JPS6142311Y2 JP S6142311 Y2 JPS6142311 Y2 JP S6142311Y2 JP 7733681 U JP7733681 U JP 7733681U JP 7733681 U JP7733681 U JP 7733681U JP S6142311 Y2 JPS6142311 Y2 JP S6142311Y2
Authority
JP
Japan
Prior art keywords
coil
heated
heating coil
heating
flange
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7733681U
Other languages
Japanese (ja)
Other versions
JPS57192093U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP7733681U priority Critical patent/JPS6142311Y2/ja
Publication of JPS57192093U publication Critical patent/JPS57192093U/ja
Application granted granted Critical
Publication of JPS6142311Y2 publication Critical patent/JPS6142311Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • General Induction Heating (AREA)

Description

【考案の詳細な説明】 本考案は高周波誘導加熱コイルに関し、さらに
詳しくは、端面を被加熱部に押圧、通電して、端
面に接触ないし対向する被加熱体の部分を誘導加
熱するための高周波誘導加熱コイルに関する。
[Detailed Description of the Invention] The present invention relates to a high-frequency induction heating coil, and more specifically, the present invention relates to a high-frequency induction heating coil for inductively heating a portion of the heated body that contacts or opposes the end face by pressing the end face against the heated part and applying electricity. Regarding induction heating coils.

金属缶のフランジ部に熱接着(熱融着を含む)
可能の蓋部を熱接着する場合等に、通常はフラン
ジ部全長に沿いほぼ均一の温度でヒートバー等に
よつて熱接着が行なわれる。この場合加熱温度が
高いと熱接着が強固になり過ぎて蓋部の剥離が困
難もしくは不可能になり、一方加熱温度が低いと
接着力が不十分で、缶を落下した場合等の衝撃等
によつて発生する内圧によつて蓋部が剥脱するお
それがある。このようにフランジ部全長にわたり
ほぼ均一温度に加熱して熱接着を行なう場合に
は、熱接着条件の適正な範囲が狭いという問題が
生ずる。このような場合比較的強固な熱接着部と
比較的弱い熱接着部(ただし当該熱接着部におけ
る密封気密性は確保された)を交互に形成できれ
ば、比較的広い範囲の熱接着条件で熱接着を行な
つても上記のトラブルが発生し難いという利点が
ある。また本考案者の一人がさきに特願昭55−
173308号において提案したような透孔を有する内
張り片が熱接着されたプルタブ方式の開口容易な
金属蓋の場合は、当該熱接着はミシン目状に熱接
着部と非熱接着部が交互に形成されるように行な
つても、所期の目的を達成することが可能であ
る。
Thermal bonding (including heat fusion) to the flange of metal cans
When thermally bonding the lid of a flange, the thermal bonding is normally performed using a heat bar or the like at a substantially uniform temperature along the entire length of the flange. In this case, if the heating temperature is high, the thermal bond will become too strong and it will be difficult or impossible to remove the lid, while if the heating temperature is low, the adhesive strength will be insufficient and it will not be susceptible to shocks such as when the can is dropped. There is a risk that the lid may come off due to the internal pressure generated. When thermal bonding is performed by heating to a substantially uniform temperature over the entire length of the flange portion, a problem arises in that the appropriate range of thermal bonding conditions is narrow. In such cases, if relatively strong thermally bonded parts and relatively weak thermally bonded parts (however, the airtightness of the thermally bonded parts was ensured) can be formed alternately, thermally bonded parts can be thermally bonded under a relatively wide range of thermal bonding conditions. There is an advantage that the above-mentioned troubles are unlikely to occur even if this is done. In addition, one of the inventors of this invention previously applied for a patent application in 1983.
In the case of a pull-tab type easy-to-open metal lid in which a lining piece with a through hole is thermally bonded as proposed in No. 173308, the thermal bonding is perforated to form alternating thermally bonded and non-thermal bonded areas. It is possible to achieve the intended purpose even if you do as instructed.

