JPS6142116B2 - - Google Patents

Info

Publication number
JPS6142116B2
JPS6142116B2 JP18915680A JP18915680A JPS6142116B2 JP S6142116 B2 JPS6142116 B2 JP S6142116B2 JP 18915680 A JP18915680 A JP 18915680A JP 18915680 A JP18915680 A JP 18915680A JP S6142116 B2 JPS6142116 B2 JP S6142116B2
Authority
JP
Japan
Prior art keywords
suction
oil
compressor
capillary tube
header
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18915680A
Other languages
Japanese (ja)
Other versions
JPS57110784A (en
Inventor
Fusao Hatsutori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP18915680A priority Critical patent/JPS57110784A/en
Publication of JPS57110784A publication Critical patent/JPS57110784A/en
Publication of JPS6142116B2 publication Critical patent/JPS6142116B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compressor (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【発明の詳細な説明】 この発明はマルチ型コンプレツサユニツトの吸
込配管装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a suction piping system for a multi-type compressor unit.

頭記マルチ型コンプレツサユニツトとして、第
1図のように複数台のコンプレツサ1,2,3を
例えば受液器4の上へ搭載して備え、吐出および
吸込側の相互間を並列に接続し、各コンプレツサ
の運転、停止を組合わせることによつて容量制御
を行うように構成したものが周知である。なお図
中、5は吐出管、6は吸込管、7はサクシヨンヘ
ツダ、8はサクシヨンアキユムレータ、9は各コ
ンプレツサ1〜3のクランクケース相互間を連通
する均圧均油管である。かかるマルチ型コンプレ
ツサユニツトでは、各コンプレツサの吸込管6を
サクシヨンヘツダ7より個々に分岐して引出して
接続配管しており、蒸発器から戻つて来た冷媒ガ
スを各コンプレツサに吸込むようにしている。こ
こで冷媒中には冷媒回路を循環して来た冷媒機油
が混入しており、この油も同時にコンプレツサへ
吸込み回収させる必要がある。かかる戻り油の吸
込み回収に際しては、冷媒ガスおよび油が運転中
のコンプレツサのうちの一部のコンプレツサに片
寄らず均等に回収されること、またアンロードに
より一部のコンプレツサが停止している場合に
は、停止中のコンプレツサに余分な量の油が回収
されて寝込まないこと、更には油は少量ずつコン
プレツサへ戻り、一度に多量の油が集中的に戻ら
ないようにすること、などが望まれる。すなわち
油戻り量が各コンプレツサに対し均等に回収され
ないと、通常の均圧均油管方式では各コンプレツ
サのクランクケース内の均圧均油が維持し得なく
なり、一部では油切れ運転を引起す恐れがある。
また停止中のコンプレツサに冷媒を多く含んだ油
が必要以上に寝込んでいると、シリンダヘツドに
油が溜つて油トラツプを形成したり、あるいは再
起動時にクランクケース内の油がオイルフオーミ
ングを生じて油切れを引起こす。更に一度に集中
的に多量の油がコンプレツサへ吸込まれると、油
ハンマを起してコンプレツサを破損させる恐れも
ある。
As shown in Fig. 1, the multi-type compressor unit is equipped with a plurality of compressors 1, 2, and 3 mounted on, for example, a liquid receiver 4, and the discharge and suction sides are connected in parallel. It is well known that the compressor is configured to perform capacity control by combining the operation and stop of each compressor. In the figure, 5 is a discharge pipe, 6 is a suction pipe, 7 is a suction header, 8 is a suction accumulator, and 9 is a pressure equalizing oil pipe that communicates between the crank cases of the compressors 1 to 3. In such a multi-type compressor unit, the suction pipes 6 of each compressor are individually branched out from the suction header 7 and connected to each other, so that the refrigerant gas returned from the evaporator is sucked into each compressor. Here, the refrigerant contains refrigerant machine oil that has circulated through the refrigerant circuit, and this oil also needs to be sucked into the compressor and recovered at the same time. When suctioning and recovering such return oil, it is important to ensure that the refrigerant gas and oil are collected evenly and not unevenly in some of the compressors that are in operation, and that if some of the compressors are stopped due to unloading, It is desirable to prevent excess oil from being collected and stored in the compressor while it is stopped, and to return the oil to the compressor little by little so that a large amount of oil does not return all at once. It can be done. In other words, if the amount of oil returned to each compressor is not collected equally, it will not be possible to maintain equal pressure and oil in the crankcase of each compressor using the normal pressure equalization oil pipe system, which may cause oil-out operation in some cases. There is.
In addition, if oil containing a large amount of refrigerant stays in the compressor when it is stopped, the oil may accumulate in the cylinder head and form an oil trap, or the oil in the crankcase may cause oil forming when the compressor is restarted. This will cause oil to run out. Furthermore, if a large amount of oil is intensively sucked into the compressor at once, there is a risk that oil hammer may occur and damage the compressor.

