JPS6142082B2 - - Google Patents

Info

Publication number
JPS6142082B2
JPS6142082B2 JP56104670A JP10467081A JPS6142082B2 JP S6142082 B2 JPS6142082 B2 JP S6142082B2 JP 56104670 A JP56104670 A JP 56104670A JP 10467081 A JP10467081 A JP 10467081A JP S6142082 B2 JPS6142082 B2 JP S6142082B2
Authority
JP
Japan
Prior art keywords
cooling water
cooling
radiator
tank
cooling fan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56104670A
Other languages
Japanese (ja)
Other versions
JPS588221A (en
Inventor
Ryoichi Kono
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Matsuda KK
Original Assignee
Matsuda KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsuda KK filed Critical Matsuda KK
Priority to JP10467081A priority Critical patent/JPS588221A/en
Publication of JPS588221A publication Critical patent/JPS588221A/en
Publication of JPS6142082B2 publication Critical patent/JPS6142082B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F27/00Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus
    • F28F27/02Control arrangements or safety devices specially adapted for heat-exchange or heat-transfer apparatus for controlling the distribution of heat-exchange media between different channels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Description

【発明の詳細な説明】 本発明は水冷式エンジンの冷却装置に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a cooling device for a water-cooled engine.

水冷式エンジンにおいては、エンジンの前方
に、ラジエータとその背後に位置する冷却フアン
とを具備し、上記冷却フアンによる送風と走行風
とでラジエータを冷やし、エンジンを冷却するよ
うにしている。上記ラジエータは、一端部に冷却
水の流入口を有するアツパタンクと、上記流入口
と反対側の端部に冷却水の流出口を有するロワタ
ンクとを放熱管で連結した所謂ダウンフロー式の
構造をなすものが多く用いられている。また、冷
却フアンは、エンジンの駆動軸に連動連結された
エンジン駆動式のものと、電動式のものとがあ
る。
A water-cooled engine is equipped with a radiator in front of the engine and a cooling fan located behind the radiator, and the radiator is cooled by the air blown by the cooling fan and the running air, thereby cooling the engine. The above-mentioned radiator has a so-called down-flow type structure in which a heat sink tank having a cooling water inlet at one end and a lower tank having a cooling water outlet at the end opposite to the inlet are connected by a heat dissipation pipe. Many things are used. Further, there are two types of cooling fans: engine-driven ones that are interlocked with the drive shaft of the engine, and electric-powered ones.

ところで、最近の自動車は、軽量化等のためエ
ンジンルームのスペースが狭くなりつつあり、こ
れとの関係で、ラジエータおよび冷却フアンのレ
イアウトに制約を受けることがある。とくに、
FF(フロントエンジン、フロントドライブ)方
式の自動車において、冷却フアンは、エンジンの
駆動軸が車体に対し横向きに配置されている関係
でエンジン駆動式とすることが難しいことから、
電動式のものが多く用いられるとともに、エンジ
ンルーム内のスペース上の制約により、ラジエー
タの片側に偏つた位置に配備されるのが通例であ
る。そしてこの場合、エンジンおよびトランスミ
ツシヨン等の配置と関連したスペースの制約か
ら、ラジエータの冷却水流入口側に偏つた位置に
冷却フアンが設けられることが多い。
Incidentally, in modern automobiles, the space in the engine room is becoming narrower due to weight reduction, etc., and due to this, the layout of the radiator and cooling fan may be subject to restrictions. especially,
In FF (front engine, front drive) cars, it is difficult to use an engine-driven cooling fan because the engine's drive shaft is placed sideways to the car body.
Electric type devices are often used, and due to space constraints in the engine room, they are usually placed on one side of the radiator. In this case, due to space constraints related to the arrangement of the engine, transmission, etc., the cooling fan is often provided at a position biased towards the cooling water inlet side of the radiator.