本考案は以上に述べたような従来の技術的課
題、すなわち金属板に対する強固な熱接着部と弱
い熱接着部が交互に設けられたループ状(本明細
書においては円形以外の4角形、楕円形その他の
形状の場合を含めてループ状と呼ぶことにする)
の熱接着部の形成、もしくは熱接着部と非熱接着
部が交互に設けられたループ状の熱接着帯の形成
が短時間で可能な加熱温度の提供を目的とする。
The present invention solves the above-mentioned conventional technical problem, that is, a loop-shaped (herein, a rectangular or elliptical shape other than circular (We will call it a loop shape, including cases of shapes and other shapes)
The purpose of the present invention is to provide a heating temperature at which it is possible to form a thermally bonded portion or a loop-shaped thermally bonded band in which thermally bonded portions and non-thermal bonded portions are alternately provided in a short time.

さらに本考案は金属板のループ状部分に、強加
熱部と弱加熱部、又は加熱部と非加熱部を交互に
短時間に形成可能な加熱温度の提供を他の目的と
する。
Another object of the present invention is to provide a heating temperature that can alternately form strongly heated parts and weakly heated parts, or heated parts and non-heated parts, in a short time in a loop-shaped portion of a metal plate.

上記目的を達成するため、本考案は被加熱部に
対向すべき面に複数の凸部と凹部が交互に形成さ
れ少なくとも1ターンのコイルと、該凸部の端面
に固着された耐熱性弾性薄膜を備え、該凸部の端
面によつて形成される面は該被加熱部にほぼ対応
する形状を有することを特徴とする高周波誘導加
熱コイルを提供するものである。
In order to achieve the above object, the present invention includes a coil having at least one turn in which a plurality of convex portions and concave portions are alternately formed on the surface facing the heated portion, and a heat-resistant elastic thin film fixed to the end face of the convex portion. The present invention provides a high-frequency induction heating coil characterized in that a surface formed by an end surface of the convex portion has a shape substantially corresponding to the heated portion.

以下実施例である図面を参照しながら、本考案
について説明する。
The present invention will be described below with reference to the drawings which are examples.

第1図、第2図、第3図において、1は高周波
誘導加熱コイル(以下加熱コイルと略称する)で
あつて、1ターンのコイル2と例えばシリコンゴ
ム膜のような耐熱性弾性薄膜3(以下弾性薄膜と
略称する)を備えている。コイル2は第1図にお
いては円環状であるが、4角形状その他の任意の
形状をとりうるものである。コイル2は例えば銅
のような非磁性電気良導体よりなり、その1方の
端面には複数の凸部4と凹部5が交互に形成され
ている。凹部5は好ましくは耐熱性、電気絶縁性
で、かつ剛性の材料6(例えばエポキシ樹脂、以
下剛性材料と略称する)で埋められている。凹部
5が空隙になつていると、加熱コイル1を被加熱
体に押圧するさい、凸部4のコーナー部4aによ
つて弾性薄膜3が損傷され易いからである。そし
て凸部4の端面4bおよび剛性材料6の端面6a
によつて形成される面は連続面を有しており、か
つ被加熱部の被加熱面(例えば第4図のフランジ
部7の上面7a、又は第5図のカール部8の上面
8a)にほぼ対応する形状を有していて、凸部4
に対向する被加熱部が実質的に均一に、かつ満足
に誘導加熱されるように構成されている。弾性薄
膜3は加熱コイル1を被加熱部に押圧のさい、ほ
ぼ均一な押圧力が加わるようにするため凸部4の
端面4bおよび剛性材料の端面6aに固着された
ものであつて、その厚さは約0.5〜4.0mmであるこ
とが望ましい。約0.5mmより薄いと、被加熱面に
若干の凹凸がある場合等に前述の実質的に均一な
押圧力が確保されず、一方約4.0より厚いと、端
面4bと被加熱面(例えばフランジ部上面7a)
との間隔が大きくなり過ぎて、電磁結合が弱ま
り、満足な誘導加熱が達せられなくなるからであ
る。なお適当な厚さの弾性薄膜3が存在するた
め、第5図の場合は、端面4bおよび6aをほぼ
平面状にしても、実質的に均一な押圧力が確保さ
れるので差支えない。
In FIGS. 1, 2, and 3, reference numeral 1 denotes a high-frequency induction heating coil (hereinafter abbreviated as heating coil), which includes a one-turn coil 2 and a heat-resistant elastic thin film 3 (such as a silicone rubber film). (hereinafter abbreviated as elastic thin film). Although the coil 2 has an annular shape in FIG. 1, it may have a rectangular shape or any other arbitrary shape. The coil 2 is made of a nonmagnetic electrically conductive material such as copper, and has a plurality of convex portions 4 and concave portions 5 alternately formed on one end face thereof. The recess 5 is preferably filled with a heat-resistant, electrically insulating, and rigid material 6 (for example, epoxy resin, hereinafter referred to as rigid material). This is because if the concave portion 5 is a gap, the elastic thin film 3 is likely to be damaged by the corner portion 4a of the convex portion 4 when the heating coil 1 is pressed against the object to be heated. The end surface 4b of the convex portion 4 and the end surface 6a of the rigid material 6
The surface formed by is a continuous surface, and the heated surface of the heated portion (for example, the upper surface 7a of the flange portion 7 in FIG. 4 or the upper surface 8a of the curled portion 8 in FIG. 5) It has a substantially corresponding shape, and the convex portion 4
The heated portion facing the heating portion is configured to be substantially uniformly and satisfactorily inductively heated. The elastic thin film 3 is fixed to the end surface 4b of the convex portion 4 and the end surface 6a of the rigid material in order to apply a substantially uniform pressing force when pressing the heating coil 1 against the heated part. The thickness is preferably about 0.5 to 4.0 mm. If it is thinner than about 0.5 mm, the above-mentioned substantially uniform pressing force will not be ensured when the heated surface has some irregularities, while if it is thicker than about 4.0 mm, the end face 4b and the heated surface (for example, the flange part) will not be secured. Top surface 7a)
This is because if the distance between the two ends becomes too large, the electromagnetic coupling will weaken and satisfactory induction heating will not be achieved. Since the elastic thin film 3 has an appropriate thickness, in the case shown in FIG. 5, there is no problem even if the end surfaces 4b and 6a are made substantially flat, since a substantially uniform pressing force is ensured.

