JPS6142127A - Ion beam irradiation method - Google Patents

Ion beam irradiation method

Info

Publication number
JPS6142127A
JPS6142127A JP16153084A JP16153084A JPS6142127A JP S6142127 A JPS6142127 A JP S6142127A JP 16153084 A JP16153084 A JP 16153084A JP 16153084 A JP16153084 A JP 16153084A JP S6142127 A JPS6142127 A JP S6142127A
Authority
JP
Japan
Prior art keywords
ion beam
groove pattern
substrate
secondary electrons
marker
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16153084A
Other languages
Japanese (ja)
Other versions
JPH0222536B2 (en
Inventor
Akira Takamori
高森 晃
Eizo Miyauchi
宮内 栄三
Tetsuo Morita
哲郎 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP16153084A priority Critical patent/JPS6142127A/en
Publication of JPS6142127A publication Critical patent/JPS6142127A/en
Publication of JPH0222536B2 publication Critical patent/JPH0222536B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation

Abstract

PURPOSE:To accurately irradiate the specified position with ion beam by obtaining the center point of groove pattern with the secondary electrons emitted from the inclined surfaces at both side walls of groove pattern of marker and using it as the reference point of ion beam irradiation. CONSTITUTION:A groove pattern 2 with the side walls 3 formed as the inclined surfaces is formed as the marker at the surface of substrate 1 with the wet etching, etc. and when the surface of substrate 1 is scanned with the focused ion beam 4 in such a way as crossing the groove pattern, the secondary electrons 5 can be emitted from the substrate. Since the ion implantation depth at the inclined surface 3 becomes equivalently smaller than that at the surface, the emission of secondary electrons remarkably increases. When the inclined surface 3 of groove pattern 2 is scanned with ion beam on the occasion of measuring such emitted secondary electrons 5 with a secondary electron intensity measuring apparatus, signal is intensified several times than that at the flat area and it can be displayed as the peak 6a.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明はサブミクロンのオーダで集束したイオンビー
ムで半導体基板へ直接不純物イオンを注入するマスクレ
スイオン注入法におけるイオンビームの照射方法に関す
るものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an ion beam irradiation method in a maskless ion implantation method in which impurity ions are directly implanted into a semiconductor substrate using a focused ion beam on the order of submicrons. be.

〈従来の技術〉 ガリウム砒素などの半導体基板にレーザ、発光ダイオー
ド、光検知器などの光デバイスや各種トランジスタ、ダ
イオードなどの電子デバイスをモノリシックに集積化す
るための方法として分子線結晶成長法とマスクレスイオ
ン注入法の組合せたプロセスが有望視されている。
<Prior art> Molecular beam crystal growth method and mask are used as a method for monolithically integrating optical devices such as lasers, light emitting diodes, photodetectors, and electronic devices such as various transistors and diodes on semiconductor substrates such as gallium arsenide. A process combining less ion implantation is seen as promising.

マスクレスイオン注入法はサブミクロン径に集束された
不純物イオンビームを自由に走査しながら直接半導体基
板へ不純物イオンのドーピングを行う方法であって、煩
雑々マスクの作成、位置合わせ、マスク除去などの工程
を特徴とする特徴を有している。このマスクレスイオン
注入法にて高精度に集積化したデバイスを再現性良く製
造するためには集束されたイオンビームを所定の位置に
正確に照射することが不可欠である。しかし、電子ビー
ム露光においては電子ビームの照射する位置を決める方
法は知られていたが、イオンビームの照射位置を決める
方法は知られていなかった。
Maskless ion implantation is a method of directly doping impurity ions into a semiconductor substrate while freely scanning an impurity ion beam focused to a submicron diameter, and it does not require complicated mask creation, alignment, mask removal, etc. It has the characteristics of a process. In order to manufacture highly precisely integrated devices with good reproducibility using this maskless ion implantation method, it is essential to accurately irradiate a predetermined position with a focused ion beam. However, in electron beam exposure, although a method for determining the position to be irradiated with an electron beam has been known, a method for determining the position to be irradiated with an ion beam has not been known.