従来、ラジエータに対してこのように冷却水流
入口側に偏つた位置に冷却フアンを設けた場合、
主として低速運転時にラジエータでの冷却水の放
熱作用が著しく低下し、エンジンがオーバヒート
し易いという大きな問題があつた。すなわち、エ
ンジンで加熱された後ラジエータに流入する冷却
水は、前記アツパタンクから放熱管を通つてロワ
タンクへ移動する間に、冷却フアンによる強制送
風と走行風とで冷却されるわけであるが、この場
合に、冷却フアンが位置しない部分の放熱管を通
る冷却水は専ら走行風によつて冷却されるにすぎ
ない。しかるに、上記アツパタンク内では流通抵
抗が小さいため冷却水が流入口側から他端側へと
直線的に流れ易く、これに伴い、上記流入口と反
対側の端部に近い部分の放熱管ほど冷却水が多く
流れる傾向がある。従つて、前記のラジエータに
対する冷却フアンの配置によると、冷却フアンが
位置しない部分の放熱管に多くの冷却水が流れ、
冷却フアンが位置する部分の放熱管に流れる冷却
水量が少なくなつてしまう。このため、冷却フア
ンそのものによる冷却作用が多くの冷却水に対し
て充分に及ばず、とくに走行風の少ない低速走行
時に、ラジエータでの冷却水の放熱効率が著しく
低下する虞れがあつた。
Conventionally, when a cooling fan was installed in a position that was biased towards the cooling water inlet side of the radiator,
Mainly during low-speed operation, the heat dissipation effect of the cooling water in the radiator is significantly reduced, causing the engine to easily overheat, which is a major problem. In other words, the cooling water that flows into the radiator after being heated by the engine is cooled by the forced air flow from the cooling fan and the running wind while moving from the above-mentioned atsupa tank to the lower tank through the heat radiation pipe. In this case, the cooling water passing through the heat dissipation pipes in the area where the cooling fan is not located is only cooled by the running wind. However, since the flow resistance in the Atsupa tank is small, the cooling water tends to flow linearly from the inlet side to the other end, and as a result, the closer the radiator tube is to the end opposite to the inlet, the cooler it becomes. Water tends to flow a lot. Therefore, according to the arrangement of the cooling fan with respect to the radiator, a large amount of cooling water flows into the heat dissipation pipe in the part where the cooling fan is not located.
The amount of cooling water flowing into the heat sink where the cooling fan is located decreases. For this reason, the cooling effect of the cooling fan itself is not sufficient for much of the cooling water, and there is a risk that the heat dissipation efficiency of the cooling water in the radiator will be significantly reduced, especially when the vehicle is running at low speeds with little wind.

なお、ラジエータの改良に関する公知例とし
て、実開昭49−132338号公報に記載されたものが
あるが、これは、ラジエータ自体の冷却効率の改
善を意図するものではなく、走行風が副次的にエ
ンジンまわりの電子機器等の冷却を兼ねる点に着
目して、この副次的機能を改善するようにしたも
のである。すなわち、この公知例に示されたラジ
エータは、その一部を通る走行風がエンジンまわ
りの機器の冷却を兼ねるようにし、この場合に、
走行風がラジエータを通過する際に暖められすぎ
ると、高温風が機器に送られてしまつて機器が熱
害を受ける虞れがあることから、この走行風が通
過する部分の熱交換作用を抑制する意味で、この
部分の冷却水流量を制限するようにしているにす
ぎない。従つて、冷却フアンとラジエータとの位
置関係および冷却フアンによる冷却効率について
は、何ら考慮されていないものである。
Note that a publicly known example of radiator improvement is described in Japanese Utility Model Application Publication No. 132338/1983, but this is not intended to improve the cooling efficiency of the radiator itself, but rather to improve the cooling efficiency of the radiator itself. This secondary function has been improved by focusing on the fact that it also serves as a cooling device for electronic devices around the engine. That is, in the radiator shown in this known example, the running wind passing through a part of the radiator also serves to cool the equipment around the engine, and in this case,
If the wind from the vehicle is heated too much as it passes through the radiator, the high-temperature wind may be sent to the equipment and cause heat damage to the equipment, so the heat exchange effect in the area through which this wind passes is suppressed. In this sense, the flow rate of cooling water in this area is simply restricted. Therefore, no consideration is given to the positional relationship between the cooling fan and the radiator and the cooling efficiency of the cooling fan.

