JPS6142286A - Speed controlling method of motor - Google Patents

Speed controlling method of motor

Info

Publication number
JPS6142286A
JPS6142286A JP16330384A JP16330384A JPS6142286A JP S6142286 A JPS6142286 A JP S6142286A JP 16330384 A JP16330384 A JP 16330384A JP 16330384 A JP16330384 A JP 16330384A JP S6142286 A JPS6142286 A JP S6142286A
Authority
JP
Japan
Prior art keywords
current
speed
electric motor
disturbance
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16330384A
Other languages
Japanese (ja)
Inventor
Itsuo Shimizu
清水 五雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16330384A priority Critical patent/JPS6142286A/en
Publication of JPS6142286A publication Critical patent/JPS6142286A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P23/00Arrangements or methods for the control of AC motors characterised by a control method other than vector control
    • H02P23/18Controlling the angular speed together with angular position or phase
    • H02P23/186Controlling the angular speed together with angular position or phase of one shaft by controlling the prime mover

Abstract

PURPOSE:To prevent the speed of a motor from varying due to load disturbance by presuming the disturbance by the angular velocity in the state of presumed angular velocity and the no load disturbance state, and calculating a compensating current from the presumed result to apply it to a current command. CONSTITUTION:The presumed value omegas of an angular velocity w is calculated in response to an armature current IA on the basis of a similar counterelectromotive force zetaphi' and a similar inertial efficient J'. A load disturbance TD is presumed by the difference between the presumed value omegas and the velocity omega, the counterelectromotive force constant zetaphi' and a current gain are converted by the disturbance TD to calculate the compensating current ID for compensating the variation in the load. The current IA is controlled in response to current base signal IP in response to a deviation between a speed detection signal R and a speed reference signal, and a deviation between a current detection signal I and a compensating current signal I0.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、電動機の速度制御方法に係り、荷に、例えば
圧延機において圧延機の・】−ルへの噛み込み時(で生
ずる電動機の速度変動を抑制するに好適な速度制御方法
に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a method for controlling the speed of an electric motor, and the present invention relates to a method for controlling the speed of an electric motor. The present invention relates to a speed control method suitable for suppressing fluctuations.

〔発明の背景〕[Background of the invention]

圧延機においてはその駆動用電動機として直流r電動機
(以F1単に電動機という、)が用いられている。この
電動機の回転速度を予め定められた速度指令に応じて安
定な値に維持するため、いわゆるフィードバック制御を
用いるのが一般的である。この速度制御系の一般的な形
!2!を第5図に示し、その伝達関数で表わしたブロッ
ク図を第6図に示す。
In a rolling mill, a DC r motor (hereinafter simply referred to as F1 motor) is used as a driving motor. In order to maintain the rotational speed of this electric motor at a stable value according to a predetermined speed command, so-called feedback control is generally used. The general form of this speed control system! 2! is shown in FIG. 5, and a block diagram expressed by its transfer function is shown in FIG.

捷ず、概要を述べる。第5図に示す速度セ11伸ノステ
ムは、電動機2の実回転速度全速度検t1臂::)3に
より検出し、その速度検出信号ルを負帰還り、て速度指
令に加えて制御するメジャーループと、「1■変制御電
源であるサイリスタ全波制御整流回路】に与える電流を
変流器CTにより検出し、その電流検出信号■を負帰還
させて電流を制御するマイナーループとで構成される。
I will give a summary without omitting it. The speed sensor 11 extension stem shown in Fig. 5 is detected by the actual rotational speed of the electric motor 2 and the full speed test t1:)3, and the speed detection signal is fed back as a negative feedback, and is controlled in addition to the speed command. It consists of a loop and a minor loop that detects the current given to the thyristor full-wave control rectifier circuit, which is a variable control power source, using a current transformer CT, and controls the current by feeding back the current detection signal ■. Ru.

