JPS6142163B2 - - Google Patents

Info

Publication number
JPS6142163B2
JPS6142163B2 JP22448983A JP22448983A JPS6142163B2 JP S6142163 B2 JPS6142163 B2 JP S6142163B2 JP 22448983 A JP22448983 A JP 22448983A JP 22448983 A JP22448983 A JP 22448983A JP S6142163 B2 JPS6142163 B2 JP S6142163B2
Authority
JP
Japan
Prior art keywords
gas
oxygen
fuel
amount
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP22448983A
Other languages
Japanese (ja)
Other versions
JPS60117021A (en
Inventor
Tsutomu Toida
Katsumasa Yamaguchi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP22448983A priority Critical patent/JPS60117021A/en
Publication of JPS60117021A publication Critical patent/JPS60117021A/en
Publication of JPS6142163B2 publication Critical patent/JPS6142163B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

(目的および背景) この発明は燃焼炉の空燃比制御方法、特に燃料
として水素、一酸化炭素、及びメタンその他の軽
質炭化水素を主要発熱成分として含有し且つそれ
ぞれの含有率が経時的に変動するガスを使用する
燃焼炉において最適の空燃比を維持するための制
御方法に関するものである。 水素、一酸化炭素、及びメタンその他の軽質炭
化水素を主要発熱成分として含有し且つそれぞれ
の含有率が経時的に変動するガスの例としては製
油所オフガスとか、PSA(PressureSwing
Adsorption)オフガス等がある。 このような燃料を使用して一定の空燃比で燃焼
を行うと、ある場合には燃料に対し酸素が不足し
て不完全燃焼になり、また他の場合には燃料に対
し酸素が過剰になつて排ガスにより持ち去られる
熱損失が多くなり、いずれの場合も燃料のエネル
ギー利用効率が低下し、また一酸化炭素あるいは
酸化窒素のような有害ガスが発生し易くなる。 組成の安定した燃料および空気を用いて最適の
燃料状態を保つためには燃焼排ガス中の残存酸素
含有率を測定しそれが一定値となるよう空燃比を
制御すれば十分であるが、燃料組成の経時的変動
が激しい場合には実際に必要とされるのとは逆の
操作、例えば燃焼中の燃料の酸素消費量が多く排
ガス中の残存酸素含有率が低下したので酸素供給
量を増すかあるいは燃料供給量を減らす操作をし
たのに、流量調整弁付近における供給燃料組成は
既に変化して酸素必要量は減少しているというよ
うなことが起り得る。 このような場合一般的に考えられる制御方法と
しては、燃料ガス成分、例えばH2、CO、メタン
その他の炭化水素の含有率をそれぞれ常時測定し
て必要酸素量を算出し、酸素含有ガス組成が変化
する場合には酸素の濃度も常時測定して最適空燃
比を算出し、それに基いて燃料ガス又は酸素含有
ガスの供給量を変化させることである。このよう
にすれば理想的なコントロールを行い得るが、し
かしこの方法は燃料組成の分析を迅速に行うため
赤外分析計のような各種の高価な分析装置を使用
し、高性能のコンピユータを用いてデータを処理
してタイムラグのないように操作する必要があ
る。本発明はこのような高価な装置を用いること
なく最適燃焼状態を維持するよう空然比を制御す
る方法を提供するものである。 (構成) 即ち本発明は、水素、一酸化炭素、及びメタン
その他の軽質炭化水素を主要発熱成分として含有
し且つそれぞれの含有率が経時的に変動するガス
を燃料として使用する燃焼炉において、燃料ガス
の一部を分流しメタン化反応を行なわせて生成し
たガス中のメタン含有率に基づいて燃焼炉に供給
する酸素含有ガスの供給量を制御することよりな
る燃焼炉の空燃比制御方法である。 さらに詳細に説明すると、本発明は水素、一酸
化炭素、及びメタンその他の軽質炭化水素を主要
発熱成分として含有し且つそれぞれの含有率が経
時的に変動するガスの燃焼に必要な酸素量を、そ
のガスの一部についてメタン化反応を行なわせる
ことにより生成したガス中のメタンを燃焼するに
必要な酸素量により近似的に代替させることを原
理とする。そしてその結果に基いて空燃比を制御
することにより燃焼炉における酸素の過不足を未
然に防止することができる。 以下まずその原理について説明する。メタン化
反応器内では次のような反応が進行することが予
想される。 3H2+CO→CH4+H2O (1) 4H2+CO2→CH4+2H2O (2) (2n−m/2)H2+CnHm→nCH4 (3) 各式の左辺の組成物と右辺の組成物を燃焼する
に必要な酸素モル数は同じである。 (1)式左辺 3H2+3/2・O2→3H2O CO+1/2・O2→CO2 合計2O2 (1)式右辺 CH42O2 →CO2+2H2O (2)式左辺 4H22O2 →4H2O (2)式右辺 CH42O2 →CO2+2H2O (3)式左辺 (2n−m/2)H2+(n−m/4)O2→(2n− m/2)H2O CnHm+(n+m/4)O2→nCO2+ (m/2)H2O 合計2nO2 (3)式右辺 nCH42nO2 →nCO2+2nH2O 以上の如く、(1)、(2)、(3)の各式において反応が
完全に右辺へ進行するものとすれば生成したメタ
ンの酸素必要量をもつて燃料ガスの酸素必要量を
示すことができる。 しかし実際のメタン化反応においては上記各式
において化学平衡が存在し、水素や一酸化炭素そ
の他が完全にメタンになるわけではない。しかし
若干の水素や一酸化炭素が残存していても、その
程度の量に見合う酸素量は燃焼を行なう場合に通
常採用される酸素過剰率である5%から20%の範
囲で十分にカバーされる。〓メタン化反応を行な
わせて生成したガス中のメタン含有率に基づい
て〓というのは、メタン含有率から化学量論的に
必要酸素量を定めるのではなく、上記のような化
学平衡上の問題や、メタン化触媒の性能上の問題
等も含めて安全率を見込んで必要酸素量を定める
ことを意味する。 分流されてメタン化され、そのメタン含有率を
測定されたガスと、燃焼炉で燃焼されるガスとの
タイムラグを少なくするため、分流地点から測定
用メタン化反応器までの管路はできるだけ短くす
るようにした方がよい、分流比率は設計段階で特
定すればよく燃焼炉本体の容量とは無関係に分流
量として概ね50ml/min〜10/minのサンプルが
得られうようにすれば十分である。 このように分流した燃料ガスを測定用メタン化
反応器に導き反応させる。反応器にはメタン化触
媒を充填しておく。触媒としては公知のものを使
用すればよい。 この測定用反応器出口ガスから水分を除去した
のち、生成ガス中のメタン含有率を測定する。ま
たメタン化前後のガス量も測定する。この値に基
づいて、前記の如く安全率を見込んで燃焼炉に供
給する酸素含有ガス量を増減するか燃料ガスを増
減するかする。この操作はメタン分析計及び流量
計により得られたデータを処理するコンピユータ
及びその計算結果に基いて作動される流量調整弁
を組合せることによりリアルタイムで行うことが
できる。 以上で燃焼炉において空燃比を一定範囲に制御
する方法を示したが、これだけでは炉温や被加熱
体の温度を一定に保てない場合がある。それは燃
料発熱量(KCal/Nm3)が変化した場合、燃焼ガ
ス到達温度が変化するため伝熱速度も変化するの
で被加熱体の温度が変化してしまう。また当然の
ことながら運転負荷変動も被加熱体の温度変化に
つながる。そこでこのための修正をコンピユータ
プログラムによつて行うことも配慮すべきであ
る。これは基本的には分流しメタン化したガスの
メタン含有率に基づいて一定のメタン換算量を有
するガスが燃焼炉に供給されるようにし、燃焼炉
出口ガス温度や被加熱体の温度等を修正情報とし
てインプツトして制御すればよい。 実施例 1 水素製造プロセスのPSAオフガスとして第1表
に示す組成のガスを得た。このガス100m3を燃焼
するに理論上必要な酸素量は39.9m3(NTP)であ
つた。