ところで、従来におけるサクシヨンヘツダと各
吸込管との一般的な接続構造は第2図および第3
図に示すごとくである。すなわち各吸込管6はそ
の吸込端61をほぼ45゜にカツトし、かつサクシ
ヨンヘツダ7の上面壁を貫通して吸込管6を引き
入れ、その吸込端61を冷媒流の上流側へ向けて
サクシヨンヘツダ7の底部近傍に開口させてい
る。これにより冷媒ガスとともにサクシヨンヘツ
ダ7へ流れ込み、サクシヨンヘツダ内の底部に溜
つた油が冷媒ガスとともに少量ずつ運転中のコン
プレツサの吸込管6へ吸込まれる。しかしなが
ら、図示のようにサクシヨンヘツダ7の中にこの
断面を横切るようにサクシヨンヘツダ7の管径と
左程変わらない管径の吸込管6を引き込んで配管
した構造では、吸込管6の接続箇所で吸込管6を
除いた残余の冷媒ガス通過断面積が著しく狭めら
れる。このために冷媒ガスの通過に伴つてサクシ
ヨンヘツダ内には大きな圧力損失が生じ、特に各
吸込管の前後では大きな圧力低下を引き起すため
に、冷媒の流れに対してサクシヨンヘツダの下流
側に接続されている吸込管に連なるコンプレツサ
では圧力低下が大となる傾向を示す。この結果、
第1図のように各コンプレツサ1〜3のクランク
ケースを通常の均圧均油管9で接続しただけでは
均圧均油が維持し得なくなり、サクシヨンヘツダ
の上流側に接続したコンプレツサから下流側に接
続したコンプレツサのクランクケースへ向けて油
が流出し、上流側のコンプレツサが油切れ運転状
態になつたり、逆に下流側のコンプレツサは過度
の油量が入り込んで油ハンマを引き起す等の不具
合を生じる。このために、仮に第4図のように吸
込管6をサクシヨンヘツダ7の中へ深く差し込ま
ずに、吸込端61をサクシヨンヘツダの上面に開
口したとすると、冷媒ガスの通過断面積は十分確
保されるが、吸込管6はサクシヨンヘツダ7の底
部に溜つた油を少量ずつスムーズに吸込ことがで
きず、或る限界レベルまで油が溜つたところで一
気に多量の油が吸込管6へ吸込まれることにな
り、油ハンマを引き起す危険が大となる。また上
記した不具合な現象の発生を避けるためにサクシ
ヨンヘツダ7の管径を吸込管6の管径に比して十
分大に選んで必要な冷媒ガスの通過断面積を確保
させることも考えられるが、かかる構造では、コ
ンプレツサ3台の場合にはサクシヨンヘツダ管7
の管径を吸込管6のそれよりも約5倍以上にしな
ければならず、構造が大形になるし、製作コスト
も著しく高くなる。
By the way, the conventional general connection structure between the suction header and each suction pipe is shown in Figures 2 and 3.
As shown in the figure. That is, each suction pipe 6 has its suction end 61 cut at an angle of approximately 45 degrees, passes through the upper wall of the suction header 7, and draws the suction pipe 6 into the suction header 7 with its suction end 61 directed toward the upstream side of the refrigerant flow. It has an opening near the bottom. As a result, the oil flows into the suction header 7 together with the refrigerant gas, and the oil accumulated at the bottom of the suction header is sucked little by little together with the refrigerant gas into the suction pipe 6 of the compressor in operation. However, in a structure in which a suction pipe 6 with a pipe diameter not much different from the pipe diameter of the suction header 7 is drawn into the suction header 7 so as to cross this cross section as shown in the figure, the suction pipe 6 is connected to the suction pipe 6. The