さらに詳しく説明すると、次の通りである。サイリスタ
による逆並列三相全波制御整流回路lは、三相交流電圧
eAcを全波整流制御して所定の直流電圧に変換し1、
その直流電圧を電動機2に与えて回転速度を可変制御す
る。電動機2の電機子に流れる電流IAは、交ml側に
設置した変流器CTおよび電流検出器5によね瞬時に等
価直流電流■としてマイナー電流制御系の帰還信号とな
る。一方、′・に動機2の実回転速度は電動機2に直結
されたパルスゼネレータやルノルバ等の速度検出器3お
よび速度検出器7により検出され、精密にかつ時間遅れ
なく(あったとしても速度制御等に問題とならない程度
)速度帰還信号比として速度指令Spと比較されるうそ
の偏差は、速度制御器4に入力され、この速度制御器4
から上記偏差に応じたIpが出力される。さらに゛’P
PbR指令Ipと等価直流電流工との偏差に応じ電流制
御46により整流回路1が点弧制御され、目的の回転速
度がイ;)られるよう出力直流電圧が制御される。
A more detailed explanation is as follows. The antiparallel three-phase full-wave control rectifier circuit l using thyristors performs full-wave rectification control on the three-phase AC voltage eAc to convert it into a predetermined DC voltage.
The DC voltage is applied to the electric motor 2 to variably control the rotation speed. The current IA flowing through the armature of the motor 2 is instantaneously turned into an equivalent direct current (■) by the current transformer CT and current detector 5 installed on the AC ml side, and becomes a feedback signal for the minor current control system. On the other hand, the actual rotational speed of the motor 2 is detected by a pulse generator, a speed detector 3 such as a lunolva, and a speed detector 7 which are directly connected to the motor 2, accurately and without any time delay (if any, the speed control The deviation, which is compared with the speed command Sp as a speed feedback signal ratio, is input to the speed controller 4, and
Ip corresponding to the above deviation is output. Further ゛'P
The rectifier circuit 1 is controlled to fire by the current control 46 according to the deviation between the PbR command Ip and the equivalent DC current value, and the output DC voltage is controlled so that the target rotational speed is achieved.

第6図は、第5図の制御系を伝達関数を用いたブロック
図に変換したものである。ここで角速度ωを′C機予電
流IAと負荷トルクTDの関係C示すと となり、負荷外乱(負荷トルク)Toが加わるとそれを
補償すべき電機子電流IAを与えることができるならば
、角速度ωは全く変動しない具がわかる。不制御系にお
いて、この補償すべき?IC磯子戒流IAは、速度制御
器G8の出力とし与えられ、電流制御器Gcの出力とし
て′1流f11+が求凍るため、速度制御系および電流
制御系の応答に大幅に左右されることとなるう このような制御系において、負荷外乱Toとして最も大
きなものは、圧延機のロール間への圧延材の噛み込みで
ある。
FIG. 6 is a block diagram obtained by converting the control system shown in FIG. 5 into a block diagram using a transfer function. Here, the angular velocity ω is represented by the relationship C between the machine precurrent IA and the load torque TD, and if the load disturbance (load torque) To is added and the armature current IA to compensate for it can be given, then the angular velocity It can be seen that ω does not change at all. Should this be compensated for in an uncontrolled system? The IC Isogo flow IA is given as the output of the speed controller G8, and the '1 flow f11+ is determined as the output of the current controller Gc, so it will be greatly influenced by the responses of the speed control system and the current control system. In such a control system, the largest load disturbance To is the jamming of the rolled material between the rolls of the rolling mill.