コイル1の内部には電磁誘導効果を高めるた
め、電気絶縁性シート9(例えばガラスウールシ
ート)を介して高透磁率材料(例えばフエライ
ト)よりなる磁心10が着設されている。また対
向するフイーダー12の間には電気絶縁体11が
設けられている。フイーダー12は図示されない
高周波発振装置に接続される。
Inside the coil 1, a magnetic core 10 made of a high magnetic permeability material (for example, ferrite) is attached via an electrically insulating sheet 9 (for example, a glass wool sheet) to enhance the electromagnetic induction effect. Further, an electric insulator 11 is provided between the feeders 12 facing each other. The feeder 12 is connected to a high frequency oscillator (not shown).

第4図は以上の加熱コイル1を用いて金属缶1
3のフランジ部7に熱接着性層14aを有する蓋
部14を熱接着する例を示したものである。フラ
ンジ部7aの上に熱接着性層14aを下面にして
蓋部14を載置し、フランジ部7aに凸部の端面
4bが対向するようにして、蓋部14の上に加熱
コイル1を載置し、加熱コイル1を押圧体15
(加熱コイル1の上面と接する部分15aは、押
圧体15が誘導加熱されないように電気絶縁性剛
体よりなることが必要である。)によつて押圧
し、通電することによつて、フランジ部7は急速
に誘導加熱され、熱接着が行なわれる。そのさい
凹部5が浅いほど、凹部5に対向するフランジ部
7の部分と凸部4に対向するフランジ部7の部分
の間の加熱温度差は小さく、従つて熱接着力の差
は小さくなる。一方凹部5が深くなるほど両部分
の加熱温度差は大きくなり、従つて熱接着力の差
も大きくなり、余り深くなると凹部5に対向する
フランジ部7の部分は熱接着されなくなる。従つ
て蓋部14に要求される熱接着力に応じて、適切
な凹部5の深さ(約0.3〜2mm)、および凸部4と
凹部5の円周方向長さ(各々約2〜10mm)を定め
れば、摘み部7bを引き上げて開封するさいの剥
離が比較的容易で、しかも内圧によつては剥脱し
難いように、蓋部14をフランジ部7に熱接着す
ることが可能となる。なお図示されないが必要に
応じ、コイル2の外周に沿い冷却パイプ(コイル
2の温度調節用としても働く)を設けてもよい。
しかし熱接着等の場合は、コイル2の温度がある
程度高い方が熱効率が良いので、過度にコイル2
を冷却しない方が好ましい。
Figure 4 shows a metal can 1 using the above heating coil 1.
This figure shows an example in which the lid part 14 having the heat-adhesive layer 14a is thermally bonded to the flange part 7 of No. 3. The lid part 14 is placed on the flange part 7a with the thermal adhesive layer 14a facing downward, and the heating coil 1 is placed on the lid part 14 with the end surface 4b of the convex part facing the flange part 7a. place the heating coil 1 on the pressing body 15
(The portion 15a in contact with the upper surface of the heating coil 1 needs to be made of an electrically insulating rigid body so that the pressing body 15 is not heated by induction.) By pressing the flange portion 15a and applying electricity, the flange portion 7 are rapidly heated by induction to form a thermal bond. At this time, the shallower the recess 5, the smaller the heating temperature difference between the portion of the flange 7 facing the recess 5 and the portion of the flange 7 facing the protrusion 4, and therefore the smaller the difference in thermal adhesive strength. On the other hand, the deeper the recess 5, the larger the difference in heating temperature between the two parts, and the larger the difference in thermal adhesive strength.If the recess 5 becomes too deep, the part of the flange 7 facing the recess 5 will not be thermally bonded. Therefore, depending on the thermal adhesive strength required for the lid 14, the depth of the recess 5 (approximately 0.3 to 2 mm) and the circumferential length of the protrusion 4 and recess 5 (approximately 2 to 10 mm each) are determined. By determining this, it becomes possible to thermally bond the lid part 14 to the flange part 7 in such a way that it is relatively easy to peel off when pulling up the knob part 7b to open the package, and it is difficult to peel off due to internal pressure. . Although not shown, a cooling pipe (which also serves to adjust the temperature of the coil 2) may be provided along the outer periphery of the coil 2 if necessary.
However, in the case of thermal bonding, etc., the thermal efficiency is better when the temperature of coil 2 is higher to a certain extent, so
It is preferable not to cool the