電子ビームの照射位置を決める一般的な方法としては半
導体基板表面のデバイスを作成しないような位置にエツ
チングなどにより十文字形の溝をマーカとして形成し、
基板表面を電子ビームによ多走査して放出される二次電
子の信号処理によりマーカ位置の検出、記録を行い、こ
れを基準点として電子ビームの照射を行っていた。
A common method for determining the irradiation position of the electron beam is to form a cross-shaped groove as a marker by etching or other means at a position on the surface of the semiconductor substrate where no device will be created.
The marker position is detected and recorded by signal processing of the secondary electrons emitted by multiple scanning of the substrate surface with an electron beam, and the electron beam is irradiated using this as a reference point.

〈発明が解決しようとする問題点〉 シカシ、マスクレスイオン注入法においてはサブミクロ
ンのオーダの集束イオンビームを用いているので電子ビ
ームの照射位置決定方法を応用して基準点を求め、イオ
ンビームを照射する場合はマーカとして形成するパター
ンの溝の幅をかなシ狭くしなくては所定の位置に正確に
イオンビームを照射することができない。しかしそのよ
うな幅の狭いパターンのマーカを形成することは困難で
あった。特に最近においては、デバイスを小型化したり
、再現性良くデバイスを製造するため、電子ビーム露光
技術においても上述のビームの照射位置の決定方法では
満足せず、更に正確な位置へのビームの照射方法の開発
が望まれていた。
<Problems to be solved by the invention> Shikashi, maskless ion implantation uses a focused ion beam on the order of submicrons, so a reference point is determined by applying the electron beam irradiation position determination method, and the ion beam When irradiating an ion beam, the width of the groove in the pattern formed as a marker must be made extremely narrow in order to accurately irradiate a predetermined position with the ion beam. However, it has been difficult to form markers with such narrow patterns. Especially in recent years, in order to miniaturize devices and manufacture devices with good reproducibility, even in electron beam exposure technology, the method for determining the beam irradiation position described above is no longer satisfactory, and methods for irradiating the beam to even more accurate positions are being developed. development was desired.

この発明は上記に鑑みなされたもので半導体基板の所定
の位置に正確に集束したイオンビームを照射することの
できるマスクレスイオン注入法におけるイオンビームの
照射方法を提供することを目的としている。
The present invention has been made in view of the above, and an object of the present invention is to provide an ion beam irradiation method in a maskless ion implantation method that can irradiate a semiconductor substrate with an accurately focused ion beam at a predetermined position.

〈問題を解決するための手段〉 上記目的を達成するため、この発明では半導体基板上に
両側壁を傾斜面とした溝パターンをマーカとして形成し
、イオンビームを上記溝パターンを横切るように走査し
て放出される二次電子を測定し、測定された二次電子信
号の上記傾斜面より放出されるそれぞれのピーク位置を
検出し、上記二つのピーク位置より二つのピーク位置間
の中心点を求め、得られた中心点をイオンビーム照射の
基準点として半導体基板にイオンビームの照射を行うこ
とを特徴とする。
<Means for Solving the Problem> In order to achieve the above object, in the present invention, a groove pattern with sloped side walls is formed on a semiconductor substrate as a marker, and an ion beam is scanned across the groove pattern. measure the secondary electrons emitted from the slope, detect the peak positions of the secondary electron signals emitted from the above-mentioned slope, and find the center point between the two peak positions from the above-mentioned two peak positions. The method is characterized in that the semiconductor substrate is irradiated with the ion beam using the obtained center point as a reference point for ion beam irradiation.

次にこの発明を図示の一実施例に基き説明すると、lは
半導体基板であって、基板表面のデバイスを作成しない
ような位置にエツチングなどKよりマー力として深さ1
〜5μ仇程度、幅3〜20μ溝程度の溝パターンコを形
成する。溝パターンの幅は少くとも深さより大きくする
方が好ましい。そしてこの溝パターンコの両側壁3は基
板lに対して垂直な光を受光できるような傾斜面とする
。この側壁の傾斜角θは45度から80度程度の範囲で
あって、大きくする程後に述べる照射基準点の設定が高
精度で行える。この傾斜角θが45度以下の場合は二次
電子放出強度がlトさくなって基準点の高精度の検出が
行えない。なお、図示の実施例ではマーカの形状を十文
字としたが、溝パターンの両側壁が傾斜面となっていれ
ば、どのような形状であっても良い。
Next, the present invention will be explained based on an embodiment shown in the drawings. L is a semiconductor substrate, and etching or the like is performed at a position on the surface of the substrate where no device is to be formed to a depth of 1 as a marking force.
A groove pattern with a width of about 3 to 20 μm and a width of about 5 μm is formed. It is preferable that the width of the groove pattern is at least larger than the depth. Both side walls 3 of this groove pattern are sloped surfaces that can receive light perpendicular to the substrate 1. The inclination angle θ of this side wall is in the range of about 45 degrees to 80 degrees, and the larger it is, the more accurate the setting of the irradiation reference point, which will be described later, becomes. If the inclination angle θ is less than 45 degrees, the intensity of secondary electron emission becomes too low, making it impossible to detect the reference point with high precision. In the illustrated embodiment, the shape of the marker is a cross, but it may have any shape as long as both side walls of the groove pattern are sloped surfaces.