この圧延材の噛み込み時に生じる回転速度の低下はイン
パクトドロップといわれ、これを補償するこトラインパ
クト・ドロップ・コンペンセイションという。インパク
トドロップが生じると、上述の制御器では、メジャール
ーズによる修正動作とともに、マイナールーズによる修
正動作があいまって行なわれることとなる。しかしなが
ら、電動機の駆動のための主回路を含めて、制御系には
電動機の慣性能率(GD” )や摩擦等の機械的遅れ要
素、制御ループのインダクタンス成分等ノミ気的遅れ要
素が存在するため、応答速度を向上させる場合に制限が
あり、ある値より少なくすることは極めて困難である。
This reduction in rotational speed that occurs when the rolled material is bitten is called impact drop, and the process that compensates for this is called impact drop compensation. When an impact drop occurs, the above-mentioned controller performs a correction operation due to a major loose and a correction operation due to a minor loose. However, the control system, including the main circuit for driving the electric motor, has mechanical delay elements such as the motor's coefficient of inertia (GD) and friction, and mechanical delay elements such as the inductance component of the control loop. , there is a limit when improving the response speed, and it is extremely difficult to reduce it below a certain value.

なお、電動機の負荷急減を補償する制御例として、特公
昭54−58875号に開示されたものがある。
An example of control for compensating for a sudden decrease in the load on the electric motor is disclosed in Japanese Patent Publication No. 58875/1983.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、電動機の回転速度を安定に制御する場
合に、本来の制御ループにある速度制御器、電流制御器
を経由することなく速度変動を急速かつ安定して最小限
に抑制しうる制御方法を提供するにある。
An object of the present invention is to rapidly and stably suppress speed fluctuations to a minimum when stably controlling the rotational speed of an electric motor without going through the speed controller and current controller in the original control loop. To provide a control method.

〔発明の概要〕[Summary of the invention]

上記目的を達成するために、本発明による直流電動機の
速度制御方法は、電動機に駆動電力を供給する可変制御
電源装置と、前記電動機の実回転速度を検出する速度検
出器と、この速度検出器からの速度検出信号と速度指令
信号との偏差から電流指令を作り、この電流指令により
前記電動機に流れる駆動電流を補償するマイナールーズ
の電流制御回路と、により電動機の速度を制御する方法
において、前記電動機の駆動電流とトルク定数とから求
めた負荷外乱の加わらない状態での速度成分および上記
速度検出信号により前記電動機に加わる負荷外乱を推定
し、この推定負荷外乱に基づいて前記電動機の等価駆動
電流値を演算し、演算された等価駆動電流値を前記マイ
ナールーズの電流制御回路(与える点に特徴を有する。
In order to achieve the above object, a method for controlling the speed of a DC motor according to the present invention includes a variable control power supply device that supplies driving power to the motor, a speed detector that detects the actual rotational speed of the motor, and a speed detector that detects the actual rotational speed of the motor. a minor-loose current control circuit that generates a current command from the deviation between a speed detection signal and a speed command signal, and compensates a drive current flowing to the motor using the current command; The load disturbance applied to the motor is estimated based on the speed component in a state where no load disturbance is applied and the speed detection signal obtained from the drive current and torque constant of the motor, and the equivalent drive current of the motor is calculated based on this estimated load disturbance. The minor loose current control circuit is characterized in that it calculates the value and gives the calculated equivalent drive current value to the minor loose current control circuit.

すなわち、要約すると、電動機の逆起電圧定数および慣
性能率をシミュレートし、その模擬結果と現在の電動機
の駆動電流を用いて角速度を推定し、さらに推定した角
速度と負荷外乱のない状態での角速度を用いて負荷外乱
を推定し、その推定結果から補償電流を算出し、算出値
を電流指令に加え合せて、フィードフォワード的な補償
制御をするものである。
In other words, to summarize, we simulate the back electromotive force constant and inertia factor of the motor, estimate the angular velocity using the simulated results and the current drive current of the motor, and then calculate the estimated angular velocity and the angular velocity in the absence of load disturbance. The load disturbance is estimated using the above estimation, the compensation current is calculated from the estimation result, and the calculated value is added to the current command to perform feedforward compensation control.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明による電動機の速度制御方法を図面に基づ
いて説明する。
Next, a method for controlling the speed of an electric motor according to the present invention will be explained based on the drawings.