(Purpose and Background) This invention relates to an air-fuel ratio control method for a combustion furnace, in particular, a combustion furnace that contains hydrogen, carbon monoxide, methane, and other light hydrocarbons as main exothermic components, and whose content varies over time. The present invention relates to a control method for maintaining an optimal air-fuel ratio in a combustion furnace that uses gas. Examples of gases that contain hydrogen, carbon monoxide, methane, and other light hydrocarbons as their main exothermic components, and whose contents vary over time include refinery offgas and PSA (Pressure Swing).
adsorption) off-gas, etc. When such a fuel is used for combustion at a constant air-fuel ratio, in some cases there is a lack of oxygen relative to the fuel, resulting in incomplete combustion, and in other cases, there is an excess of oxygen relative to the fuel. In both cases, the energy utilization efficiency of the fuel is reduced and harmful gases such as carbon monoxide or nitrogen oxide are more likely to be generated. In order to maintain the optimal fuel condition using fuel and air with stable composition, it is sufficient to measure the residual oxygen content in the combustion exhaust gas and control the air-fuel ratio to keep it at a constant value. If there are significant changes over time, do the opposite of what is actually required, for example, increase the amount of oxygen supplied because the amount of oxygen consumed by the fuel during combustion is high and the residual oxygen content in the exhaust gas has decreased. Alternatively, even though an operation has been performed to reduce the amount of fuel supplied, the composition of the supplied fuel near the flow rate regulating valve has already changed and the required amount of oxygen may have decreased. In such cases, a commonly considered control method is to constantly measure the content of fuel gas components, such as H 2 , CO, methane, and other hydrocarbons, calculate the required amount of oxygen, and check the oxygen-containing gas composition. If the oxygen concentration changes, the oxygen concentration is also constantly measured, the optimum air-fuel ratio is calculated, and the supply amount of the fuel gas or oxygen-containing gas is changed based on the optimum air-fuel ratio. This method provides ideal control, but this method uses various expensive analytical equipment such as infrared analyzers and high-performance computers to quickly analyze the fuel composition. It is necessary to process the data and operate it without time lag. The present invention provides a method of controlling the air-to-air ratio to maintain optimal combustion conditions without using such expensive equipment. (Structure) That is, the present invention provides a combustion furnace that uses gas as fuel that contains hydrogen, carbon monoxide, methane, and other light hydrocarbons as main exothermic components, and the content of each of them changes over time. An air-fuel ratio control method for a combustion furnace, which comprises controlling the amount of oxygen-containing gas supplied to the combustion furnace based on the methane content in the gas generated by diverting a part of the gas to perform a methanation reaction. be. More specifically, the present invention calculates the amount of oxygen necessary for combustion of a gas that contains hydrogen, carbon monoxide, methane, and other light hydrocarbons as main exothermic components, and whose contents vary over time. The principle is to perform a methanation reaction on a portion of the gas, thereby approximately replacing the methane in the generated gas with the amount of oxygen required to burn it. By controlling the air-fuel ratio based on the results, it is possible to prevent excess or deficiency of oxygen in the combustion furnace. First, the principle will be explained below. It is expected that the following reaction will proceed in the methanation reactor. 