JPS6142006B2 - - Google Patents

Info

Publication number
JPS6142006B2
JPS6142006B2 JP14809882A JP14809882A JPS6142006B2 JP S6142006 B2 JPS6142006 B2 JP S6142006B2 JP 14809882 A JP14809882 A JP 14809882A JP 14809882 A JP14809882 A JP 14809882A JP S6142006 B2 JPS6142006 B2 JP S6142006B2
Authority
JP
Japan
Prior art keywords
oil
yarn
fibers
fiber
flame
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14809882A
Other languages
Japanese (ja)
Other versions
JPS5936727A (en
Inventor
Yoji Matsuhisa
Tooru Hiramatsu
Yasuo Adachi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP14809882A priority Critical patent/JPS5936727A/en
Publication of JPS5936727A publication Critical patent/JPS5936727A/en
Publication of JPS6142006B2 publication Critical patent/JPS6142006B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は炭素繊維の製造法に関する。さらに詳
しくは、有機重合体繊維糸条を焼成する際の操業
の安定化をはかり、高品質、特に高い機械的特性
を有する炭素繊維の製造法に関するものである。 炭素繊維はその卓越した力学的、化学的、電気
的性質などにより、各種の用途、たとえば航空機
やロケツトなどの航空・宇宙用構造材料、テニス
ラケツト、ゴルフシヤフト、釣竿などのスポーツ
用品に広く使用され、さらに船舶、自動車などの
運輸機械用途等の分野にも使用されようとしてい
る。 かかる炭素繊維の製造原料である繊維素材、す
なわちプレカーサとしてはセルロース系繊維、ア
クリル系繊維、ポリビニルアルコール系繊維など
が用いられ、これらのプレカーサは200〜400℃の
酸化性雰囲気中で耐炎化処理した後、不活性雰囲
気中で少くとも800℃の高温下で炭化するプロセ
スを経て炭素繊維に転換されることはよく知られ
ている。 このような苛酷な条件下で耐炎化され、次いで
炭素化される該プレカーサは、焼成時、特に耐炎
化工程において局部的な蓄熱が起り易く、そのた
め単糸間の融着を起こしたり、あるいはプレカー
サに付与している原糸油剤がタール化して毛羽や
単糸切れの原因となつて安定した操業を損うばか
りでなく、さらに不活性雰囲気中で加熱処理して
得られる炭素繊維の品質、特に機械的特性を損う
という問題があつた。 そこでかかる問題を回避するため種々の試みが
なされており、たとえば特開昭52−148227号公報
には、シリコーン系化合物を含浸したアクリル系
プレカーサを耐炎化処理すると耐炎化時の単糸相
互の合着または融着が防止でき炭素繊維の機械的
特性が向上するといわれているが、該シリコーン
系化合物は撥水性が強く、それを付与したプレカ
ーサは静電気障害を生じ易く、集束性に乏しいた
め前記耐炎化においてプレカーサの集束性不良に
よるガイド、ローラ等への単糸巻付きや毛羽、単
糸切れが生ずるという欠点があつた。 本発明者らは炭素繊維製造用原糸油剤として、
先に、炭素原子数が少くとも18ケの高級アルコー
ル系および/又は高級脂肪酸系油剤と有機系酸化
防止剤とからなり、耐熱性が少くとも200℃であ
る原糸油剤が、特に耐炎化工程での単糸間の融着
あるいは毛羽、糸切れ等を減少するとともに該炭
素繊維の機械的特性を向上させることを見出し提
案した。 しかるに、さらに炭素繊維の品質向上、特にそ
の機械的特性の一層の向上について検討をすすめ
た結果、プレカーサの集束状態、換言すれば開繊
状態が炭素繊維の機械的特性に影響する重要因子
であることを見出し、鋭意研究をすすめて本発明
をなすに至つたのである。 すなわち、本発明の目的は高品質、特に機械的
特性に優れた炭素繊維の製造法を提供するにあ
り、他の目的は前記原糸油剤を付与したプレカー
サの焼成工程における操業安定性を高め、生産効
率よく炭素繊維を製造する方法を提供するにあ
る。 このような本発明の目的は、有機重合体繊維糸
条に、炭素原子数が少くとも18ケの高級アルコー
ル系および/又は高級脂肪酸系油剤と有機系酸化
防止剤とからなり耐熱性が少くとも200℃である
原糸油剤を付与し、該糸条を緊張下で空気噴射法
によつて開繊、交絡処理を施した後、耐炎化し、
次いで炭化することを特徴とする炭素繊維の製造
方法によつて達成することができる。 本発明で用いられるプレカーサは焼成工程、と
りわけ耐炎化工程で蓄熱し、脆化を生じ易いセル
ロース系、アクリル系、ポリビニルアルコール系
繊維などの有機系プレカーサにたいして有効であ
るが好ましくはアクリル系繊維である。 これらのプレカーサは通常、単糸デニールが
0.5〜2.0d、単糸本数500〜30000本の範囲内のも
のが用いられる。 炭素繊維製造用原糸は耐炎化工程において少く
とも200℃の高温加熱雰囲気中に曝され、この高
温下の加熱によつて、該原糸は分子間架橋や分子
内環化などの複雑な化学反応を伴つて耐炎化繊維
に転化されるが、この場合原糸は加熱初期の原糸
の軟化、部分融解及び反応の進行に伴うタール化
によつて単糸相互間に融着が生じたり、繊維に欠
陥が形成され易くなるのを避けられない。このよ
うな原糸の初期高温加熱時の単糸間融着や繊維欠
陥の発生は原糸に付着した油剤の種類によつて著
しく相違し、油剤の耐熱性が低く200℃より低い
温度で揮散、熱分解するときはこのような融着や
繊維欠陥の発生防止に効果が期待できないばかり