第1図に本発明による速度制御方法の要部を制御ブロッ
ク図で示す。なお、本実施例において第5図、第6図と
重複する部分には同一の符号あるいは記号を附して以下
説明する。
FIG. 1 shows a main part of the speed control method according to the present invention in a control block diagram. Note that in this embodiment, the same reference numerals or symbols are given to the parts that overlap with those in FIGS. 5 and 6 and will be explained below.

先にも述べたようにCH2図、第6図風電動機20角速
度は(1)式で与えられ、電機子電流Iaは速度制御器
G6の出力として与えられ、また電流制御器Gcの出力
として電流IDが求まるために、速度制御系および電流
制御系の応答に大幅に左右されるものであった。
As mentioned earlier, the angular velocity of the wind motor 20 in Figures CH2 and 6 is given by equation (1), the armature current Ia is given as the output of the speed controller G6, and the current is given as the output of the current controller Gc. In order to determine the ID, it was largely dependent on the responses of the speed control system and the current control system.

そこで、本発明では、第1図に示す如く、それぞれ逆起
電圧定数ζφおよび慣性率Jをシミュレートシ、それぞ
れ模擬逆起圧定数ζφ′、模擬慣性能率J′として与え
、現在直流電動機に与えられている電機子電流Iムより
角速度ωを推定するωB−□ ζφ′工A      
   ・(2)J’S となる、今模擬逆起電圧定数ζφ′、模擬慣性能率J′
は正確にシミュンーションできたとし、それぞれJ=J
’=J、  ζφ−ζφ′=ζφ′とする。
Therefore, in the present invention, as shown in FIG. 1, the back electromotive force constant ζφ and the inertia factor J are simulated and given as a simulated back electromotive force constant ζφ' and a simulated inertia rate J', respectively. Estimate the angular velocity ω from the armature current I.
・(2) Now the simulated back electromotive force constant ζφ′ and the simulated inertia rate J′ become J'S.
are simulated accurately, and each J=J
'=J, ζφ−ζφ'=ζφ'.

(2)式より(1)式を引くと ・°・TD=JS(ωB−ω)       ・・・(
3)となり、負荷外乱丁りが正確に推定出来る事になる
。ここで問題となるのは逆起電圧定数ζφ、慣性能率J
の7ミユレー7ヨンの正確度、およびいずれにしろ微少
な速度変化をとらえる必要性から高い速度検出精度を必
要とすることである。しかし、これらは、今日発達して
いるディジタル化技術、マイコン等を使用することによ
り精度上の問題は解決される。
Subtracting equation (1) from equation (2)...°・TD=JS(ωB-ω)...(
3), and the load disturbance can be estimated accurately. The issues here are the back electromotive force constant ζφ and the inertia factor J
In any case, high speed detection accuracy is required due to the need to detect minute changes in speed. However, the accuracy problems can be solved by using today's developed digital technology, microcontrollers, etc.

負荷外乱TDが求まると逆起電圧定数ζφおよび電流検
出ゲインの換算を行ない、負荷変動を補償するための補
償電流Inは下式 ここでFCとViIt流検出ゲインで求まるっこの補償
%、流Ioをそのま\1L流制御系の嘱流指咎I pに
加えあわせれば、速度制御器の助けをかりることなく、
一種のフィードフォワード的に負荷外乱を補償する事が
できる。
When the load disturbance TD is determined, the back electromotive force constant ζφ and current detection gain are converted, and the compensation current In for compensating for load fluctuation is calculated using the following formula. If we directly add this to the flow rate Ip of the 1L flow control system, we get the following without the help of a speed controller:
It is possible to compensate for load disturbances in a kind of feedforward manner.