このような側壁3を傾斜面とした溝パターンを形成する
方法としては結晶方位選択性のあるウェットエツチング
液を用いたエツチングにより所定の傾斜角を側壁とした
溝パターンを再現性良く形成することができる。
As a method for forming such a groove pattern with sidewalls 3 having inclined surfaces, it is possible to form a groove pattern with sidewalls having a predetermined inclination angle with good reproducibility by etching using a wet etching liquid having crystal orientation selectivity. can.

〈作用〉 上述のように基板/表面に側壁3を傾斜面とした溝パタ
ーンコをマーカとしてウェットエツチングなどによ多形
成し、第2図の如く溝パターンを横切るようにして、基
板7表面を集束イオンピームダで走査すると、基板より
二次電子Sが放出される。この放出される二次電子の強
度は、溝の幅が溝の深さより大きい場合は基板表面と溝
パターンコ内底面とはほぼ同じである。
<Operation> As described above, a groove pattern with the side wall 3 as an inclined surface is formed on the substrate/surface as a marker by wet etching or the like, and the surface of the substrate 7 is etched across the groove pattern as shown in FIG. When scanning with a focused ion beam, secondary electrons S are emitted from the substrate. When the width of the groove is larger than the depth of the groove, the intensity of the emitted secondary electrons is almost the same between the substrate surface and the inner bottom surface of the groove pattern.

しかるに溝パターンの側壁傾斜面3においては、主とし
て等測的にイオン注入深さが表面と比較して小さくなる
ため二次電子放出量が飛躍的に増加する。この放出され
た二次電子Sをエレクトロン増倍管などの二次電子強度
測定装置(図示せず)により測定すると、第5図のグラ
フに示すよう々出力信号が得られることに々る。即ち、
基板lの表面をイオンビームqが走査しているときはr
測定装置に受信される二次電子強度信号は小さいが、溝
パターン−〇仙斜面3をイオンビームが走査すると信号
は急激に平坦部を走査しているときに較べ数倍大きくな
り、傾斜面の幅が狭いためピーク6αとして表示される
However, in the sidewall inclined surface 3 of the groove pattern, the ion implantation depth is mainly isometrically smaller than that at the surface, so that the amount of secondary electron emission increases dramatically. When the emitted secondary electrons S are measured by a secondary electron intensity measuring device (not shown) such as an electron multiplier tube, an output signal as shown in the graph of FIG. 5 is often obtained. That is,
When the ion beam q is scanning the surface of the substrate l, r
The secondary electron intensity signal received by the measuring device is small, but when the ion beam scans the groove pattern - the slope 3, the signal suddenly becomes several times larger than when scanning a flat area, and Since the width is narrow, it is displayed as peak 6α.

溝パターンの底面を走査しているときは信号は小さくな
るが、再び傾斜面を走査すると二次電子強度信号は急激
に立上シ、ピーク6bを描く。
While scanning the bottom surface of the groove pattern, the signal becomes small, but when scanning the inclined surface again, the secondary electron intensity signal suddenly rises to form a peak 6b.

得られた二つのピーク6α、46の位置よりeパターン
コの中心点7を求め、この溝パターンの中心点をイオン
ビーム照射の基準点として、イオンビームの照射を行う
と、基準点は常に点として認識されているので、0.5
P以下の精度でイオンビームの照射を行うことができる
。この場合、溝パターンの側壁の傾斜角θは大きくする
程、受信される出方信号は小さくなるが、形成するピー
クは急峻りなって、溝パターンの中心点の検出精度が高
くなる。
The center point 7 of the e-pattern is determined from the positions of the two peaks 6α and 46 obtained, and when ion beam irradiation is performed using the center point of this groove pattern as the reference point for ion beam irradiation, the reference point is always a point. Since it is recognized as 0.5
Ion beam irradiation can be performed with an accuracy of P or less. In this case, as the inclination angle θ of the side wall of the groove pattern increases, the received output signal becomes smaller, but the formed peak becomes steeper, and the detection accuracy of the center point of the groove pattern becomes higher.