第6図、第7図、第8図、第9図は、本考案の
他の実施例の加熱コイル21を示したものであ
る。第1図、第2図と同一符号の部分は同一部分
又は同一機能の部分を示す。加熱コイル21の加
熱コイル1との主要な相違点は電流のフイード方
式である。すなわちコイル22の内側に沿つて多
数ターン(例えば100ターン)の細い絶縁被覆導
線23よりなる導線束24が設けられており、導
線23はコイル22の孔部25を通つて、コイル
22の外部に出て、図示されない高周波発振装置
に接続する。導線束24に通電すると電磁誘導効
果によりコイル22の凸部4に沿い高周波発振電
流が流れ、前述と同様にして被加熱部を誘導加熱
することができる。第1図の加熱コイル1の場合
は、コイル2の不連続部2aに対向する部分が加
熱され難いが、加熱コイル21の場合はこのよう
な不連続部がないので、全周に沿い平均した加熱
を行なうことができるという利点を有する。さら
に加熱コイル1の場合は、インピーダンスマツチ
ングのための高価な変流器(図示されない)を必
要とするが、加熱コイル21の場合は、インピー
ダンスの調節が可能なので半導体高周波数発振器
に対しては、変流器を必要としないという利点も
有する。
6, 7, 8, and 9 show heating coils 21 of other embodiments of the present invention. Parts with the same reference numerals as in FIGS. 1 and 2 indicate the same parts or parts with the same function. The main difference between the heating coil 21 and the heating coil 1 is the current feeding method. That is, a conductor bundle 24 consisting of a thin insulated conductor wire 23 having many turns (for example, 100 turns) is provided along the inside of the coil 22, and the conductor wire 23 passes through the hole 25 of the coil 22 to the outside of the coil 22. It is connected to a high frequency oscillator (not shown). When the conducting wire bundle 24 is energized, a high frequency oscillation current flows along the convex portion 4 of the coil 22 due to the electromagnetic induction effect, and the heated portion can be heated by induction in the same manner as described above. In the case of the heating coil 1 shown in Fig. 1, the part of the coil 2 that faces the discontinuous part 2a is difficult to heat, but in the case of the heating coil 21, there is no such discontinuous part, so the temperature is averaged along the entire circumference. It has the advantage of being able to perform heating. Furthermore, in the case of the heating coil 1, an expensive current transformer (not shown) is required for impedance matching, but in the case of the heating coil 21, the impedance can be adjusted, so it is suitable for semiconductor high-frequency oscillators. , it also has the advantage of not requiring a current transformer.