ところが、実際の電流制御系においては、電流指令Ip
から実際の電機子電流1’aまでは応答遅れがあるため
、その応答の遅れ分だけ補償した形での補償PatIo
’を作る方がより速い形で補償できるので電流の応答遅
れを補償したIn’を下式で求める。
However, in an actual current control system, the current command Ip
Since there is a response delay from 1'a to the actual armature current 1'a, compensation PatIo is calculated by compensating for the response delay.
Since it is possible to compensate in a faster manner by creating ', In' that compensates for the current response delay is determined by the following formula.

Io’  = (1−1−’r: 5)Io     
 ・−(5)S ニジグラス演算子 ’rc:電流応答遅れ時間 (5)式で求めた補償Pat、In’を電流指令Ipに
加えあわせる。実際の電流制御器Jcの伝達関数および
負f・・f外乱補償ブロックを加味した速度制御系のブ
ロック図を第2図に示す。実際の制御系においては、第
1図において示す負荷推定に必要な速度ω、電流IAは
それぞれ速度検出器、Tlil検流器を経由して検出し
ているため第2図においてはそれぞれの帰還信号にゲイ
ンH8、Fcの逆数をかけて角速度ω、電機子電流IA
を求めているうまた、一般的には電流制御器dcVi第
2図に示す如く積分器1/TSとゲインKP (三相全
波整流全波制御の制御ゲイン)に分離する事が出来る(
電流制御系としては、ダンピング補償、電流レート制御
材等あるがいずれの場合においても前向き要素としては
、積分系になる。)。トルク推定ブロックに含まれてい
る微分要素をディジタルに精度よく、かつ充分なる応答
性をもって実施する事は非常に困難な問題で、実施にあ
たっての障害にならざるを得ない。そこで、本発明にお
いてはa流制御系の積分器に注目し、補正pat、を積
分器の後段にもってくると、丁度トルク推定ブロックの
微分器をはぶく事ができ、微分回路を使う事なく応答の
早い迎」飾糸を作る事ができる。
Io' = (1-1-'r: 5) Io
-(5)S Rainbow grass operator 'rc: Current response delay time Adds the compensation Pat, In' obtained by equation (5) to the current command Ip. FIG. 2 shows a block diagram of the speed control system in consideration of the actual transfer function of the current controller Jc and the negative f...f disturbance compensation block. In an actual control system, the speed ω and current IA necessary for load estimation shown in Fig. 1 are detected via a speed detector and a Tlil galvanometer, respectively, so in Fig. 2, the respective feedback signals are is multiplied by the gain H8 and the reciprocal of Fc to obtain the angular velocity ω and the armature current IA.
In general, the current controller dcVi can be separated into an integrator 1/TS and a gain KP (control gain for three-phase full-wave rectification full-wave control) as shown in Figure 2.
Current control systems include damping compensation and current rate control materials, but in either case, the forward-looking element is an integral system. ). It is a very difficult problem to digitally implement the differential elements included in the torque estimation block with high precision and sufficient responsiveness, and this cannot but become an obstacle in implementation. Therefore, in the present invention, we focus on the integrator of the a-flow control system, and by putting the correction pat at the latter stage of the integrator, we can just remove the differentiator of the torque estimation block and respond without using a differentiating circuit. You can make decorative threads.

第2図においで0点より0点1での前向き伝達関数は、 となる。上式において第1項の微分器と第3項の積分器
が相殺しあい を得る。そこで、補償pa t 、を積分器の後段0点
にもってくると全く微分回路を使用した場合と等価に、
かつ、補償効果をそこねることなく制御ループを組む事
ができる。
In Figure 2, the forward transfer function from point 0 to point 1 is as follows. In the above equation, the differentiator in the first term and the integrator in the third term cancel each other out. Therefore, if the compensation pa t is brought to the 0 point after the integrator, it is equivalent to using a differentiating circuit.
Moreover, a control loop can be constructed without impairing the compensation effect.