かかえつて悪影響を及ぼす。 本発明の油剤は、油剤の主成分である高級アル
コール系および/又は高級脂肪酸系油剤におい
て、その炭素数が18より少くなると、原糸中への
油剤の浸透が著しく、融着防止効果が低下し、炭
素繊維の物性低下、特に炭素繊維の欠陥発生の原
因になることがあるので該炭素数は少くとも18、
好ましくは18〜25のものがよい。 このような本発明の油剤の例としては、たとえ
ば高級アルコール系油剤としてはステアリルアル
コールリン酸エステル塩、あるいはエチレンオキ
サイド〔(EO)n〕を付加しそのn数が約20〜40
であるステアリルアルコール(EO)n、オレイ
ルアルコール(EO)n、ベヘニールアルコール
(EO)n、イソペンタコサニルアルコール
(EO)nなどが挙げられるが、ステアリルアルコ
ール(EO)n、オレイルアルコール(EO)n、
イソペンタコサニルアルコール(EO)nなどが
好ましく用いられる。これらの油剤は2種以上を
混合して用いてもよい。また、高級脂肪酸系油剤
としては、たとえばステアリン酸グリセライド、
あるいはポリエチレングリコール(PEG)の分
子量が400〜1000であるPEGステアレート、PEG
オレート、PEGソルビタンオレート、PEGソル
ビタンステアレートなどが挙げられるが特に
PEGステアレート、PEGオレートなどが好まし
く用いられる。なおこれらの油剤は2種以上を混
合して用いてもよい。 さらに代表的な高級アルコール系油剤および高
級脂肪酸系油剤の耐熱性を示せば第1表に示す通
りである。
The present invention relates to a method for manufacturing carbon fiber. More specifically, the present invention relates to a method for producing carbon fibers of high quality, particularly high mechanical properties, by stabilizing the operation when firing organic polymer fiber threads. Due to its excellent mechanical, chemical, and electrical properties, carbon fiber is widely used in a variety of applications, including aerospace structural materials such as aircraft and rockets, and sporting goods such as tennis rackets, golf shafts, and fishing rods. Furthermore, it is expected to be used in fields such as transportation machinery applications such as ships and automobiles. Cellulose fibers, acrylic fibers, polyvinyl alcohol fibers, etc. are used as fiber materials that are raw materials for manufacturing such carbon fibers, that is, precursors, and these precursors are flame-resistant treated in an oxidizing atmosphere at 200 to 400°C. It is well known that the carbon fiber is then converted into carbon fiber through a carbonization process at a high temperature of at least 800°C in an inert atmosphere. The precursor, which is made flame resistant and then carbonized under such severe conditions, tends to accumulate local heat during firing, especially during the flame resistant process, which may cause fusion between single yarns or cause the precursor to become carbonized. The raw oil applied to the fiber turns into tar, causing fuzz and single fiber breakage, which not only impairs stable operation, but also affects the quality of the carbon fiber obtained by heat treatment in an inert atmosphere, especially There was a problem that mechanical properties were impaired. Various attempts have been made to avoid such problems. For example, in Japanese Patent Application Laid-Open No. 148227/1984, when an acrylic precursor impregnated with a silicone compound is treated to make it flame resistant, the single fibers do not combine with each other during the flame resistant process. It is said that the silicone