JPS60117021A - Air-fuel ratio controlling method for combustion furnace - Google Patents

Air-fuel ratio controlling method for combustion furnace

Info

Publication number
JPS60117021A
JPS60117021A JP22448983A JP22448983A JPS60117021A JP S60117021 A JPS60117021 A JP S60117021A JP 22448983 A JP22448983 A JP 22448983A JP 22448983 A JP22448983 A JP 22448983A JP S60117021 A JPS60117021 A JP S60117021A
Authority
JP
Japan
Prior art keywords
gas
combustion furnace
methane
oxygen
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP22448983A
Other languages
Japanese (ja)
Other versions
JPS6142163B2 (en
Inventor
Tsutomu Toida
戸井田 努
Katsumasa Yamaguchi
克誠 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Corp
Original Assignee
JGC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JGC Corp filed Critical JGC Corp
Priority to JP22448983A priority Critical patent/JPS60117021A/en
Publication of JPS60117021A publication Critical patent/JPS60117021A/en
Publication of JPS6142163B2 publication Critical patent/JPS6142163B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Abstract

PURPOSE:To prevent an occurrence of excess or shortage of oxygen in a combustion furnace by a method wherein a part of fuel gas is divided to flow and a supplying volume of gas containing oxygen to be supplied to the combustion furnace is controlled on the basis of the rate of inclusion of methane in the gas generated under a reaction of methanation. CONSTITUTION:Hydrogen, carbon monoxide, methane and other light hydrogen carbide are contained as major heat generating constituent and each of the rate of inclusion of each of the constituents is varied as time elapses. Fuel gas is divided to flow under a predetermined rate of divisional flow, is guided to a measuring methanation reactor and reacted there. Then, moisture is removed from the outlet gas of the reactor, a rate of inclusion of methane in the generated gas is measured. Volume of gas before and after methanation is also measured. A volume of gas including oxygen to be supplied to the combustion furnace is adjusted in anticipation of a safety factor on the basis of the measured value.

Description

【発明の詳細な説明】 (目的および背景) この発明は燃焼炉の空燃比制御方法、特に燃料として水
素、−酸化炭素、及びメタンその他の軽質炭化水素を主
要発熱成分として含有し且つそれぞれの含有率が経時的
に変動するガスを使用する燃焼炉において最適の空燃比
を維持するための制御方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Purpose and Background) The present invention relates to a method for controlling the air-fuel ratio of a combustion furnace, in particular, a combustion furnace containing hydrogen, carbon oxide, methane and other light hydrocarbons as main exothermic components, and The present invention relates to a control method for maintaining an optimum air-fuel ratio in a combustion furnace using a gas whose ratio varies over time.

水素、−・酸化炭素、及びメタンその他の軽質炭化水素
を主要発熱゛成分として含有し且つそれぞれの含有率が
経時的に変動するガスの例としては製油所オフガスとか
、PSA (PressureSwing Adsor
ption)t7ガス等がある。
Examples of gases that contain hydrogen, carbon oxides, methane, and other light hydrocarbons as main exothermic components, and whose contents vary over time include refinery offgas and PSA (PressureSwing Adsor).
ption) T7 gas, etc.

このような燃料を使用して一定の空燃比で燃焼を行うと
、ある場合には燃料に対し酸素が不足して不完全燃焼に
なり、また他の場合には燃料に対し酸素が過剰になって
排ガスにより持ち去られる熱損失が多くなり、いずれの
場合も燃料のエネルギー利用効率が低下し、また−酸化
炭素あるいは酸化窒素のような有害ガスが発生し易くな
る。
When such fuel is used for combustion at a constant air-fuel ratio, in some cases there is insufficient oxygen for the fuel, resulting in incomplete combustion, and in other cases, there is an excess of oxygen for the fuel. This increases the heat loss carried away by the exhaust gases, which in both cases reduces the energy efficiency of the fuel and increases the likelihood of harmful gases such as carbon oxides or nitrogen oxides being generated.