本発明はこれらの事情に鑑み、ラジエータに対
して冷却フアンが、ラジエータの冷却水流入口側
に偏つた位置に配設されたタイプの冷却式エンジ
ンにおいて、冷却フアンの位置しない部分のラジ
エータの放熱管に流入する冷却水量を制御するこ
とにより、冷却フアンによる冷却水の冷却効率を
高め、低速走行時にもエンジンのオーバヒートを
確実に防止することのできる水却式エンジンの冷
却装置を提供するものである。
In view of these circumstances, the present invention provides a cooling type engine in which a cooling fan is disposed at a position biased toward the cooling water inlet side of the radiator, and in which the heat dissipation pipe of the radiator is installed in a portion where the cooling fan is not located. To provide a water-cooled engine cooling device that can increase the cooling efficiency of the cooling water by the cooling fan and reliably prevent engine overheating even when driving at low speeds by controlling the amount of cooling water flowing into the engine. .

すなわち、本発明は、冷却水の流入口を端部に
備えた第1タンクと冷却水の流出口を上記流入口
と反対側の端部に備えた第2タンクとを対向させ
て、該両タンクを放熱管で連結したラジエータ
と、該ラジエータの上記流入口側に偏つた位置に
配設された冷却フアンとを具備する水冷式エンジ
ンにおいて、上記第1タンクの冷却水通路に、冷
却フアンの位置しない部分のラジエータの放熱管
に流入する冷却水量を制御する流量分配手段を設
けたことを特徴とするものであり、以下、本発明
の実施例を図面によつて説明する。
That is, in the present invention, a first tank having a cooling water inlet at an end thereof and a second tank having a cooling water outlet at an end opposite to the inlet are arranged to face each other. In a water-cooled engine equipped with a radiator in which tanks are connected by heat dissipation pipes, and a cooling fan disposed at a position biased towards the inlet side of the radiator, a cooling fan is provided in the cooling water passage of the first tank. The present invention is characterized by the provision of a flow rate distribution means for controlling the amount of cooling water flowing into the heat dissipation pipes of the radiator in the non-located portions.Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図乃至第3図において、1はラジエータ、
2は冷却フアンである。上記ラジエータ1は、冷
却水の流入口12を有する第1タンク(アツパタ
ンク)11と、冷却水の流出口14を有する第2
タンク(ロアタンク)13と、該両タンク11,
13を連通連結する平行な多数本の放熱管15…
と、該放熱管15…の外周に突設した放熱フイン
16…とを具備する。上記流入口12は、第1タ
ンク11の一端部すなわち第2図での左側端部に
設けられ、流出口14は、第2タンク12におけ
る上記流入口12と反対側の端部すなわち第2図
での右側端部に設けられており、それぞれ流入管
12′および流出管14′に接続されている。そし
て、図外のエンジンのウオータジヤケツトおよび
サーモスタツト等を経た冷却水が、上記流入口1
2から第1タンク11に流入し、放熱管15…を
通つて第2タンク13に流動した後、上記流出口
14から図外のウオータポンプに送り出されるよ
うにしている。また、前記冷却フアン2は、FF
方式の自動車においては通常電動フアンが用いら
れ、ラジエータ1の前記流入口12側に偏つた部
分の背面側に配備されている。すなわち、第2図
に示す側からみたラジエータ1の左半部の背面に
シユラウド3が取付けられ、該シユラウド3内に
冷却フアン2が装備されている。
In Figures 1 to 3, 1 is a radiator;
2 is a cooling fan. The radiator 1 includes a first tank (atsupa tank) 11 having a cooling water inlet 12 and a second tank having a cooling water outlet 14.
tank (lower tank) 13, both tanks 11,
A large number of parallel heat dissipation tubes 15 that communicate and connect the 13...
and heat dissipation fins 16 protruding from the outer periphery of the heat dissipation tubes 15. The inlet 12 is provided at one end of the first tank 11, that is, the left end in FIG. and are connected to the inflow pipe 12' and the outflow pipe 14', respectively. Cooling water passes through the engine's water jacket and thermostat (not shown), and then flows into the inlet port 1.
2 into the first tank 11, flows through the heat radiation pipes 15 to the second tank 13, and is then sent out from the outlet 14 to a water pump (not shown). Further, the cooling fan 2 is FF
In this type of automobile, an electric fan is usually used, and is installed on the back side of the portion of the radiator 1 that is biased towards the inlet 12 side. That is, a shroud 3 is attached to the rear surface of the left half of the radiator 1 when viewed from the side shown in FIG. 2, and a cooling fan 2 is installed within the shroud 3.