compound prevents adhesion or fusion and improves the mechanical properties of carbon fibers. However, the silicone compound has strong water repellency, and the precursor to which it is applied is prone to electrostatic damage and has poor cohesiveness, so the flame resistance is In this process, there were drawbacks such as the occurrence of single yarn wrapping around guides, rollers, etc., fluffing, and single yarn breakage due to poor focusing of the precursor. The present inventors have developed a raw material oil for producing carbon fibers.
First, a raw material oil consisting of a higher alcohol-based and/or higher fatty acid-based oil having at least 18 carbon atoms and an organic antioxidant, and having a heat resistance of at least 200°C, is particularly suitable for the flame-retardant process. We have discovered and proposed a method to reduce fusing, fuzz, yarn breakage, etc. between single yarns, and to improve the mechanical properties of the carbon fibers. However, as a result of further studies on improving the quality of carbon fibers, especially on further improving their mechanical properties, we found that the focusing state of precursors, in other words, the opening state, is an important factor that affects the mechanical properties of carbon fibers. After discovering this, they conducted extensive research and came up with the present invention. That is, an object of the present invention is to provide a method for producing carbon fiber of high quality, particularly excellent mechanical properties, and another object of the present invention is to improve the operational stability in the firing process of the precursor to which the raw fiber oil has been applied, The object of the present invention is to provide a method for manufacturing carbon fiber with high production efficiency. The object of the present invention is to provide an organic polymer fiber yarn containing a higher alcohol-based and/or higher fatty acid-based oil having at least 18 carbon atoms and an organic antioxidant, and which has at least heat resistance. A raw yarn oil agent at 200°C is applied, the yarn is opened and entangled under tension by an air injection method, and then made flame resistant.
This can be achieved by a method for producing carbon fiber, which is characterized in that it is then carbonized. The precursor used in the present invention is effective against organic precursors such as cellulose-based, acrylic-based, and polyvinyl alcohol-based fibers, which tend to accumulate heat and become brittle during the firing process, especially during the flameproofing process, but acrylic fibers are preferred. . These precursors typically have a single yarn denier.