Mt成の安定した燃料および空気を用いて最適の燃焼状
態を保つためには燃焼排ガス中の残存酸素含有率を測定
しそれが一定値となるよう空燃比を制御すれば十分であ
るが、燃料組成の経時的変動が激しい場合には実際に必
要とされるのとは逆の操作1例えば燃焼中の燃料の酸素
消費量が多く排ガス中の残存酸素含有率が低下したので
酸素供給jlりを増すかあるいは燃料供給量を減らす操
作をしたのに、流量m整ゴr (=J近における供給燃
料組成j」既に変化して酸素必要量は減少しているとい
うようなことが起すイ与る。
In order to maintain optimal combustion conditions using fuel and air with a stable Mt composition, it is sufficient to measure the residual oxygen content in the combustion exhaust gas and control the air-fuel ratio to keep it at a constant value. If the composition changes significantly over time, the operation is the opposite of what is actually required. Even though the flow rate m has been increased or the fuel supply amount has been decreased, there is a possibility that the flow rate m has already changed and the required amount of oxygen has decreased. .

このような場合一般的に考えられる制御方法としては、
燃料カス成分、例えばH2,GO,メタンその他の炭化
水素の含**をそれぞれ常時測定して必要酸素量を算出
し、酸素含有ガス組成が変化する場合には酸素の濃度も
常時測定して最適空燃比を算出し、それに基いて燃料ガ
ス又は醸素含イIカスの供給量を変化させることである
。このようにすれば理想的なコノトロールを行い得るが
、しかしこの方法は燃料組成の分析を迅速に行うため赤
外分析計のような各種の高価な分析装置を使用し、高性
能のコンピュータを用いてデータを処理してタイムラグ
のないように操作する必要がある。本発明はこのような
高価な装置を用いることなく最適燃焼状態を維持するよ
う空燃比を制御する方法を提供するものである。
In such cases, the commonly considered control methods are:
The required amount of oxygen is calculated by constantly measuring the content of fuel residue components, such as H2, GO, methane, and other hydrocarbons**.If the oxygen-containing gas composition changes, the oxygen concentration is also constantly measured to optimize the The purpose is to calculate the air-fuel ratio and change the supply amount of fuel gas or nitrogen-containing scum based on the calculated air-fuel ratio. In this way, ideal control can be performed, but this method uses various expensive analytical equipment such as infrared analyzers and high-performance computers to quickly analyze the fuel composition. It is necessary to process the data and operate it without time lag. The present invention provides a method of controlling the air-fuel ratio to maintain optimal combustion conditions without using such expensive equipment.

(構成) 即ち本発明は、水素、−酸化炭素、及びメタンその他の
軽質炭化水素を主要発熱成分として含イ1し吐つそれぞ
れの含有率か経時的に変動するガスを燃料として使用す
る燃焼炉において、燃料ガスの一部を分流しメタン化反
応を行なわせて生成したガス中のメタン含有率に基づい
て燃焼炉に供給する酸素含有ガスの供給量を制御するこ
とよりなる燃焼炉の空燃比制御方法である。
(Structure) That is, the present invention provides a combustion furnace that uses a gas as a fuel that contains hydrogen, carbon oxide, and methane and other light hydrocarbons as main exothermic components, and discharges a gas whose content varies over time. The air-fuel ratio of the combustion furnace is controlled by controlling the amount of oxygen-containing gas supplied to the combustion furnace based on the methane content in the gas generated by diverting a part of the fuel gas and performing a methanation reaction. This is a control method.

さらに詳細に説明すると、本発明は水素、−酸化炭素、
及びメタンその他の軽質炭化水素を主要発熱成分として
含有し昆つそれぞれの含イ■率が経時的に変動するガス
の燃焼に必要な酸素基を、そのガスの一部についてメタ
ン化反応を行なわせることにより生成したガス中のメタ
ンを燃焼するに必要な酸素基により近似的に代替させる
ことをj5:(理とする。そしてその結果に基いて空燃
比を制御することにより燃焼炉における酸素の過不足を
未然に防止することができる。
More specifically, the present invention provides hydrogen, -carbon oxide,
Oxygen groups necessary for combustion of a gas containing methane and other light hydrocarbons as main exothermic components and whose content varies over time are caused to perform a methanation reaction on a part of the gas. The principle is that the methane in the gas produced by this process is approximately replaced by the oxygen groups necessary for combustion.Then, by controlling the air-fuel ratio based on the result, the excess oxygen in the combustion furnace can be reduced. Shortages can be prevented.