cross-sectional area of the refrigerant gas remaining except for 6 is significantly narrowed. For this reason, a large pressure loss occurs in the suction header as the refrigerant gas passes through it, and in particular, a large pressure drop occurs before and after each suction pipe, which is connected to the downstream side of the suction header with respect to the flow of refrigerant. The pressure drop tends to be large in the compressor connected to the suction pipe. As a result,
As shown in Figure 1, simply connecting the crankcases of compressors 1 to 3 with normal pressure equalizing oil pipes 9 will not maintain equal pressure and oil, and the compressor connected to the upstream side of the suction header will be connected to the downstream side. Oil leaks toward the crankcase of the compressor, causing the upstream compressor to run out of oil, and conversely, an excessive amount of oil enters the downstream compressor, causing problems such as oil hammer. . For this reason, if the suction pipe 6 is not deeply inserted into the suction header 7 as shown in Fig. 4, but the suction end 61 is opened on the upper surface of the suction header, a sufficient cross-sectional area for refrigerant gas can be secured. The suction pipe 6 is unable to smoothly suck in small amounts of oil accumulated at the bottom of the suction header 7, and when the oil accumulates to a certain limit level, a large amount of oil is sucked into the suction pipe 6 at once. There is a great risk of oil hammer. Furthermore, in order to avoid the occurrence of the above-mentioned troublesome phenomenon, it may be possible to select the pipe diameter of the suction header 7 to be sufficiently larger than the pipe diameter of the suction pipe 6 to ensure the necessary passage cross-sectional area for the refrigerant gas. In such a structure, in the case of three compressors, the suction header pipe 7
The pipe diameter of the suction pipe 6 must be approximately five times or more larger than that of the suction pipe 6, resulting in a larger structure and significantly higher manufacturing cost.