〈実施例〉 GaA8基板上にエツチング液(H,So、 : ’H
,O,: H,0=4:1:1)を用いて溝幅2op毒
、深さ2μ常の十字形パターンをマーカとして形成した
。形成した両側壁の傾斜角はいずれも約54度であった
<Example> Etching solution (H, So, : 'H
, O, : H, 0=4:1:1), a cross-shaped pattern with a groove width of 2op and a depth of 2μ was formed as a marker. The angle of inclination of both side walls formed was approximately 54 degrees.

第4図の写真はこの十字形パターンのイオンビームによ
る二次電子像である。
The photograph in FIG. 4 is a secondary electron image of this cross-shaped ion beam.

上記十字形の溝パターンを横切るようにして径0.2μ
mの集束イオンビームで走査した結果、傾斜面における
二次電子強度は平坦面における二次電子強度の約10倍
であって、幅0.3μm程度の二次電子ピークが二つ得
られ、各ピークはいずれも急峻なため、0.2μm程度
の精度でピーク位置が求められた。従ってマーカ基準点
も0.2μmの高精度で決定することができた。
Diameter 0.2μ across the above cross-shaped groove pattern.
As a result of scanning with a focused ion beam of Since all the peaks were steep, the peak positions were determined with an accuracy of about 0.2 μm. Therefore, the marker reference point could also be determined with a high accuracy of 0.2 μm.

次に上記十字形パターンを形成したGaA3基板上に分
子線結晶成長法により1μm厚のGaAs層を成長させ
た。第5図の写真はGaAs基板上に上記GaAs層を
成長させたときのイオンビームによる二次電子像である
Next, a 1 μm thick GaAs layer was grown on the GaA3 substrate on which the cross-shaped pattern was formed by molecular beam crystal growth. The photograph in FIG. 5 is a secondary electron image taken by an ion beam when the GaAs layer was grown on a GaAs substrate.

次に前記実施例と同様に径0.2μmの集束イオンビー
・ムを用いて十字形の溝パターンを横切るように走査し
た結果、前記と同じような形状の二次電子ピークが二つ
得られたが、ピーク位置間の間隔は前記の基板上のピー
ク位置間隔よりも約1.0μ常大きかった。これは傾斜
面に形成した成長膜の厚さが、平坦面に形成した膜厚よ
り若干薄かったためであるが、左右側傾斜面の膜厚はは
ホ郷しく、ピークのずれの方向が中心より互に離反する
方向であるので、成長膜上の二つのピーク位置間の中心
点は上述の基板の照射基準点とした中心点と一致した。
Next, as in the previous example, a focused ion beam with a diameter of 0.2 μm was used to scan across the cross-shaped groove pattern, and as a result, two secondary electron peaks with the same shape as above were obtained. However, the spacing between the peak positions was always about 1.0 microns larger than the spacing between the peak positions on the substrate. This is because the thickness of the grown film formed on the sloped surface was slightly thinner than that on the flat surface, but the film thickness on the left and right sloped surfaces was different, and the direction of the peak deviation was from the center. Since the directions were away from each other, the center point between the two peak positions on the grown film coincided with the center point that was used as the irradiation reference point of the substrate described above.