以下まずその原理について説明する。メタン化反応器内
では次のような反応が進行することかr想される。
First, the principle will be explained below. It is assumed that the following reaction proceeds within the methanation reactor.

3H2+CO叫CH4+H20(1) 4H2+CO2mcH4+2H2C) (2)(2n−
m/2)H2+CnHmmnCH4(3)各式の左辺の
組成物と右辺の組成物を燃焼するに必要な酸素モル数は
同じである。
3H2+CO shout CH4+H20 (1) 4H2+CO2mcH4+2H2C) (2) (2n-
m/2) H2+CnHmmnCH4 (3) The number of moles of oxygen required to burn the composition on the left side of each equation and the composition on the right side is the same.

(1)弐左辺 3H2+3/2 ・02 m3H20 Co + l/2 @ 02 mcO2合計202 (1)式右辺 CH4+ 202 m C02+ 2 H20(2)弐
左辺 4H2+202 m4Hz 0 (2)弐右辺 CHA +202 m CO2千2 H20(39式左
辺 (2n−m/2)H2+ (n−m/4)0 2 叫 
(2+1−11/2)H20CnHm+(n+m/4)
Oz m’o n CO2+ (11/2)H20人、
しり一〇− (3)式右辺 ncH4+2 no2mncO2+2 nH2O以上の
如く、(1)、(2)、(3)の各式において反応が完
全に右辺へ進行するものとすれば生成−したメタンの酸
素必要量をもって燃料ガスの酸素必要量を示すことがで
きる。
(1) Second left side 3H2+3/2 ・02 m3H20 Co + l/2 @ 02 mcO2 total 202 (1) Right side CH4+ 202 m C02+ 2 H20 (2) Second left side 4H2+202 m4Hz 0 (2) Second right side CHA +202 m CO 2,000 2 H20 (left side of formula 39 (2n-m/2)H2+ (n-m/4)0 2 scream
(2+1-11/2)H20CnHm+(n+m/4)
Oz m'on CO2+ (11/2) H20 people,
Shiri 10- Right-hand side of equation (3) ncH4+2 no2mncO2+2 nH2O As shown above, if the reaction proceeds completely to the right-hand side in each equation (1), (2), and (3), oxygen is required for the generated methane. The required amount of oxygen in the fuel gas can be expressed by the amount.

しかし実際のメタン化反応においては上記各式において
化学平衡が存在し、水素や一酸化炭素その他が完全にメ
タンになるわけではない。しかし若干の水素や一酸化炭
素が残存していても、その程度の量に見合う酸素量は燃
焼を行なう場合に通常採用される酸素過剰率である5%
から20%の範囲で十分にカバーされる。fメタン化反
応を行なわせて生成したカス中のメタン含有率に基づい
てλというのは、メタン含有率から化学楚論的に一必要
酸素量を定めるのではなく、上記のような化学平衡上の
問題や、メタン化触媒の性能上の問題等も含めて安全率
を見込んで必要酸素量を定めることを意味する。
However, in an actual methanation reaction, a chemical equilibrium exists in each of the above equations, and hydrogen, carbon monoxide, and the like do not completely turn into methane. However, even if a small amount of hydrogen or carbon monoxide remains, the amount of oxygen corresponding to that amount is 5%, which is the oxygen excess rate usually adopted when performing combustion.
Coverage ranges from 20% to 20%. λ is determined based on the methane content in the residue produced by the f-methanation reaction, rather than determining the required amount of oxygen from chemical theory based on the methane content. This means determining the required amount of oxygen by taking into account the safety factor, including the problems of oxidation and performance of the methanation catalyst.