本発明は上記の点にかぼがみなされたものであ
り、その目的は前記従来の欠点を除去し、サクシ
ヨンヘツダに流れ込んで来る油を運転中の各コン
プレツサへ均等にかつ少量ずつスムーズに吸込み
回収させて各コンプレツサのクランクケース内の
均圧均油が維持できるようにするとともに、停止
中のコンプレツサには余分な量の油を戻すことが
なく、しかも簡易な構造で安価に実施できるマル
チ型コンプレツサユニツトの吸込配管装置を提供
することにある。
The present invention has been made with the above points in mind, and its purpose is to eliminate the above-mentioned drawbacks of the conventional art, and to smoothly collect and collect the oil flowing into the suction header evenly and in small quantities into each compressor in operation. In addition to maintaining equal pressure and oil in the crankcase of each compressor, this multi-type compressor has a simple structure and can be implemented at low cost without returning excess oil to the compressor when it is stopped. An object of the present invention is to provide a suction piping device for a suction unit.

かかる目的は本発明により各コンプレツサの冷
媒ガス吸込管の吸込端をサクシヨンヘツダの上面
に開口させるとともに、前記吸込管とは別個に各
吸込管ごとに対応させて配管した油戻し用キヤピ
ラリチユーブの吸込端をサクシヨンヘツダの底部
で冷媒の流れの上流側へ向けて開口し、かつ該部
より上方へ立上がらせたキヤピラリチユーブの他
端を吸込管の途中に接続したことにより達成され
る。
According to the present invention, the suction end of the refrigerant gas suction pipe of each compressor is opened on the upper surface of the suction header, and the suction end of the oil return capillary tube is connected to each suction pipe separately from the suction pipe. This is achieved by opening the end of the capillary tube toward the upstream side of the flow of refrigerant at the bottom of the suction header, and connecting the other end of the capillary tube, which is raised upward from the bottom of the suction header, to the middle of the suction pipe.

次に本発明を図示の実施例に基づき詳述する。 Next, the present invention will be explained in detail based on illustrated embodiments.

第5図において、まず冷媒ガス吸込用の吸込管
6は第4図と同じように、その吸込端61が横向
きに配置したサクシヨンヘツダ7の上面に開口し
て接続されている。一方、該吸込管6とは別個に
各吸込管ごとに油戻し用キヤピラリチユーブ10
が配管されている。該キヤピラリチユーブ10は
その吸込端をサクシヨンヘツダ2の底部近くに開
口し、ここから上方へ立上がらせて他端を吸込管
6の途中に接続している。またキヤピラリチユー
ブ10の吸込端を冷媒の流れの上流に向けて開口
させるように、該吸込管は図示のように上流側へ
向けてθ=40゜〜60゜の角度で斜めにカツトされ
ている。しかもここで重要なことは、キヤピラリ
チユーブ10の立上がり高さhがキヤピラリチユ
ーブ10の吸込端に作用する動圧に相当する圧力
水頭よりも低く定めてある。なおサクシヨンヘツ
ダ7、吸込管6、およびキヤピラリチユーブ10
の相互接統の様子は第6図の平面図に明示される
ごとくである。
In FIG. 5, first, the suction pipe 6 for sucking refrigerant gas is connected to the suction end 61 of the suction pipe 6 opened to the upper surface of the suction header 7 disposed laterally, as in FIG. 4. On the other hand, an oil return capillary tube 10 is provided for each suction pipe separately from the suction pipe 6.
is piped. The capillary tube 10 has its suction end opened near the bottom of the suction header 2, rises upward from there, and connects the other end to the middle of the suction pipe 6. Further, in order to open the suction end of the capillary tube 10 toward the upstream side of the flow of refrigerant, the suction tube is cut obliquely toward the upstream side at an angle of θ=40° to 60° as shown in the figure. There is. Moreover, what is important here is that the rising height h of the capillary tube 10 is set lower than the pressure head corresponding to the dynamic pressure acting on the suction end of the capillary tube 10. Note that the suction header 7, suction pipe 6, and capillary tube 10
The state of mutual welding is clearly shown in the plan view of FIG.