上記ラジエータ1の第1タンク11の冷却水通
路11内には、冷却フアン2の位置しない部分の
ラジエータ1の放熱管15…に流入する冷却水量
を制御する流量分配手段として、冷却水の流圧に
応じて揺動する流圧弁17が設けられている。該
流圧弁17は、前記流入口12から流入する冷却
水流量が少ない時に冷却フアン2の位置しない部
分の放熱管15…への冷却水の流通量を減少させ
るものである。具体的に説明すると、第1タンク
11内の冷却水通路11′の中央部付近におい
て、適度の重さをもつた流圧弁17の上端部が固
定軸受18に回動自在に軸支され、該流圧弁17
より左側の冷却水通路11′内の冷却水の流圧が
低いときには、該流圧弁17が自重により垂下し
てこの部分での冷却水の流通を遮り、冷却水の流
圧が高くなるとそれに応じて流圧弁17が押し開
かれるように構成している。
In the cooling water passage 11 of the first tank 11 of the radiator 1, a flow pressure of the cooling water is provided as a flow rate distribution means for controlling the amount of cooling water flowing into the heat radiation pipes 15 of the radiator 1 in the portion where the cooling fan 2 is not located. A fluid pressure valve 17 is provided that swings in response to. The flow pressure valve 17 is for reducing the flow rate of cooling water to the heat radiation pipes 15 in the portion where the cooling fan 2 is not located when the flow rate of the cooling water flowing in from the inlet port 12 is small. Specifically, near the center of the cooling water passage 11' in the first tank 11, the upper end of the fluid pressure valve 17, which has an appropriate weight, is rotatably supported by a fixed bearing 18. Fluid pressure valve 17
When the flow pressure of the cooling water in the cooling water passage 11' on the left side is low, the flow pressure valve 17 hangs down due to its own weight and blocks the flow of cooling water in this part, and when the flow pressure of the cooling water increases, the flow pressure of the cooling water increases accordingly. The fluid pressure valve 17 is configured to be pushed open.

次に、この実施例に基づいて本発明装置の作用
を説明する。
Next, the operation of the apparatus of the present invention will be explained based on this embodiment.

前記第1タンタ11の一端側に設けられた流入
口12から第1タンク11内に流入する冷却水
は、第1タンク11の冷却水通路11′を流入口
12側から他端側へ流動しつつ、漸次分流して放
熱管15に流入する。この場合、上記冷却水通路
11′中に設けられた流量分配手段としての流圧
弁17により、冷却フアン2が位置しない部分へ
の冷却水流通量が制限される。
The cooling water flowing into the first tank 11 from the inlet 12 provided at one end of the first tank 11 flows through the cooling water passage 11' of the first tank 11 from the inlet 12 side to the other end. At the same time, the water gradually branches off and flows into the heat dissipation pipe 15. In this case, the flow rate of the cooling water to the portion where the cooling fan 2 is not located is restricted by the fluid pressure valve 17 as a flow rate distribution means provided in the cooling water passage 11'.

とくに、前記流圧弁17によると、低速走行時
には、冷却フアン2の位置する部分の放熱管15
…に冷却水の大部分が流れ、冷却作用が高められ
る。すなわち、アイドリング時ないしこれに近い
低速走行時には、走行風が少ないことから冷却フ
アン2が位置しない部分の放熱管15での冷却作
用は乏しい。一方、この時にはラジエータ1に流
入する冷却水の流圧が低いため、前記流圧弁17
が自重により垂下して冷却水通路11′をほぼ遮
閉する。これにより、第2図および第3図に実線
矢印で示すように、冷却水の殆どが冷却フアン2
の位置する部分の放熱管15に流入し、冷却フア
ン2の強制送風により充分な冷却作用を受ける。
In particular, according to the fluid pressure valve 17, when traveling at low speed, the heat dissipation pipe 15 in the portion where the cooling fan 2 is located
Most of the cooling water flows to ..., increasing the cooling effect. That is, when the vehicle is idling or traveling at a low speed similar to idling, the cooling effect in the portions of the heat dissipation pipes 15 where the cooling fan 2 is not located is poor because there is little wind while the vehicle is idling. On the other hand, at this time, since the flow pressure of the cooling water flowing into the radiator 1 is low, the flow pressure valve 17
The cooling water passage 11' is drooped down due to its own weight and almost blocks the cooling water passage 11'. As a result, as shown by the solid line arrows in FIGS. 2 and 3, most of the cooling water is transferred to the cooling fan 2.
The air flows into the heat dissipation pipe 15 in the portion where the cooling fan 2 is located, and is sufficiently cooled by the forced air flow of the cooling fan 2.