4111 :ii−’されたガスと、燃焼炉で燃焼され
るカスとのタイムラグを少なくするため、分流地点から
測定用メタン化反応器までの管路はできるだけ短くする
ようにした方がよい。分流比率は設計段階で特定すれば
よく燃焼炉本体の容量とは無関係に分流j11として概
ね50 ml /min −101/minのサンプl
しか得られうようにすれば十分である。
In order to reduce the time lag between the 4111:ii-' gas and the dregs burned in the combustion furnace, it is better to make the pipe line from the branch point to the methanation reactor for measurement as short as possible. The split flow ratio can be specified at the design stage, regardless of the capacity of the combustion furnace main body.
It is enough to make sure that you only get the following.

このように分流した燃料カスを測定用メタン化反応器に
導き反応させる。反応器にはメタン化触媒を充填]7て
おく。触媒としては公知のものを使用すればよい。
The fuel sludge separated in this way is led to a methanation reactor for measurement and reacted. Fill the reactor with a methanation catalyst]7. As the catalyst, any known catalyst may be used.

この−III定川反用器出1」ガスから水分を除去した
のち、生成カス中のメタン含有率を測定する。またメタ
ン化前後のカス量も測定する。この値に基ついて、前記
の如く安全率を見込んで燃焼炉に供給する酸素含有ガス
量を増減するか燃料カスを増減するかする。この操作は
メタン分析計及び流量、1により得られたデータを処理
するコンピュータ及びその計算結果に基いて作動される
流量調整弁を組合せることによりリアルタイムで行うこ
とができる。
After removing moisture from this -III Sadakawa Reaction Apparatus 1 gas, the methane content in the produced residue was measured. The amount of residue before and after methanation is also measured. Based on this value, the amount of oxygen-containing gas supplied to the combustion furnace is increased or decreased, or the amount of fuel waste is increased or decreased, taking into account the safety factor as described above. This operation can be performed in real time by combining a methane analyzer and a computer that processes the data obtained by flow rate 1, and a flow rate regulating valve that is operated based on the calculation results.

以上で燃焼炉において空燃比を一定範囲に制御する方法
を示したが、これだけでは炉温や被加熱体の温度を一定
に保てない場合がある。それは燃料発熱量(K Cat
 / N m’)が変化した場合、燃焼カス到達温度が
変化するため伝熱速度も変化するので被加熱体の温度が
変化してしまう。また当然のことながら運転負荷変動も
被加熱体の温度変化につながる。そこでこのための修正
をコンピュータプログラムによって行うことも配慮すべ
きである。これは基本的には分流しメタン化したカスの
メタン含有率に基づいて一定のメタン換算量を有するカ
スが燃焼炉に供給されるようにし、燃焼炉出口ガス温度
や被加熱体の温度等を修正情報としてインプットして制
御すればよい。
Although the method for controlling the air-fuel ratio within a certain range in a combustion furnace has been described above, there are cases where the furnace temperature and the temperature of the heated object cannot be kept constant by this method alone. It is the fuel calorific value (K Cat
/ N m') changes, the temperature reached by the combustion scum changes and the heat transfer rate also changes, resulting in a change in the temperature of the heated body. Naturally, fluctuations in operating load also lead to changes in the temperature of the heated object. Therefore, consideration should be given to making corrections for this purpose using a computer program. This basically involves supplying waste with a certain amount of methane equivalent to the combustion furnace based on the methane content of the methane-converted waste, and controlling the temperature of the gas at the exit of the combustion furnace and the temperature of the heated object. It can be controlled by inputting it as correction information.

実施例1 水石製造プロセスのPSAオフカスとして第1表に示す
組成のガスを得た。このガス100m3を燃焼するに理
論−ヒ必要な酸素量は39.9m’(N T P、)で
あった。
Example 1 A gas having the composition shown in Table 1 was obtained as a PSA off-scrap from a suiseki manufacturing process. The theoretical amount of oxygen required to burn 100 m3 of this gas was 39.9 m' (N T P,).