〈発明の効果〉 以上述べたように、この発明ではマーカの溝パターンの
両側壁を傾斜面として、そこから放出されゐ二次電子に
より溝パターンの中心点を求め、イオンビーム照射の基
準点として用いるので、マーカの溝パターンを深くする
必要がなく、マーカの溝パターンの幅がイオンビームよ
りはるかに広くても常に基準点は点として検出、決定さ
れる。従って、イオンビームは正確な位置に照射される
ことになる。また、半導体基板上に結晶を成長させたと
き、i−力の上にも結晶が成長して溝パターンの形状が
若干変化し、二次電子のピーク位置かずnる。しかし、
左右の傾斜面が対称的に形成さ几るため二つのピーク位
置のず几る方向は互に逆向きであって、ずれる量は同じ
であるため、二つのピーク位置間ρ甲心点は基板の溝パ
ターンのイオンビーム照射基準点である中心点と一致す
る仁とIcなる。
<Effects of the Invention> As described above, in this invention, both side walls of the groove pattern of the marker are made into sloped surfaces, and the center point of the groove pattern is determined by the secondary electrons emitted from the slopes, and the center point of the groove pattern is determined as a reference point for ion beam irradiation. Since the ion beam is used, there is no need to deepen the groove pattern of the marker, and even if the width of the groove pattern of the marker is much wider than the ion beam, the reference point is always detected and determined as a point. Therefore, the ion beam will be irradiated to a precise position. Further, when a crystal is grown on a semiconductor substrate, the crystal also grows on the i-force, and the shape of the groove pattern changes slightly, changing the peak position of secondary electrons. but,
Since the left and right inclined surfaces are formed symmetrically, the directions of the two peak positions are opposite to each other, and the amount of deviation is the same, so the ρ center point between the two peak positions is Ic is the center point which is the ion beam irradiation reference point of the groove pattern.

従ってこの発明に依nば基板上に結晶を成長した後に基
板に不純物イオンを注入するような場曾も常に正確な位
置に確実にイオン注入が行えることになる。
Therefore, according to the present invention, even when impurity ions are implanted into the substrate after crystal growth on the substrate, the ion implantation can always be carried out reliably at the correct position.

【図面の簡単な説明】[Brief explanation of drawings]

@1図はこの発明によるマーカの拡大斜視図、第2図は
イオンビーム1!″走査したときの二次電子放出状@會
示す説明図、第3図は放出でIした二次電子強度を示す
グラフ、第4図は本発明による十字形溝パターンのイオ
ンビームによる二次電子像を示す写真、第5図は第4図
の溝パターン上に結晶成長させた後のイオンビームによ
る二次電子像を示す与真である。 l・・・半導体基板、コ・・・溝パターン、3・・・傾
斜側壁、ダ・・・イオンビーム、S・・・二次電子、6
α。 6b・・・二次電子ピーク、7・・・基準点。 特許出願人 工業技術院長 用田裕部 易1隅 ビームL五乃幻1 凶囲の洋書(内容jこ変更なしン 第41 第5内 手続補正書(方式) 1、事件の表示 特願昭59−161530% 2、発明の名称 イオンビームの照射方法 3、補正をする者 事件との関係   特許出願人 昭和59年11月7日 5、補正の対S本 明細書中、図面の簡単な説明の欄、図面3、補正の内容 別紙の通り 内     容 明細書中、「図面の簡単な説明jの項第10頁17〜/
9行目に記載される「第4図は0011.写真である。 」を、 「第4図は本発明による十字形溝パターンのイオンビー
ムによる二次電子像を示す図、第5図はs1!4図の溝
パターン上に結晶成長させた後のイオンビームによる二
次電子像を示す図である。 」と訂正する。 添付図面中、第4図及び第5図を別紙のように訂正する
。 手続補正書(自発) 昭和13年l^月メ日
@Figure 1 is an enlarged perspective view of the marker according to the present invention, and Figure 2 is the ion beam 1! ``An explanatory diagram showing the secondary electron emission pattern when scanning. Figure 3 is a graph showing the secondary electron intensity during emission. Figure 4 is the secondary electron emission pattern by the cross-shaped groove pattern ion beam according to the present invention. A photograph showing the image, and FIG. 5 is a photograph showing a secondary electron image by an ion beam after crystal growth on the groove pattern in FIG. 4. l...Semiconductor substrate, C...Groove pattern , 3... inclined side wall, D... ion beam, S... secondary electron, 6
α. 6b...Secondary electron peak, 7...Reference point. Patent Applicant Director of the Agency of Industrial Science and Technology Hirobe Yoda Yoshi 1 Corner Beam L Gonogen 1 Foreign Books of the Besieged (Contents No Changes No. 41 5th Internal Procedure Amendment (Method) 1. Indication of Case Patent Application 161530/1982 % 2. Name of the invention Ion beam irradiation method 3. Relationship with the case of the person making the amendment Patent applicant November 7, 1982 5. Amendment vs. S In this specification, a column for a brief explanation of the drawings; Drawing 3, contents of the amendment as shown in the attached sheet.
``Figure 4 is a photograph of 0011.'' written on the 9th line is changed to ``Figure 4 is a diagram showing a secondary electron image of a cross-shaped groove pattern by an ion beam according to the present invention, and Figure 5 is s1. !This is a diagram showing a secondary electron image by an ion beam after crystal growth on the groove pattern in Figure 4.'' In the attached drawings, Figures 4 and 5 are corrected as shown in the attached sheet. Procedural amendment (voluntary) Date of 1933