従来の速度制御器の出力はりミツターにより制限されて
おり、逸流制限回路の役目をもしていたが、本発明によ
ると、リミッタ内部においても補正patが加わる事に
なり、従来のりミツター回路のままでは電流制限が効か
ない事になる。そこで、実際の電流■を常時チェックし
てオーバーロード制御を越える場合には各速度制御器、
電流制御器、トルク推定制御器の出力を保持ブーるよう
にして電流制限の役目をもたすようにする。水制41系
(まいずれにしろ微少な変化を精度よく演算するために
ディジタル制御系で構成する必要がらり、ディンタル制
御系においては、ある条件において複数の出力の保持を
同時にかける事は問題なり■1能である。
The output of the conventional speed controller was limited by the limiter, which also served as a stray flow limiting circuit, but according to the present invention, a correction pat is added inside the limiter, so the conventional limiter circuit can be used. In this case, current limiting will not work. Therefore, the actual current ■ should be constantly checked and if it exceeds the overload control, each speed controller
The outputs of the current controller and torque estimation controller are held to serve as a current limiter. Water control system 41 (In any case, it must be configured with a digital control system in order to accurately calculate minute changes, and in digital control systems, it is problematic to hold multiple outputs at the same time under certain conditions. 1 ability.

次に、第3図に本発明による制御系に電流制限器を組み
込んだ場合のブロック図を示す。
Next, FIG. 3 shows a block diagram when a current limiter is incorporated into the control system according to the present invention.

電流帰還慎重と、速度帰還値Itに/i5づいてそれぞ
れ演算を9とない、かつ電流制御系の特性、応答遅れを
加味して微分器を使用しないでトルク補償信号を算出し
、サイリスタのゲート制御信号に重畳する。+1!流制
限は、直流1S動機の過負荷時イ」二に併わせ、その特
性体を越えた場合は電流制限器の出力により速度制御器
、電流制御器、トルク補償演算回路の出力をそれぞれク
ランプする。また本制御系は全てディジタル制御系で(
R成するのが好ましい。
Calculate the torque compensation signal without using a differentiator by carefully calculating the current feedback and calculating 9 based on the speed feedback value It /i5, taking into account the characteristics of the current control system and response delay, and calculate the torque compensation signal without using a differentiator. Superimposed on control signal. +1! The current limit is set in accordance with A and B when the DC 1S motor is overloaded, and when the characteristic body is exceeded, the output of the speed controller, current controller, and torque compensation calculation circuit is clamped by the output of the current limiter. . In addition, this control system is entirely a digital control system (
It is preferable to form R.

本制御系は、速度制御系を特に負荷外乱(負荷トルクの
変動)に対し助ける役目をなし、かつ、マイナールーズ
のループゲインは約1となるため、ハンチングの心配が
ない全く安定した制御系となっている。また正確さが必
要とされるζφ′、J′に対してももし狂ったとしても
速度制御系の外乱要素として評価窟れるが最終的にはメ
ジャーループの速度制御系の応答で補正される事となり
、従来の速度制御系の応答よシ悪くなる心配は全くない
、従来の速度制御系は一種のモニター制御として評価さ
れる。
This control system helps the speed control system especially against load disturbances (variation in load torque), and since the loop gain of minor looseness is approximately 1, it is a completely stable control system with no fear of hunting. It has become. Also, for ζφ' and J', which require accuracy, if they go awry, their evaluation will be degraded as a disturbance element of the speed control system, but ultimately it will be corrected by the response of the speed control system of the major loop. Therefore, there is no concern that the response of the conventional speed control system will deteriorate, and the conventional speed control system can be evaluated as a type of monitor control.

ここで、本発明を適用して補償した場せと適用しない場
合の負荷外乱に対する′11!機子電流工、および回転
速度ωの応答性の違いを第4図に示す。
Here, '11!' for load disturbances with and without compensation using the present invention! Figure 4 shows the difference in responsiveness of the machine current and rotational speed ω.