第1表 第2表 このカスを0.3Kg/cm2G 、300℃でメタン
化し水分を除去したところ第2表に示す組成のカス67
.1m3を得た。このようにして得られたガス67.1
m’中のメタンを燃焼するに理論上必要な酸素量は39
.45m3 (NTP)で、本来必要な酸素量の98.
9%を表示しており、通常用いられる酸素過剰率5%で
操業してもなお4%の余裕がある。
Table 1 Table 2 This residue was methanized at 0.3Kg/cm2G and 300℃ to remove moisture, resulting in 67 residues with the composition shown in Table 2.
.. Obtained 1m3. Gas thus obtained 67.1
The theoretical amount of oxygen required to burn methane in m' is 39
.. At 45m3 (NTP), the amount of oxygen required is 98.
9% is displayed, and there is still a margin of 4% even if the operation is carried out at the commonly used oxygen excess rate of 5%.

¥施例2 第3表 第3表に示す組成のCOGをPSAにかけて水素を回収
しオフガスを燃料とする。このオフカス金0.3Kg/
cm2G、300°Cでメタン化し水分を除去したガス
100文を燃焼するに必要なA6 =)=” i++(
A )と、その中のメタンだけを燃焼するに必・要な酸
素:1(B)とを比較した結果を第4表しこポす。その
差が最大の場合(COGをそのまま燃料とする場合)で
も両者の比率は92.6%であり、通8常の回収率の範
囲(70〜80%)であれば、メタ/化後のメタンだけ
を燃焼するに必要な酸素!+:、 CB )は真しこ必
要な酸素量(A)の約99%になっている。即ち、末法
に従い空燃比制御できる°19がわかる。
¥Example 2 Table 3 COG having the composition shown in Table 3 was subjected to PSA to recover hydrogen and the off-gas was used as fuel. This off-cass gold 0.3Kg/
A6 required to burn 100 tons of gas that has been methanized and dehydrated at cm2G and 300°C =)=”i++(
The fourth table shows the results of comparing A) with the oxygen required to burn only methane: 1 (B). Even when the difference is maximum (when COG is used as fuel as is), the ratio between the two is 92.6%, and if the recovery rate is within the normal range (70-80%), then the Oxygen needed to burn only methane! +:, CB) is approximately 99% of the amount of oxygen (A) required. In other words, it can be seen that the air-fuel ratio can be controlled by 19 degrees according to the law.

第4表 (・功jJ+、 ) 以1.詳述したとおり本発明方法によれば、分流しメタ
ン1ヒしたカスのメタン含イ1率を測定するだけで そ
れに基いて最適の燃焼状態を保つよう組成か経時的に変
動する燃料を使用する燃焼炉の空燃比を制御することが
できる。また必要シこ応じてざらに燃焼排ガスの温度を
測定しそれに応じて燃料供給量を調節することにより燃
焼炉の発熱かを一定に維持することがでさる。さらに匝
転負荷および被加熱体の温度と目標I温度との差を情報
とし被加熱体温度を所定値に制御できる。
Table 4 (・Go jJ+, ) Below 1. As explained in detail, according to the method of the present invention, the methane content of the stubbled methane residue is simply measured, and based on that, a fuel whose composition changes over time is used to maintain optimal combustion conditions. The air-fuel ratio of the combustion furnace can be controlled. Furthermore, by roughly measuring the temperature of the combustion exhaust gas and adjusting the amount of fuel supplied accordingly, it is possible to maintain the heat generated by the combustion furnace at a constant level. Furthermore, the temperature of the heated object can be controlled to a predetermined value using the rolling load and the difference between the temperature of the heated object and the target I temperature as information.