次に上記の構成の吸込配管装置の動作を説明す
る。今第6図において各コンプレツサ1〜3がい
ずれも運転されているとすれば、サクシヨンヘツ
ダ7へ戻つて来た冷媒ガスは各吸込管6を経て各
サクシヨンヘツダ1〜3へ吸込まれる。この場合
に吸込管6は第2図のように吸込端61がサクシ
ヨンヘツダ7内へ深く入り組んでなく、サクシヨ
ンヘツダ内にはガスの流れに対して殆ど障害物と
ならない細い油戻し用キヤピラリチユーブ10が
僅かに横切つているのみであり、上流端から下流
端までの全域で十分なガス通過断面積が確保され
ている。したがつてサクシヨンヘツダ内で大きな
圧力損失の生じることはなく、各コンプレツサと
もに同じ条件で冷媒ガスを吸込むことができ、ク
ランクケース相互間での均圧均油が維持できる。
またこの状態では、第5図に示したP点とQ点、
つまりキヤピラリチユーブ10の両開口部のう
ち、吸込端のP点には静圧と動圧の和である全圧
力が作用すりのに対し、吸込管6との接続箇所で
あるQ点では静圧のみが作用するので、P点とQ
点との間にはキヤピラリチユーブ10の吸込端に
加わる動圧分の圧力差が生じる。したがつてこの
圧力差により、キヤピラリチユーブ10の立上が
り高さhの水頭に打ち勝つてサクシヨンヘツダ7
の底部に溜つた油がキヤピラリチユーブ10を通
じて小量ずつ吸込管6へ送り込まれる。この油量
はキヤピラリチユーブ10の管径を適宜に選ぶこ
とにより、サクシヨンヘツダ内に油を残留させる
ことのないように各コンプレツサへ均等に吸込み
回収させることができる。またアンロードにより
一部のコンプレツサを停止した片肺運転状態にな
れば、運転中のコンプレツサについては上記と同
じく冷媒ガスおよび油の吸込みが行われるのに対
し、停止したコンプレツサの吸込管にはガスが流
れなくなるので、Q点には全圧力が作用し、P点
とQ点が同じ圧力となる。しかもP点とQ点との
間にはキヤピラリチユーブ10の立上がり高さh
が存在するので、キヤピラリチユーブ10を通じ
て油が停止中のコンプレツサへ流れ込むことはな
い。
Next, the operation of the suction piping device having the above configuration will be explained. Assuming that all the compressors 1 to 3 are in operation in FIG. 6, the refrigerant gas returning to the suction header 7 is sucked into each suction header 1 to 3 through each suction pipe 6. In this case, the suction end 61 of the suction pipe 6 does not go deep into the suction header 7 as shown in FIG. 2, and there is a thin oil return capillary tube 10 inside the suction header that hardly poses an obstacle to the gas flow. It crosses only slightly, and a sufficient gas passage cross-sectional area is ensured over the entire region from the upstream end to the downstream end. Therefore, no large pressure loss occurs within the suction header, and each compressor can suck in refrigerant gas under the same conditions, and equal pressure and oil can be maintained between the crankcases.
In addition, in this state, point P and point Q shown in FIG.
In other words, of both openings of the capillary tube 10, the total pressure, which is the sum of static pressure and dynamic pressure, acts on the suction end at point P, whereas at point Q, which is the connection point with the suction pipe 6, there is a static pressure. Since only pressure acts, point P and Q
A pressure difference corresponding to the dynamic pressure applied to the suction end of the capillary tube 10 is generated between the two points. Therefore, due to this pressure difference, the water head of the rising height h of the capillary tube 10 is overcome and the suction header 7
The oil collected at the bottom of the tank is fed into the suction pipe 6 little by little through the capillary tube 10. By appropriately selecting the diameter of the capillary tube 10, this amount of oil can be equally sucked into and recovered by each compressor without leaving any oil in the suction header. In addition, if unloading causes one-lung operation with some compressors stopped, refrigerant gas and oil will be sucked into the operating compressor in the same manner as above, but the suction pipe of the stopped compressor will be injected with gas. Since no longer flows, the total pressure acts on point Q, and the pressure at point P and point Q becomes the same. Moreover, between point P and point Q, there is a rising height h of the capillary tube 10.
is present, so oil will not flow into the stopped compressor through the capillary tube 10.