また、比較的高速の走行時には、冷却水の流圧
が高くなるに伴い、第2図および第3図に2点鎖
線で示すように、流圧弁17が開いて冷却フアン
2が位置しない側にも冷却水が流れるが、このと
きには走行風も多く、走行風による充分な冷却作
用が得られる。そして、走行速度に対応する冷却
水の流圧に応じて流圧弁17の開度が変化するこ
とにより、冷却フアン2による強制送風および送
走風の強さの程度に適合した効率のよい冷却が行
われることとなる。
Furthermore, when running at a relatively high speed, as the flow pressure of the cooling water increases, the flow pressure valve 17 opens and moves to the side where the cooling fan 2 is not located, as shown by the two-dot chain line in FIGS. 2 and 3. Cooling water also flows, but at this time there is also a lot of wind when the vehicle is running, so that a sufficient cooling effect can be obtained from the wind when the vehicle is running. By changing the opening degree of the fluid pressure valve 17 according to the flow pressure of the cooling water corresponding to the traveling speed, efficient cooling can be performed that matches the strength of forced air and blown air by the cooling fan 2. It will be carried out.

第4図は本発明の別の実施例を示し、この実施
例では、ラジエータ1の第1タンク11の冷却水
通路11′中に設ける流量分配手段として、バツ
フル板19を冷却水通路11′内に突設してい
る。該バツフル板19の配設位置および他の構成
は前記の第1実施例と同様である。
FIG. 4 shows another embodiment of the present invention, in which a baffle plate 19 is provided in the cooling water passage 11' of the first tank 11 of the radiator 1 as a flow rate distribution means provided in the cooling water passage 11'. It is protruding from the The arrangement position of the baffle plate 19 and other configurations are the same as in the first embodiment.

この構造によつても、上記バツフル板19にて
第1タンク11の冷却水通路11′が絞られるこ
とにより、冷却フアン2が位置しない部分への冷
却水の流通量が抑制され、冷却フアン2が位置す
る部分の放熱管15への冷却水分配量が高められ
ることとなる。
Even with this structure, the cooling water passage 11' of the first tank 11 is narrowed by the baffle plate 19, so that the amount of cooling water flowing to the part where the cooling fan 2 is not located is suppressed. The amount of cooling water distributed to the heat dissipation pipe 15 in the portion where is located is increased.

第5図は本発明のさらに別の実施例を示し、こ
の実施例では、流量分配手段として、前記の第1
実施例で用いられた流圧弁17に加え、冷却水温
度に応じて流圧弁17の開度を制御するバイメタ
ル20を付設している。該バイメタル20は、一
端を固定軸受18に、他端を流圧弁17にそれぞ
れ固着した曲板状をなし、冷却水温度が低いとき
に流圧弁17を開くように構成している。さらに
このバイメタル20は、流圧弁17が冷却水の流
圧に応じても開閉し得るように、バネ性をもたせ
ている。
FIG. 5 shows yet another embodiment of the present invention, in which the above-mentioned first
In addition to the fluid pressure valve 17 used in the embodiment, a bimetal 20 is provided to control the opening degree of the fluid pressure valve 17 depending on the cooling water temperature. The bimetal 20 has a curved plate shape with one end fixed to the fixed bearing 18 and the other end fixed to the fluid pressure valve 17, and is configured to open the fluid pressure valve 17 when the cooling water temperature is low. Furthermore, this bimetal 20 has spring properties so that the flow pressure valve 17 can be opened and closed in response to the flow pressure of the cooling water.