第4図において、実線が本発明を適用した場合、破線が
不適用の場合を示している。この図から、本発明を適用
した場合には、不適用の場合に比べて、速度量で3.4
倍、回復時間で3.6倍、面積的には12倍もよくなっ
ている事がわかり第5図。
In FIG. 4, the solid line shows the case where the present invention is applied, and the broken line shows the case where the invention is not applied. From this figure, when the present invention is applied, compared to the case where the present invention is not applied, the amount of speed is 3.4
Figure 5 shows that the recovery time is 3.6 times better and the area is 12 times better.

第6図のような単なるフィードバック制御系では決して
得る事が出来ない制御系になっている事がわかる。
It can be seen that the control system has become something that could never be achieved with a simple feedback control system like the one shown in Figure 6.

本実施例は、直流電動機の場合を示したが、全く同様に
父流成動機の速度制御系に簡単に適用出来る事が云える
っ 〔発明の効果〕 以上述べた叩く、本発明によれば、負荷外乱の推定によ
り補償電流値を演算し、この補償電流値を、aυ1こ制
御ループの逗流指令値に加え合せるので、従来のように
、メジャーループやマイナーループによる制御を介在す
ることなく電流の補償をする二とができ、七の結果、マ
イナールーズ、メジャーループによる制限を受けること
なく負荷外乱による電動機の速度変動を急速にかつ安定
して抑制することができる。
Although this embodiment shows the case of a DC motor, it can be said that it can be easily applied to the speed control system of a father-flow forming machine in the same way. [Effects of the Invention] According to the present invention as described above, , the compensation current value is calculated by estimating the load disturbance, and this compensation current value is added to the outflow command value of the aυ1 control loop, so there is no need to intervene with major loop or minor loop control as in the past. The current can be compensated, and as a result of (7), speed fluctuations of the motor due to load disturbance can be rapidly and stably suppressed without being limited by minor looses or major loops.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による負荷外乱推定のためのブロック図
、第2図は本発明による負荷外乱補償を適用した速度制
御系のブロック図、第3図は他の例を示すブロック図、
第4図は本発明による補償の有無による特性の違いを示
す説明図、第5図は従来の一般的な速度制御系を示すブ
ロック図、第6図は第5図の制御系を伝達関数表示で示
したブロック図である。 1・・・三相全波制御整流回路、2・・直流電動機、3
・・速度検出器、4・・・速度制御器、訃・・電流検出
器、6・・・電流制御器、几・・・速度検出信号、SP
・・・速度指令、Ip・・・電流指令、In’・・・応
答遅れを補償した補償電流、ω・・・角速度、工^・・
・電機子電流、TD・・・負荷外乱(トルク)。
FIG. 1 is a block diagram for load disturbance estimation according to the present invention, FIG. 2 is a block diagram of a speed control system to which load disturbance compensation according to the present invention is applied, and FIG. 3 is a block diagram showing another example.
Fig. 4 is an explanatory diagram showing the difference in characteristics depending on the presence or absence of compensation according to the present invention, Fig. 5 is a block diagram showing a conventional general speed control system, and Fig. 6 is a transfer function representation of the control system of Fig. 5. FIG. 1... Three-phase full-wave control rectifier circuit, 2... DC motor, 3
...Speed detector, 4...Speed controller, -Current detector, 6...Current controller, 几...Speed detection signal, SP
...Speed command, Ip...Current command, In'...Compensation current that compensates for response delay, ω...Angular velocity, ^...
- Armature current, TD...Load disturbance (torque).

Claims (1)