出願人 日 揮 株 式 会 社 代理人 弁理士 青 麻 昌 二Applicant: JGC Corporation Agent Patent Attorney Shoji Ao Asa

Claims (1)

【特許請求の範囲】[Claims] 水木、−酸化炭素、及びメタンその他の軽質炭化水素を
主要発熱成分として含有し且つそれぞれの含有率が経時
的に変動するガスを燃料として使用する燃焼炉において
、燃料カスの一部を分流しメタン化反応を行なわせて生
成したカス中のメタン含有率に基づいて燃焼炉に供給す
る酸素含有ガスの供給量を制御することよりなる燃焼炉
の空燃比制御方法。
Mizuki, - In a combustion furnace that uses gas as fuel that contains carbon oxide, methane, and other light hydrocarbons as main exothermic components, and the content of each changes over time, a part of the fuel scum is diverted to produce methane. A method for controlling the air-fuel ratio of a combustion furnace, which comprises controlling the amount of oxygen-containing gas supplied to the combustion furnace based on the methane content in the scum produced by carrying out a chemical reaction.
JP22448983A 1983-11-30 1983-11-30 Air-fuel ratio controlling method for combustion furnace Granted JPS60117021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22448983A JPS60117021A (en) 1983-11-30 1983-11-30 Air-fuel ratio controlling method for combustion furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22448983A JPS60117021A (en) 1983-11-30 1983-11-30 Air-fuel ratio controlling method for combustion furnace

Publications (2)

Publication Number Publication Date
JPS60117021A true JPS60117021A (en) 1985-06-24
JPS6142163B2 JPS6142163B2 (en) 1986-09-19

Family

ID=16814594

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22448983A Granted JPS60117021A (en) 1983-11-30 1983-11-30 Air-fuel ratio controlling method for combustion furnace

Country Status (1)

Country Link
JP (1) JPS60117021A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220138A (en) * 2011-04-12 2012-11-12 Nippon Steel Corp Method and device for controlling air-fuel ratio of heating furnace, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012220138A (en) * 2011-04-12 2012-11-12 Nippon Steel Corp Method and device for controlling air-fuel ratio of heating furnace, and program

Also Published As

Publication number Publication date
JPS6142163B2 (en) 1986-09-19

Similar Documents

Publication Publication Date Title
US5366897A (en) Method for controlling the conversion of iron-containing reactor feed into iron carbide
JP4800919B2 (en) Method for producing electricity and high concentration carbon dioxide
US20020064494A1 (en) Production of hydrogen and carbon monoxide
Gaber et al. An experimental study of a thermochemical regeneration waste heat recovery process using a reformer unit
EP3663258B1 (en) System and method for producing hydrogen using by product gas
JP2000185904A (en) Self-heating type reformation of supplied hydrocarbon material containing higher hydrocarbon
EP3412780A1 (en) Method for supplying hydrogen-containing reducing gas to shaft part of blast furnace
US11600835B2 (en) Efficient byproduct harvesting from fuel cells
CA3082984A1 (en) Phosphogypsum decomposition process
CA1100599A (en) Process control method and apparatus
CN101274743A (en) Autothermal reforming in a fuel processor utilizing non-pyrophoric shift catalyst
Van Acht et al. Optimization of VPSA-EHP/C process for high-pressure hydrogen recovery from Coke Oven Gas using CO selective adsorbent
JPS60117021A (en) Air-fuel ratio controlling method for combustion furnace
US3692480A (en) Method for controlling a sulfur recovery process
JPS60155627A (en) Metal compound reduction and apparatus therefor
Stoots High-temperature co-Electrolysis of H2O and CO2 for syngas production
JPS6329460A (en) Reformer temperature control device for fuel cell power generation system
Ay et al. Design studies for monolithic high temperature shift catalysts: Effect of operational parameters
JPS5849322A (en) Methanation process using hydrogen-rich gas and hydrogen-lean gas as raw material
CN219079147U (en) Acidic water purifying treatment device
Harkness et al. Hydrogen sulfide waste treatment by microwave plasma dissociation
RU2663432C1 (en) Synthesis gas production process control method for the low-tonnage methanol production
US2894821A (en) Control of nitrogen in ammonia synthesis
JPH09320625A (en) Fuel cell power plant
Pouw et al. A thermodynamic comparison of membrane-assisted processes for hydrogen production with integrated CO2 capture