この構造によると、冷却水の流圧に応じた流圧
弁17の開閉作用は基本的に前記の第1実施例と
同様であるが、冷却水の流圧が低い場合であつて
も、冷却水の温度が平常運転時と比べて低いとき
には流圧弁17が強制的に開かれる。これによつ
て暖気運転時の過冷却を防止し、暖気運転を促進
する作用を兼ねる。この構造は、冷却フアン2に
電動フアンが用いられて該電動フアンを冷却水温
度に応じて制御する場合はそれほど必要でない
が、FF方式の自動車においても冷却フアンをエ
ンジン駆動式とする場合があり、また、FR(フ
ロントエンジン、リアドライブ)方式の自動車で
もエンジン駆動式の冷却フアンを第1図および第
2図に示す配置で設けられる場合があることか
ら、これらの場合に有効である。
According to this structure, the opening and closing action of the flow pressure valve 17 according to the flow pressure of the cooling water is basically the same as in the first embodiment, but even when the flow pressure of the cooling water is low, the flow pressure of the cooling water is When the temperature is lower than that during normal operation, the fluid pressure valve 17 is forcibly opened. This serves to prevent overcooling during warm-up operation and to promote warm-up operation. This structure is not so necessary when an electric fan is used as the cooling fan 2 and the electric fan is controlled according to the cooling water temperature, but even in front-wheel drive vehicles, the cooling fan may be engine-driven. Furthermore, even in FR (front engine, rear drive) type automobiles, an engine-driven cooling fan may be installed in the arrangement shown in FIGS. 1 and 2, so this method is effective in these cases.

以上説明したように、本発明の冷却装置による
と、ラジエータの冷却水流入口側に偏つた位置に
冷却フアンが設けられた水冷式エンジンにおい
て、冷却フアンを有しない部分のラジエータの放
熱管に不必要に冷却水が流れすぎることを防止し
得、走行風の少ない低速運転時にも、冷却フアン
による強制送風を受ける部分の放熱管に冷却水を
多く流して充分に放熱作用を高めることができ
る。従つて、ラジエータでの冷却水の冷却効率を
格段に高め、エンジンのオーバヒートを確実に防
止することができる等のすぐれた効果を奏するも
のである。
As explained above, according to the cooling device of the present invention, in a water-cooled engine in which a cooling fan is provided at a position biased toward the cooling water inlet side of the radiator, the heat dissipation pipe of the radiator in the portion without the cooling fan is unnecessary. Even during low-speed operation with little wind, a large amount of cooling water can be flowed through the heat dissipation pipes in the area that receives forced air from the cooling fan to sufficiently enhance the heat dissipation effect. Therefore, the cooling efficiency of the cooling water in the radiator is greatly increased, and the engine has excellent effects such as being able to reliably prevent overheating.

【図面の簡単な説明】[Brief explanation of the drawing]

図は本発明の実施例を示すもので、第1図はラ
ジエータおよび冷却フアンの斜視図、第2図は同
一部切欠立面図、第3図は要部の拡大縦断面図、
第4図は別の実施例を示す要部の拡大縦断面図、
第5図はさらに別の実施例を示す要部の拡大縦断
面図である。 1……ラジエータ、2……冷却フアン、11…
…ラジエータの第1タンク、12……冷却水流入
口、13……第2タンク、14……冷却水流出
口、15……放熱管、17……流圧弁、19……
バツフル板。
The drawings show an embodiment of the present invention, in which Fig. 1 is a perspective view of a radiator and a cooling fan, Fig. 2 is a partially cutaway elevational view of the same, and Fig. 3 is an enlarged vertical sectional view of the main part.
FIG. 4 is an enlarged vertical sectional view of the main part showing another embodiment;
FIG. 5 is an enlarged vertical cross-sectional view of the main part showing still another embodiment. 1...Radiator, 2...Cooling fan, 11...
...Radiator first tank, 12...Cooling water inlet, 13...Second tank, 14...Cooling water outlet, 15...Radiator pipe, 17...Flow pressure valve, 19...
Batsuful board.

Claims (1)