A fiber having a diameter of 0.5 to 2.0 d and a number of single threads of 500 to 30,000 is used. During the flame-retardant process, carbon fiber yarn is exposed to a high-temperature heating atmosphere of at least 200°C, and due to this high-temperature heating, the yarn undergoes complex chemical reactions such as intermolecular crosslinking and intramolecular cyclization. The fibers are converted into flame-resistant fibers through a reaction, but in this case, the fibers soften and partially melt during the initial stage of heating, and become tarred as the reaction progresses, causing fusion between single fibers. It is unavoidable that defects are likely to be formed in the fibers. The occurrence of inter-filament fusion and fiber defects during the initial high-temperature heating of the yarn varies markedly depending on the type of oil attached to the yarn, and the oil has low heat resistance and evaporates at temperatures below 200℃. When thermally decomposed, it cannot be expected to be effective in preventing the occurrence of such fusion and fiber defects, and on the contrary, it has an adverse effect. In the oil agent of the present invention, when the number of carbon atoms in the higher alcohol-based and/or higher fatty acid-based oil agent, which is the main component of the oil agent, is less than 18, the oil agent penetrates into the yarn significantly and the fusion prevention effect decreases. However, the number of carbon atoms should be at least 18, as this may cause deterioration of the physical properties of carbon fibers, especially the occurrence of defects in carbon fibers.
Preferably, the number is 18 to 25. Examples of such oils of the present invention include stearyl alcohol phosphate ester salts as higher alcohol oils, or ethylene oxide [(EO)n] added to which the number n is approximately 20 to 40.
Examples include stearyl alcohol (EO) n, oleyl alcohol (EO) n, behenyl alcohol (EO) n, isopentacosanyl alcohol (EO) n, etc., but stearyl alcohol (EO) n, oleyl alcohol ( EO)n,
Isopentacosanyl alcohol (EO)n and the like are preferably used. Two or more of these oil agents may be used in combination. In addition, examples of higher fatty acid oils include stearic acid glyceride,
Or polyethylene glycol (PEG) with a molecular weight of 400 to 1000, PEG stearate, PEG
Examples include oleate, PEG sorbitan oleate, PEG sorbitan stearate, etc.
PEG stearate, PEG olate, etc. are preferably used. Note that two or more of these oil agents may be used in combination. Furthermore, the heat resistance of typical higher alcohol-based oils and higher fatty acid-based oils is shown in Table 1.

【表】【table】

〔CF値の測定法〕[Measurement method of CF value]

長さ約100cmの繊維の一端をcm単位の物指の上
端に固定し、下端は繊維束のデニール0.2倍に等
しいグラム数のおもりを下げる(ただしおもりは
500デニールを越える場合は100gとする)。固定
点の下0.5〜1.0cmの物指上で少なくともフイラメ
ント総数の1/3が片側にあるように糸条をわけフ
ツクをさしこむ。このフツクは単糸デニールの5
倍と同じグラム数のおもさにする。フツクが糸に
ひつかかるまで落下させ、分離開始点から静止点
までの距離Lをよみとる。 このテストをサンプルをかえて100回くりかえ
しLの上下20%づつを省き、残りの平均値をサン
プルの代表値Mとする。 CF値は100をcm単位のMの値で割つた値であ
る。 本発明においては、プレカーサに原糸油剤を付
着処理し、次いで空気噴射処理をほどこした後、
加熱処理するが、特にアクリル系炭素繊維製造に
おける静電気障害、融着発生、毛羽、糸切れ等に
対しすぐれた効果を奏するとともに、高い機械的
特性を有する炭素繊維を得ることができる。 かかる空気噴射処理を用いることによつて、該
原糸油剤の有する焼成工程での融着、毛羽、糸切
れ等の減少効果をさらに一層高めるとともに炭素
繊維の機械的特性を向上せしめることができる
が、これは該空気噴射処理によつてプレカーサの
単糸間の開繊性が改善され、プレカーサに生じて
いる凝似融着がなくなることにより焼成工程、特
に耐炎化工程での融着の発生が防止され、各単糸
の耐炎化が均等に進むためと考えられる。 なお本発明でいう融着とは単糸が軟化し、隣接
する単糸と接着し、その接着境界部が面状であつ
たり、接着境界がなくなつている状態のものを云
い、凝似融着とは単糸の軟化あるいは溶媒、油剤
等により単糸間が接着し、その接着境界部が点状
であるものを云う。 原糸油剤の付着処理および空気噴射処理をおこ
なつたプレカーサは、次いで200〜400℃の範囲内
の酸化性雰囲気中で耐炎化処理され、さらに少く
とも800℃の不活性雰囲気中、たとえば窒素ガス
中で炭化処理されるが、これら耐炎化および炭化
処理は公知の方法が用いられる。 本発明によれば、耐炎化ないし炭化の工程にお
ける融着や毛羽、糸切れ等のトラブルを防止し、
生産性よく炭素繊維を製造することができる。ま
た高強力の炭素繊維が得られるなど顕著な効果を
奏する。 以下実施例により、本発明を具体的に説明す
る。 実施例1、比較例1 アクリロニトリル99.5mol%、イタコン酸
0.5mol%、をジメチルスルホキシドを溶媒とする
溶液重合法により重合を行ない、原液濃度22%の
紡糸原液としたあと、ジメチルスルホキシド水溶