なお図示例はコンプレツサをサクシヨンヘツダ
より下方に配置したものについて示したが、逆に
コンプレツサをサクシヨンヘツダの上に配置した
場合にも同様に実施できる。この場合には第7図
のように油戻し用キヤピラリチユーブ10は吸込
管6の立上がり部の途中に接続される。また第7
図のようにキヤピラリチユーブ10の吸込端をサ
クシヨンヘツダ7の下方より下面を貫通して底部
に開口させることもできる。この場合には、キヤ
ピラリチユーブ10は一旦下方へ引き出したとこ
ろでUターンして上方に立上がり、所定の立上が
り高さhを定めて他端が吸込管6に接続される。
この構成では第5図と較べてキヤピラリチユーブ
10がサクシヨンヘツダ7の中を横切ることがな
いので、それだけ流体抵抗が減少してサクシヨン
ヘツダ内の圧力損失の軽減を図ることができる。
In the illustrated example, the compressor is disposed below the suction header, but the compressor may be disposed above the suction header in the same manner. In this case, the oil return capillary tube 10 is connected to the middle of the rising portion of the suction pipe 6, as shown in FIG. Also the 7th
As shown in the figure, the suction end of the capillary tube 10 may penetrate through the lower surface of the suction header 7 from below and open at the bottom. In this case, once the capillary tube 10 is pulled out downward, it makes a U-turn and rises upward, and the other end is connected to the suction pipe 6 at a predetermined rising height h.
In this configuration, as compared to FIG. 5, the capillary tube 10 does not cross the inside of the suction header 7, so the fluid resistance is reduced accordingly, and the pressure loss inside the suction header can be reduced.

以上述べたように、本発明によれば複数台のコ
ンプレツサで構成したマルチ型コンプレツサユニ
ツトにおいて、各コンプレツサごとにサクシヨン
ヘツダと各吸込管との間に油戻し用キヤピラリチ
ユーブを追加配管した簡易な構造により、従来に
おける各コンプレツサ間の圧力バランスに伴う油
切れ、あるいは多量の油を一度に集中して吸込む
ことによつて引き起される油ハンマなど、各種の
欠点をすべて解消でき、信頼性の高いマルチ型コ
ンプレツサユニツトを得ることができる。
As described above, according to the present invention, in a multi-type compressor unit composed of a plurality of compressors, a simple oil return capillary tube is added between the suction header and each suction pipe for each compressor. This structure eliminates all the various drawbacks of conventional compressors, such as oil shortage due to pressure balance between compressors, and oil hammer caused by sucking a large amount of oil at once, and improves reliability. A high-performance multi-type compressor unit can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はマルチ型コンプレツサユニツトの概略
構成を示す正面図、第2図は従来における吸込配
管装置の断面図、第3図は第2図の矢印−拡
大断面図、第4図は他の従来例の部分構造図、第
5図は本発明一実施例の構成断面図、第6図は第
5図の実施例に基づくコンプレツサユニツトの吸
込配管の様子を示す平面図、第7図は他の実施例
の要部断面図である。 1,2,3:コンプレツサ、6:吸込管、7:
サクシヨンヘツダ、10:油戻し用キヤピラリチ
ユーブ。
Fig. 1 is a front view showing the schematic configuration of a multi-type compressor unit, Fig. 2 is a sectional view of a conventional suction piping device, Fig. 3 is an enlarged sectional view taken along the arrow in Fig. 2, and Fig. 4 is a cross-sectional view of a conventional suction piping device. FIG. 5 is a partial structural diagram of a conventional example, FIG. 5 is a cross-sectional view of the configuration of an embodiment of the present invention, FIG. 6 is a plan view showing the suction piping of the compressor unit based on the embodiment of FIG. 5, and FIG. FIG. 7 is a sectional view of a main part of another embodiment. 1, 2, 3: Compressor, 6: Suction pipe, 7:
Suction header, 10: Capillary tube for oil return.

Claims (1)