【特許請求の範囲】 1 冷却水の流入口を端部に備えた第1タンクと
冷却水の流出口を上記流入口と反対側の端部に備
えた第2タンクとを対向させて、該両タンクを放
熱管で連結したラジエータと、該ラジエータの上
記流入口側に偏つた位置に配設された冷却フアン
とを具備する水冷式エンジンにおいて、上記第1
タンクの冷却水通路に、冷却フアンの位置しない
部分のラジエータの放熱管に流入する冷却水量を
制御する流量分配手段を設けたことを特徴とする
水冷式エンジンの冷却装置。 2 上記流量分配手段が、上記第1タンクの冷却
水通路内の冷却水の流圧を受けて上記流入口から
流入する冷却水流量が少ない時に冷却フアンの位
置しない部分のラジエータの放熱管への冷却水流
通量を減少させる流圧弁であることを特徴とする
特許請求の範囲第1項記載の水冷式エンジンの冷
却装置。
[Scope of Claims] 1. A first tank having a cooling water inlet at an end thereof and a second tank having a cooling water outlet at an end opposite to the inlet are arranged to face each other. In the water-cooled engine, the water-cooled engine includes a radiator in which both tanks are connected by a heat dissipation pipe, and a cooling fan disposed at a position biased toward the inlet side of the radiator.
A cooling device for a water-cooled engine, characterized in that a cooling water passage of a tank is provided with a flow rate distribution means for controlling the amount of cooling water flowing into a heat radiation pipe of a radiator in a portion where a cooling fan is not located. 2 The flow distribution means receives the flow pressure of the cooling water in the cooling water passage of the first tank and distributes the flow of cooling water to the heat dissipation pipe of the radiator in a portion where the cooling fan is not located when the flow rate of the cooling water flowing in from the inlet is small. The cooling device for a water-cooled engine according to claim 1, characterized in that the cooling device is a fluid pressure valve that reduces the flow rate of cooling water.
JP10467081A 1981-07-03 1981-07-03 Cooling device for water-cooled engine Granted JPS588221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10467081A JPS588221A (en) 1981-07-03 1981-07-03 Cooling device for water-cooled engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10467081A JPS588221A (en) 1981-07-03 1981-07-03 Cooling device for water-cooled engine

Publications (2)

Publication Number Publication Date
JPS588221A JPS588221A (en) 1983-01-18
JPS6142082B2 true JPS6142082B2 (en) 1986-09-19

Family

ID=14386901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10467081A Granted JPS588221A (en) 1981-07-03 1981-07-03 Cooling device for water-cooled engine

Country Status (1)

Country Link
JP (1) JPS588221A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142820A (en) * 1985-12-18 1987-06-26 Yamada Seisakusho:Kk Cooling device for multi row internal combustion engine
JP3422036B2 (en) * 1992-07-13 2003-06-30 株式会社デンソー Vehicle cooling system
DE19706800A1 (en) * 1997-02-20 1998-08-27 Bayerische Motoren Werke Ag Coolant circuit of a motor vehicle drive unit
JP4735648B2 (en) * 2001-10-16 2011-07-27 セイコーエプソン株式会社 Piezoelectric vibrating piece and processing method thereof
JP4933903B2 (en) * 2007-01-17 2012-05-16 リバーエレテック株式会社 Quartz vibrator, quartz vibrator and quartz wafer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4534020Y1 (en) * 1967-03-18 1970-12-25

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS49132338U (en) * 1973-03-22 1974-11-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4534020Y1 (en) * 1967-03-18 1970-12-25

Also Published As

Publication number Publication date
JPS588221A (en) 1983-01-18

Similar Documents

Publication Publication Date Title
JP2010025009A (en) Cooling system and cooling method of internal combustion engine
US4429666A (en) Motor vehicle having an internal-combustion engine fitted with means for controlling the air stream flowing through the engine compartment
CN108331655B (en) Cooling assembly for temperature control
JPS6142082B2 (en)
JP3937624B2 (en) Vehicle cooling system
JP3407582B2 (en) Automotive engine cooling water piping
JP3344288B2 (en) Cooling water circulation structure of internal combustion engine
JPS63269716A (en) Heater for automobile
JP3657705B2 (en) Radiator device
JP2006218975A (en) Vehicular radiator
JPH0345035Y2 (en)
JP3903744B2 (en) Engine cooling structure
JPS6042185Y2 (en) Heat exchanger
JPH0616300Y2 (en) Vehicle radiator
CN115370460B (en) Actively controlled cooling system
JP3321760B2 (en) Engine related heat dissipation device in vehicle
JP3797025B2 (en) Cooling device for vehicle engine
CN213743656U (en) Automobile cooling system
CN211592228U (en) Cooling system of high-speed amphibious vehicle
JP3208278B2 (en) Drive unit cooling system for work vehicles
JP7087815B2 (en) Cooling system
CN208416681U (en) A kind of transverse flow type vehicle air warming radiator
JP4397676B2 (en) Automotive heat exchanger
JPH06108845A (en) Structure of arrangement of oil cooler
JPH089373Y2 (en) Car radiator