3H 2 +CO→CH 4 +H 2 O (1) 4H 2 +CO 2 →CH 4 +2H 2 O (2) (2n−m/2)H 2 +CnHm→nCH 4 (3) The composition on the left side of each equation and the right side The number of moles of oxygen required to burn the compositions of is the same. Left side of equation (1) 3H 2 +3/2・O 2 →3H 2 O CO+1/2・O 2 →CO 2 total 2O 2 Right side of equation (1) CH 4 + 2O 2 →CO 2 +2H 2 O Left side of equation (2) 4H 2 + 2O 2 →4H 2 O Right side of equation (2) CH 4 + 2O 2 →CO 2 +2H 2 O Left side of equation (3) (2n-m/2)H 2 + (n-m/4)O 2 → (2n− m/2)H 2 O CnHm+(n+m/4)O 2 →nCO 2 + (m/2)H 2 O Total 2nO 2 Right side of equation (3) nCH 4 + 2nO 2 →nCO 2 +2nH 2 O or more As shown in Equations (1), (2), and (3), if the reaction proceeds completely to the right side, the amount of oxygen required for the generated methane can be expressed as the amount of oxygen required for the fuel gas. can. However, in an actual methanation reaction, a chemical equilibrium exists in each of the above equations, and hydrogen, carbon monoxide, and the like do not completely turn into methane. However, even if a small amount of hydrogen or carbon monoxide remains, the amount of oxygen that corresponds to that amount is sufficiently covered by the oxygen excess rate in the range of 5% to 20%, which is usually adopted when performing combustion. Ru. ``Based on the methane content in the gas produced by the methanation reaction'' means that the required amount of oxygen is not determined stoichiometrically from the methane content, but based on the chemical equilibrium as described above. This means determining the required amount of oxygen by considering the safety factor, including problems with the methanation catalyst's performance. In order to reduce the time lag between the gas that is diverted and methanized and its methane content measured and the gas that is combusted in the combustion furnace, the pipe line from the diversion point to the methanation reactor for measurement should be as short as possible. It is better to specify the split flow ratio at the design stage, and it is sufficient to be able to obtain a sample of approximately 50 ml/min to 10/min as the split flow rate, regardless of the capacity of the combustion furnace main body. . The fuel gas thus divided is introduced into a methanation reactor for measurement and reacted. The reactor is filled with a methanation catalyst. As the catalyst, any known catalyst may be used. After removing moisture from the measuring reactor outlet gas, the methane content in the produced gas is measured. The amount of gas before and after methanation is also measured. Based on this value, the amount of oxygen-containing gas supplied to the combustion furnace is increased or decreased, or the amount of fuel gas is increased or decreased, taking into account the safety factor as described above. This operation can be performed in real time by combining a computer that processes data obtained by a methane analyzer and a flow meter, and a flow rate regulating valve that is operated based on the calculation results. Although the method for controlling the air-fuel ratio within a certain range in a combustion furnace has been described above, there are cases where the furnace temperature and the temperature of the heated object cannot be kept constant by this method alone. This is because when the fuel calorific value (KCal/Nm 3 ) changes, the temperature reached by the combustion gas changes, and the heat transfer rate also changes, resulting in a change in the temperature of the heated body. Naturally, fluctuations in operating load also lead to changes in the temperature of the heated object. Therefore, consideration should be given to making corrections for this purpose using a computer program. Basically, this is done by supplying gas with a certain amount of methane equivalent to the combustion furnace based on the methane content of the methanated gas, and controlling the temperature of the gas at the exit of the combustion furnace, the temperature of the heated object, etc. It can be controlled by inputting it as modification information. Example 1 A gas having the composition shown in Table 1 was obtained as a PSA off-gas in a hydrogen production process. The amount of oxygen theoretically required to burn 100m 3 of this gas was 39.9m 3 (NTP).