第10図、第11図は、本考案のさらに他の実
施例の加熱コイル31を示したものであつて、コ
イル32が扁平な薄い(好ましくは厚さ0.05〜
2.0mm)銅のような電気伝導度の高い金属のリボ
ン(好ましくは幅約5〜20mm)を多層に(少なく
とも10ターン)、密に巻いて形成されたものであ
つて、図示されないが各層の間は耐熱性絶縁塗膜
(例えばポリイミド樹脂よりなる)によつて電気
絶縁されている点が、前述のコイル2との大きな
差である。33は弾性薄膜、34は凸部、35は
凹部、36は凹部を埋める電気絶縁性の剛性の材
料、38は磁芯、39は冷却套、39aは冷却套
に冷却液を貫流させるための導管、40はコイル
2に高周波電流をフイードするためのフイーダで
あり、41は磁芯38に固着される支承具(例え
ばベークライトよりなる)であつて、図示されな
い押圧機構に連接する。
10 and 11 show a heating coil 31 according to still another embodiment of the present invention, in which the coil 32 is flat and thin (preferably 0.05 to 0.05 mm thick).
It is formed by tightly winding a ribbon (preferably about 5 to 20 mm wide) of a metal with high electrical conductivity such as copper in multiple layers (at least 10 turns), although not shown in the figure. A major difference from the coil 2 described above is that the space between the coils is electrically insulated by a heat-resistant insulating coating (made of polyimide resin, for example). 33 is an elastic thin film, 34 is a convex portion, 35 is a concave portion, 36 is an electrically insulating rigid material that fills the concave portion, 38 is a magnetic core, 39 is a cooling mantle, and 39a is a conduit for causing the cooling liquid to flow through the cooling mantle. , 40 is a feeder for feeding a high frequency current to the coil 2, and 41 is a support (made of Bakelite, for example) fixed to the magnetic core 38, and is connected to a pressing mechanism (not shown).

多層巻きコイル(巻数n)の場合は、1ターン
のコイルにくらべてインピーダンスがほぼn2倍と
なる。従つて出力が同一である場合、電圧を上げ
て供給電流をより小さくすることができる。その
ためフイーダによるジユール損が減少し、また半
導体高周波発振器を用いる場合は、インピーダン
スマツチングのための高価なカレントトランスを
用いる必要がなく、従つてカレントトランスによ
る電力損を防止でき、全体として加熱効率が向上
するという利点を有する。
In the case of a multilayer coil (number of turns n), the impedance is approximately n 2 times that of a one-turn coil. Therefore, if the output is the same, the voltage can be increased and the supplied current can be made smaller. Therefore, the module loss due to the feeder is reduced, and when using a semiconductor high-frequency oscillator, there is no need to use an expensive current transformer for impedance matching. Therefore, power loss due to the current transformer can be prevented, and overall heating efficiency is improved. It has the advantage of improving