【特許請求の範囲】[Claims] 1、電動機に駆動電力を供給する可変制御電源装置と、
前記電動機の実回転速度を検出する速度検出器と、この
速度検出器からの速度検出信号と速度指令信号との偏差
から電流指令を作り、この電流指令により前記電動機に
流れる駆動電流を補償するマイナーループの電流制御回
路と、により電動機の速度を制御する方法において、前
記電動機の駆動電流とトルク定数とから求めた負荷外乱
の加わらない状態での速度成分および上記速度検出信号
により前記電動機に加わる負荷外乱を推定し、この推定
負荷外乱に基づいて前記電動機の等価駆動電流値を演算
し、演算された等価駆動電流値を前記マイナーループの
電流制御回路に与えることを特徴とする電動機の速度制
御方法。
1. A variable control power supply device that supplies driving power to the electric motor;
A speed detector that detects the actual rotational speed of the electric motor, and a minor that generates a current command from the deviation between the speed detection signal from the speed detector and the speed command signal, and compensates the drive current flowing to the electric motor using this current command. A method for controlling the speed of an electric motor by a loop current control circuit and a load applied to the electric motor based on a speed component in a state where no load disturbance is applied and the speed detection signal obtained from the drive current and torque constant of the electric motor. A speed control method for an electric motor, comprising estimating a disturbance, calculating an equivalent drive current value of the motor based on the estimated load disturbance, and providing the calculated equivalent drive current value to the current control circuit of the minor loop. .
JP16330384A 1984-08-02 1984-08-02 Speed controlling method of motor Pending JPS6142286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16330384A JPS6142286A (en) 1984-08-02 1984-08-02 Speed controlling method of motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16330384A JPS6142286A (en) 1984-08-02 1984-08-02 Speed controlling method of motor

Publications (1)

Publication Number Publication Date
JPS6142286A true JPS6142286A (en) 1986-02-28

Family

ID=15771261

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16330384A Pending JPS6142286A (en) 1984-08-02 1984-08-02 Speed controlling method of motor

Country Status (1)

Country Link
JP (1) JPS6142286A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220786A (en) * 1987-03-09 1988-09-14 Ricoh Co Ltd Digital speed control of motor
JPH01186185A (en) * 1988-01-19 1989-07-25 Mitsubishi Electric Corp Speed controller for driving-motor
JPH01303084A (en) * 1988-05-30 1989-12-06 Fanuc Ltd Digital servo-controlling method
JPH03124287A (en) * 1989-10-06 1991-05-27 Toyo Electric Mfg Co Ltd Equivalent disturbance observer employing no speed sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166488A (en) * 1979-06-08 1980-12-25 Fuji Electric Co Ltd Control device of dc motor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55166488A (en) * 1979-06-08 1980-12-25 Fuji Electric Co Ltd Control device of dc motor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63220786A (en) * 1987-03-09 1988-09-14 Ricoh Co Ltd Digital speed control of motor
JPH01186185A (en) * 1988-01-19 1989-07-25 Mitsubishi Electric Corp Speed controller for driving-motor
JPH01303084A (en) * 1988-05-30 1989-12-06 Fanuc Ltd Digital servo-controlling method
JPH03124287A (en) * 1989-10-06 1991-05-27 Toyo Electric Mfg Co Ltd Equivalent disturbance observer employing no speed sensor

Similar Documents

Publication Publication Date Title
US3526819A (en) Current limit for motor control systems
JPS6142286A (en) Speed controlling method of motor
JPS5928159B2 (en) Excitation adjustment device
US4218728A (en) Polyphase hybrid rectifying bridge with commutation fault protection
JPS633556B2 (en)
JPS6024673B2 (en) regulator
JPS6362985B2 (en)
JPS6334712B2 (en)
JP2923993B2 (en) Motor control device
JP2997278B2 (en) Motor control device
JP2792117B2 (en) Power supply
JPS648539B2 (en)
JPS6334711B2 (en)
JPH05181503A (en) Stablized feedback control method
JPH0445440Y2 (en)
JPH0127439Y2 (en)
JPS62236376A (en) Speed controller for motor
JPH0525122B2 (en)
JPH0619350Y2 (en) AC motor vector controller
JP2581459Y2 (en) Control method of voltage fluctuation suppression device
JPH0549163A (en) Dc power supply
JPS6034359B2 (en) DC motor speed control device
JPS609391A (en) Speed controller of motor
JPS5864519A (en) Control method of pwm controlling converter
JPS602089A (en) Speed controller