Claims (1)

【特許請求の範囲】[Claims] 半導体基板上に両側壁を傾斜面とした溝パターンを形成
し、イオンビームを上記溝パターンを横切るように走査
して放出される二次電子を測定し、測定された二次電子
信号の両傾斜面より生じるそれぞれのピーク位置を検出
し、上記二つのピーク位置より二つのピーク位置間の中
心点を求め、得られた中心点をイオンビーム照射の基準
点として半導体基板にイオンビームを照射することを特
徴とするイオンビームの照射方法。
A groove pattern with sloped side walls is formed on a semiconductor substrate, and an ion beam is scanned across the groove pattern to measure the emitted secondary electrons. Detecting each peak position generated from the surface, determining the center point between the two peak positions from the above two peak positions, and irradiating the semiconductor substrate with the ion beam using the obtained center point as a reference point for ion beam irradiation. An ion beam irradiation method characterized by:
JP16153084A 1984-08-02 1984-08-02 Ion beam irradiation method Granted JPS6142127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16153084A JPS6142127A (en) 1984-08-02 1984-08-02 Ion beam irradiation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16153084A JPS6142127A (en) 1984-08-02 1984-08-02 Ion beam irradiation method

Publications (2)

Publication Number Publication Date
JPS6142127A true JPS6142127A (en) 1986-02-28
JPH0222536B2 JPH0222536B2 (en) 1990-05-18

Family

ID=15736838

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16153084A Granted JPS6142127A (en) 1984-08-02 1984-08-02 Ion beam irradiation method

Country Status (1)

Country Link
JP (1) JPS6142127A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085660B2 (en) 2011-03-31 2015-07-21 British American Tobacco (Investments) Limited Blends of a polylactic acid and a water soluble polymer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184726A (en) * 1982-04-22 1983-10-28 Sanyo Electric Co Ltd Positioning method for electron beam lithography

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58184726A (en) * 1982-04-22 1983-10-28 Sanyo Electric Co Ltd Positioning method for electron beam lithography

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9085660B2 (en) 2011-03-31 2015-07-21 British American Tobacco (Investments) Limited Blends of a polylactic acid and a water soluble polymer

Also Published As

Publication number Publication date
JPH0222536B2 (en) 1990-05-18

Similar Documents

Publication Publication Date Title
US4860374A (en) Apparatus for detecting position of reference pattern
US4971444A (en) Method and apparatus for detecting the position of an object
JPH095048A (en) Surface shape measuring apparatus
EP0312083B1 (en) Pattern measurement method
JPS62138819A (en) Scanning type laser microscope
JPH10289851A (en) Charged particle beam exposing device
JPS5884976A (en) Electron beam treatment
US4761560A (en) Measurement of proximity effects in electron beam lithography
JPS6142127A (en) Ion beam irradiation method
JPH054660B2 (en)
JP3051099B2 (en) Mark substrate, method of manufacturing mark substrate, electron beam writing apparatus, and method of adjusting optical system of electron beam writing apparatus
JP2840959B2 (en) Focus setting method for electron beam lithography exposure apparatus
JP3064375B2 (en) Electron beam drawing apparatus and its adjustment method
JPS6145858B2 (en)
JPS5885532A (en) Method of positioning via electron beam
JP2705102B2 (en) Charged beam exposure method
JP3405671B2 (en) Electron beam writing apparatus and mark position detection method
JP2513637B2 (en) Method of forming reference mark for electron beam exposure
JP2886294B2 (en) Electron beam exposure method
JP3334341B2 (en) Electron beam exposure method
JP3339110B2 (en) Optical axis detection method for light emitting element
JPH07105322B2 (en) Alignment device
JPH0630332B2 (en) Positioning device and substrate positioning method using the device
JPH026219B2 (en)
JPH0798288A (en) Sample for secondary ion mass spectrometry, manufacture thereof and mass spectrometry using the sample

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term