液中に紡糸し公知の方法によつて水洗、延伸して
6000デニール、6000フイラメントの原糸を得た。
この延伸糸をステアリルアルコール(EO)2095重
量%とジ(ノニルフエニル)ジフニルフエニルフ
オスフアイト 5重量%からなる原糸油剤(耐熱
性は210℃であつた)の8.5%水溶液に浸漬処理
し、乾燥して強度6.3g/dのアクリル繊維フイラ
メントを得た。油剤付着量は原糸重量に対し1.9
%であつた。 次にこの原糸を無撚の状態で、連続的に20mmφ
の空気噴射ノズルの中に通した。この際の糸速は
3m/分、糸張力は0.15g/dであり、まだ空気圧
は1.2Kg/cm2を用いた。 さらにこの原糸を連続して3.0m/分の糸速で
240〜260℃の温度で30分間耐炎化処理を行ない、
次いで窒素雰囲気中で1300℃の温度で炭化処理し
て炭化糸を得た。 この炭化糸をJIS R−7601にもとづいて樹脂含
浸ストランドを作り引張強度を測定した。 なお比較例として空気噴射処理を行なわないほ
かは実施例1と同様に実施した。 それらの結果を第2表に示す。
One end of the fiber with a length of about 100 cm is fixed to the upper end of the index finger in cm, and a weight of grams equal to 0.2 times the denier of the fiber bundle is lowered to the lower end (however, the weight is
If it exceeds 500 denier, it will be 100g). Divide the yarn and insert the hook so that at least 1/3 of the total number of filaments is on one side on the index finger 0.5 to 1.0 cm below the fixing point. This hook is a single thread denier 5
Double the weight to the same number of grams. Drop the hook until it catches the thread, and read the distance L from the separation starting point to the stationary point. Repeat this test 100 times with different samples, omitting the upper and lower 20% of L, and use the remaining average value as the representative value M of the sample. The CF value is 100 divided by the value of M in cm. In the present invention, after applying a yarn oil to the precursor and then applying an air injection treatment,
The heat treatment is particularly effective against static electricity damage, fusion, fuzz, thread breakage, etc. in the production of acrylic carbon fibers, and it is also possible to obtain carbon fibers with high mechanical properties. By using such air injection treatment, it is possible to further enhance the effect of the raw yarn oil agent in reducing fusion, fuzz, yarn breakage, etc. during the firing process, and to improve the mechanical properties of the carbon fiber. This is because the air injection treatment improves the opening properties between the single yarns of the precursor, and eliminates the cohesive fusion that occurs in the precursor, which reduces the occurrence of fusion during the firing process, especially during the flame-retardant process. This is thought to be because the flame resistance of each single yarn progresses evenly. In addition, fusion in the present invention refers to a state in which a single yarn softens and adheres to an adjacent single yarn, and the bonded boundary part is planar or the bonded boundary disappears. Bonding refers to the bonding between single yarns due to softening of the single yarns or due to solvents, oils, etc., and the bonded boundaries are dotted. The precursor, which has been subjected to the yarn oil adhesion treatment and the air injection treatment, is then flame-retardant treated in an oxidizing atmosphere within the range of 200 to 400°C, and is further flame-resistant treated in an inert atmosphere at at least 800°C, such as nitrogen gas. A known method is used for these flameproofing and carbonization treatments. According to the present invention, troubles such as fusion, fuzz, and thread breakage in the flameproofing or carbonization process can be prevented,
Carbon fibers can be manufactured with high productivity. It also has remarkable effects, such as the ability to obtain high-strength carbon fibers. The present invention will be specifically described below with reference to Examples. Example 1, Comparative Example 1 Acrylonitrile 99.5 mol%, itaconic acid
0.5 mol% was polymerized by a solution polymerization method using dimethyl sulfoxide as a solvent to obtain a spinning stock solution with a stock solution concentration of 22%, which was then spun into a dimethyl sulfoxide aqueous solution, washed with water, and stretched by a known method.