【特許請求の範囲】 1 複数台のコンプレツサを具備し、各コンプレ
ツサの冷媒ガス吸込管を横向きに配置したサクシ
ヨンヘツダより個々に分岐させたマルチ型コンプ
レツサユニツトにおいて、各吸込管の吸込端をサ
クシヨンヘツダの上面に開口させるとともに、吸
込管と別個に各吸込管ごとに対応させて配管した
油戻し用キヤピラリチユーブの吸込端をサクシヨ
ンヘツダの底部で冷媒の流れの上流側へ向けて開
口させ、かつ該部より上方へ立上がらせたキヤピ
ラリチユーブの他端を吸込管の途中に接続したこ
とを特徴とするマルチ型コンプレツサの吸込配管
装置。 2 特許請求の範囲第1項に記載の吸込配管装置
において、油戻し用キヤピラリチユーブの立上が
り高さを該キヤピラリチユーブのサクシヨンヘツ
ダ側開口端に作用する動圧に相当する圧力水頭よ
りも小に定めたマルチ型コンプレツサの吸込配管
装置。
[Claims] 1. In a multi-type compressor unit equipped with a plurality of compressors and in which the refrigerant gas suction pipes of each compressor are individually branched from a suction header arranged laterally, the suction end of each suction pipe is connected to the suction header. The suction end of the oil return capillary tube, which is opened on the upper surface and is piped separately for each suction pipe, is opened toward the upstream side of the flow of refrigerant at the bottom of the suction header; A suction piping device for a multi-type compressor, characterized in that the other end of the capillary tube raised upward is connected to the middle of the suction pipe. 2. In the suction piping device according to claim 1, the rising height of the oil return capillary tube is smaller than the pressure head corresponding to the dynamic pressure acting on the opening end of the capillary tube on the suction header side. Specified multi-type compressor suction piping system.
JP18915680A 1980-12-27 1980-12-27 Suction piping device in multi-type compressor unit Granted JPS57110784A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18915680A JPS57110784A (en) 1980-12-27 1980-12-27 Suction piping device in multi-type compressor unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18915680A JPS57110784A (en) 1980-12-27 1980-12-27 Suction piping device in multi-type compressor unit

Publications (2)

Publication Number Publication Date
JPS57110784A JPS57110784A (en) 1982-07-09
JPS6142116B2 true JPS6142116B2 (en) 1986-09-19

Family

ID=16236373

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18915680A Granted JPS57110784A (en) 1980-12-27 1980-12-27 Suction piping device in multi-type compressor unit

Country Status (1)

Country Link
JP (1) JPS57110784A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210042159A (en) 2018-12-06 2021-04-16 가부시키가이샤 후지 Marketing method using a commercial device

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH059514Y2 (en) * 1985-03-18 1993-03-09
JP2007128666A (en) * 2005-11-01 2007-05-24 Daihen Corp Fuel supply method for fuel cell power generation system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210042159A (en) 2018-12-06 2021-04-16 가부시키가이샤 후지 Marketing method using a commercial device
DE112018008186T5 (en) 2018-12-06 2021-09-02 Fuji Corporation Support procedure employing support device

Also Published As

Publication number Publication date
JPS57110784A (en) 1982-07-09

Similar Documents

Publication Publication Date Title
JP3339332B2 (en) Accumulator, refrigeration cycle device
JP3163312B2 (en) Accumulator for refrigeration cycle and method for producing the same
JPH07189908A (en) Accumulator and refrigeration cycle device
JPS6142116B2 (en)
JPS61180860A (en) Recovery device for oil of turbo-refrigerator
EP0071062A1 (en) Multiple function thermodynamic fluid reservoir
JPH0571811A (en) Refrigerating plant
JP4045049B2 (en) Oil return mechanism of refrigeration equipment
CN105987545A (en) Liquid storage device, compressor and air-conditioning system
JPH06101699A (en) Vacuum pump
CN108954986B (en) Refrigerating system and falling film evaporator
JP2878783B2 (en) Oil recovery device for automatic transmission
CN112815397A (en) Air conditioner
JPH0726613B2 (en) Noise emission reduction structure in low pressure side hermetic compressor
WO2020107798A1 (en) Liquid storage tank applied to compressor
CN217929308U (en) Liquid storage device, compressor and refrigeration equipment
JPH0539409Y2 (en)
CN221099058U (en) Gas-liquid separator, compressor and air conditioner
JP3443507B2 (en) Screw refrigerator
JPH09264499A (en) Draining method in gas pipe
JPH1123076A (en) Suction pipe of freezer
JPS6246874Y2 (en)
JPS6226651Y2 (en)
JPH0769100B2 (en) Bleeding device
JPS60142177A (en) Gas-liquid separator for refrigerator