【表】【table】

【表】 このガスを0.3Kg/cm2G、300℃でメタン化し水
分を除去したところ第2表に示す組成のガス67.1
m3を得た。このようにして得られたガス67.1m3
のメタンを燃焼するに理論上必要な酸素量は
39.45m3(NTP)で、本来必要な酸素量の98.9%
を表示しており、通常用いられる酸素過剰率5%
で操業してもなお4%の余裕がある。 実施例 2
[Table] When this gas was methanized at 0.3Kg/cm 2 G and 300℃ to remove moisture, the gas had the composition shown in Table 2: 67.1
Got m3 . The amount of oxygen theoretically required to burn methane in 67.1m3 of the gas obtained in this way is
39.45m3 (NTP), 98.9% of the required amount of oxygen
is displayed, and the oxygen excess rate commonly used is 5%.
There is still a 4% margin even if the plant operates at Example 2

【表】 第3表に示す組成のCOGをPSAにかけて水素
を回収しオフガスを燃料とする。このオフガスを
0.3Kg/cmG、300℃でメタン化し水分を除去した
ガス100を燃焼するに必要な酸素量(A)と、その
中のメタンだけを燃焼するに必要な酸素量(B)とを
比較した結果を第4表に示す。その差が最大の場
合(COGをそのまま燃料とする場合)でも両者
の比率は92.6%であり、通常の回収率の範囲(70
〜80%)であれば、メタン化後のメタンだけを燃
焼するに必要な酸素量(B)は真に必要な酸素量(A)の
約99%になつている。即ち、本法に従い空燃比制
御できる事がわかる。
[Table] COG with the composition shown in Table 3 is applied to PSA to recover hydrogen and the off-gas is used as fuel. This off gas
Results of comparing the amount of oxygen required to burn 100 ml of gas that has been methanized at 300℃ at 0.3Kg/cmG (A) and the amount of oxygen required to burn only methane (B). are shown in Table 4. Even when the difference is maximum (when COG is used as fuel), the ratio between the two is 92.6%, which is within the normal recovery rate range (70%).
~80%), the amount of oxygen (B) required to burn only methane after methanation is approximately 99% of the truly necessary amount of oxygen (A). That is, it can be seen that the air-fuel ratio can be controlled according to this method.