本考案の高周波誘導加熱コイルは、被加熱部に
対向すべき面に複数の凸部と凹部が交互に形成さ
れた少なくとも1ターンのコイルを備えているの
で、ループ状の被加熱部に沿つて、高周波誘導加
熱によつてごく短時間に強加熱部と弱加熱部、あ
るいは加熱部と非加熱部を交互に形成することが
できるという効果を有する。さらに凸部の端面に
は耐熱性弾性薄膜が固着されているので、弾性被
膜の緩衝作用によつて、実質的に均一な押圧力を
加えることができるという効果を有する。
The high-frequency induction heating coil of the present invention includes at least one turn of the coil in which a plurality of convex portions and concave portions are alternately formed on the surface facing the heated portion, so that the coil can be heated along the loop-shaped heated portion. This has the effect that high-frequency induction heating can alternately form strongly heated parts and weakly heated parts, or heated parts and non-heated parts, in a very short time. Further, since the heat-resistant elastic thin film is fixed to the end face of the convex portion, it is possible to apply a substantially uniform pressing force due to the buffering effect of the elastic coating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本考案第1の実施例の加熱コイルの平
面図、第2図は第1図の加熱コイルの正面図、第
3図は第1図の−線に沿う縦断面図、第4図
は第1図の加熱コイルの使用方法の例を示すため
一部切断正面図、第5図は第1図の加熱コイルの
凸部端面の形状の例を示すための縦断面図、第6
図は本考案の第2の実施例の加熱コイルの平面
図、第7図は第6図の−線からみた側面図、
第8図は第6図の−線に沿う縦断面図、第9
図は第8図の−線に沿う横断面図、第10図
は本考案の第3の実施例の加熱コイルの縦断面
図、第11図は第10図のXI−XI線に沿う横断面
図である。 1,21,31……高周波誘導加熱コイル、
2,22,32……コイル、3,33……耐熱性
弾性薄膜、4,34……凸部、4b……端面、
5,35……凹部、7……フランジ部(被加熱
部)、8……カール部(被加熱部)。
Fig. 1 is a plan view of the heating coil of the first embodiment of the present invention, Fig. 2 is a front view of the heating coil of Fig. 1, Fig. 3 is a longitudinal sectional view taken along the line - in Fig. The figure is a partially cutaway front view to show an example of how to use the heating coil in Fig. 1, Fig. 5 is a longitudinal cross-sectional view to show an example of the shape of the convex end face of the heating coil in Fig.
The figure is a plan view of a heating coil according to the second embodiment of the present invention, and FIG. 7 is a side view taken from the - line in FIG.
Figure 8 is a longitudinal sectional view taken along the - line in Figure 6;
The figure is a cross-sectional view taken along the - line in FIG. 8, FIG. 10 is a longitudinal cross-sectional view of a heating coil according to the third embodiment of the present invention, and FIG. 11 is a cross-sectional view taken along the line XI-XI in FIG. It is a diagram. 1, 21, 31...high frequency induction heating coil,
2, 22, 32... Coil, 3, 33... Heat-resistant elastic thin film, 4, 34... Convex portion, 4b... End surface,
5, 35... Recessed portion, 7... Flange portion (heated portion), 8... Curled portion (heated portion).

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 被加熱部に対向すべき面に複数の凸部と凹部が
交互に形成された少なくとも1ターンのコイル
と、該凸部の端面に固着された耐熱性弾性薄膜を
備え、該凸部の端面によつて形成される面は該被
加熱部にほぼ対応する形状を有することを特徴と
する高周波誘導加熱コイル。
A coil having at least one turn in which a plurality of convex portions and concave portions are alternately formed on the surface facing the heated portion, and a heat-resistant elastic thin film fixed to the end surface of the convex portion, A high-frequency induction heating coil characterized in that the thus formed surface has a shape that substantially corresponds to the heated portion.
JP7733681U 1981-05-29 1981-05-29 Expired JPS6142311Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7733681U JPS6142311Y2 (en) 1981-05-29 1981-05-29

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7733681U JPS6142311Y2 (en) 1981-05-29 1981-05-29

Publications (2)

Publication Number Publication Date
JPS57192093U JPS57192093U (en) 1982-12-06
JPS6142311Y2 true JPS6142311Y2 (en) 1986-12-01

Family

ID=29872991

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7733681U Expired JPS6142311Y2 (en) 1981-05-29 1981-05-29

Country Status (1)

Country Link
JP (1) JPS6142311Y2 (en)

Also Published As

Publication number Publication date
JPS57192093U (en) 1982-12-06

Similar Documents

Publication Publication Date Title
US4563145A (en) Alternately heatable and coolable moulding block
JP3990000B2 (en) High efficiency induction cooking range
JPH08137306A (en) Electromagnetic induction heating system fixing device
CN103250465B (en) Load coil and induction heating equipment
JPH0225326B2 (en)
JPS5948733B2 (en) Mold welding coil equipment
JPS6142311Y2 (en)
TW413826B (en) Method of manufacturing bead inductor and the bead inductor produced thereby
JPH10223365A (en) Induction heating cooking device
JPS6142312Y2 (en)
JPH11316509A (en) Fixing device
JP2002075613A (en) Heating coil for induction heating device
JP2006302505A (en) Induction heating device
JPS633434B2 (en)
JP2005203212A (en) Induction heating device
JPS58138515U (en) induction heating container
JP2004273301A (en) Induction heating device
JPS63259991A (en) Induction heating cooker
KR20170068098A (en) Electric rice cooker
JPH0423628Y2 (en)
JPS6245883Y2 (en)
JPS6349866B2 (en)
JP2024036215A (en) Coil parts and their manufacturing methods, coil intermediate materials, power transmission devices, power receiving devices, and power transmission systems
JPS586617Y2 (en) soldering iron
JPH11329693A (en) Dielectric heating coil structural body