【表】 (効果) 以上詳述したとおり本発明方法によれば、分流
しメタン化したガスのメタン含有率を測定するだ
けで、それに基いて最適の燃焼状態を保つよう組
成が経時的に変動する燃料を使用する燃焼炉の空
燃比を制御することができる。また必要に応じて
さらに燃焼排ガスの温度を測定しそれに応じて燃
料供給量を調節することにより燃焼炉の発熱量を
一定に維持することができる。さらに運転負荷お
よび被加熱体の温度と目標温度との差を情報とし
被加熱体温度を所定値に制御できる。
[Table] (Effects) As detailed above, according to the method of the present invention, by simply measuring the methane content of the diverted and methanized gas, the composition changes over time to maintain the optimal combustion state. It is possible to control the air-fuel ratio of the combustion furnace using the fuel. Further, if necessary, the temperature of the combustion exhaust gas is further measured and the amount of fuel supplied is adjusted accordingly, thereby making it possible to maintain the calorific value of the combustion furnace constant. Furthermore, the temperature of the heated object can be controlled to a predetermined value using the operating load and the difference between the temperature of the heated object and the target temperature as information.

Claims (1)

【特許請求の範囲】[Claims] 1 水素、一酸化炭素、及びメタンその他の軽質
炭化水素を主要発熱成分として含有し且つそれぞ
れの含有率が経時的に変動するガスを燃料として
使用する燃焼炉において、燃料ガスの一部を分流
しメタン化反応を行なわせて生成したガス中のメ
タン含有率に基づいて燃焼炉に供給する酸素含有
ガスの供給量を制御することよりなる燃焼炉の空
燃比制御方法。
1. In a combustion furnace that uses gas as fuel that contains hydrogen, carbon monoxide, methane, and other light hydrocarbons as main exothermic components, and whose contents vary over time, part of the fuel gas is diverted. A method for controlling the air-fuel ratio of a combustion furnace, which comprises controlling the amount of oxygen-containing gas supplied to the combustion furnace based on the methane content in the gas produced by performing a methanation reaction.
JP22448983A 1983-11-30 1983-11-30 Air-fuel ratio controlling method for combustion furnace Granted JPS60117021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22448983A JPS60117021A (en) 1983-11-30 1983-11-30 Air-fuel ratio controlling method for combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22448983A JPS60117021A (en) 1983-11-30 1983-11-30 Air-fuel ratio controlling method for combustion furnace

Publications (2)

Publication Number Publication Date
JPS60117021A JPS60117021A (en) 1985-06-24
JPS6142163B2 true JPS6142163B2 (en) 1986-09-19

Family

ID=16814594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22448983A Granted JPS60117021A (en) 1983-11-30 1983-11-30 Air-fuel ratio controlling method for combustion furnace

Country Status (1)

Country Link
JP (1) JPS60117021A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5644645B2 (en) * 2011-04-12 2014-12-24 新日鐵住金株式会社 Heating furnace air-fuel ratio control method, heating furnace air-fuel ratio control apparatus, and program

Also Published As

Publication number Publication date
JPS60117021A (en) 1985-06-24

Similar Documents

Publication Publication Date Title
US4046956A (en) Process for controlling the output of a selective oxidizer
US3424560A (en) Process and apparatus for the optimization of chemical reaction units
AU657697B2 (en) Method for controlling the conversion of iron-containing reactor feed into iron carbide
EP1171381B1 (en) Treatment of combustible gas streams containing hydrogen sulphide
CA1100599A (en) Process control method and apparatus
US5458808A (en) Process for continuously controlling the heat content of a partial oxidation unit feed-gas stream
Mendelsohn et al. Enhanced flue-gas denitrification using ferrous. cntdot. EDTA and a polyphenolic compound in an aqueous scrubber system
US8974699B2 (en) Method for producing synthesis gases
US3692480A (en) Method for controlling a sulfur recovery process
JPS6142163B2 (en)
US4459275A (en) Process for production of sulfur from SO2 -containing gas
JPS6329460A (en) Reformer temperature control device for fuel cell power generation system
US20240308845A1 (en) Method of safe operation of a reformer with various hydrocarbon mixtures
CN219079147U (en) Acidic water purifying treatment device
US20240116756A1 (en) Process and System for Water-Gas Shift Conversion of Synthesis Gas with High CO Concentration
US8795625B2 (en) Sulfur recovery process
US2894821A (en) Control of nitrogen in ammonia synthesis
RU2663432C1 (en) Synthesis gas production process control method for the low-tonnage methanol production
US20050282096A1 (en) Maintaining oxygen/carbon ratio with temperature controlled valve
JPS6363016B2 (en)
JP3734859B2 (en) Method for continuous control of heat content of partial oxidizer gas supply system
CA2150783C (en) Process for continuously controlling the heat content of a partial oxidation unit feed-gas stream
JPS59164821A (en) Air-fuel ratio control of combustion furnace
JPS63227695A (en) Operation for gasification of carbonaceous material
JP2004332080A (en) Method and device for generating atmospheric gas for carburizing