A raw yarn of 6000 denier and 6000 filament was obtained.
This drawn yarn was immersed in an 8.5% aqueous solution of a raw yarn oil (heat resistance was 210°C) consisting of 95% by weight of stearyl alcohol (EO) 20 and 5% by weight of di(nonylphenyl)diphenyl phenyl phosphorite. After drying, an acrylic fiber filament with a strength of 6.3 g/d was obtained. The amount of oil attached is 1.9 per weight of yarn
It was %. Next, this yarn is untwisted and continuously twisted to a diameter of 20mmφ.
through an air injection nozzle. At this time, the yarn speed was 3 m/min, the yarn tension was 0.15 g/d, and the air pressure was 1.2 Kg/cm 2 . Furthermore, this yarn is continuously spun at a yarn speed of 3.0 m/min.
Flame retardant treatment is performed at a temperature of 240-260℃ for 30 minutes,
Next, a carbonized thread was obtained by carbonization treatment at a temperature of 1300°C in a nitrogen atmosphere. A resin-impregnated strand was prepared from this carbonized yarn based on JIS R-7601 and its tensile strength was measured. As a comparative example, the same procedure as in Example 1 was carried out except that the air injection treatment was not performed. The results are shown in Table 2.

【表】 実施例2〜6、比較例2 油剤と有機系酸化防止剤の配合割合または組み
合せを変更した以外は実施例1と同様に処理し
た。その結果を第3表に示す。 なお、各実施例いずれも耐炎化糸の凝似融着は
全く認められなかつたが、比較例ではかなり凝似
融着が認められた。
[Table] Examples 2 to 6, Comparative Example 2 The treatment was carried out in the same manner as in Example 1 except that the blending ratio or combination of the oil agent and the organic antioxidant was changed. The results are shown in Table 3. Incidentally, in each of the Examples, no aggregated fusion of the flame-resistant yarn was observed, but in the Comparative Example, a considerable amount of aggregated fusion was observed.

【表】 実施例7〜8、比較例3〜5 空気噴射における空気圧を第4表に示すように
変更してCF値を変えた以外は、実施例1と同様
に処理し、樹脂含浸ストランドの強度を測定し
た。 その結果を第4表に示す。
[Table] Examples 7 to 8, Comparative Examples 3 to 5 The resin-impregnated strands were treated in the same manner as in Example 1, except that the air pressure in the air injection was changed as shown in Table 4 to change the CF value. The strength was measured. The results are shown in Table 4.

【表】【table】

Claims (1)

【特許請求の範囲】 1 有機重合体繊維糸条に、炭素原子数が少くと
も18ケの高級アルコール系および/又は高級脂肪
酸系油剤と有機系酸化防止剤とからなり耐熱性が
少くとも200℃である原糸油剤を付与し、該糸条
を緊張下で空気噴射法によつて開繊、交絡処理を
施した後、耐炎化し次いで炭化することを特徴と
する炭素繊維の製造方法。 ここで油剤の耐熱性とは、油剤を固形分として
10mgを熱天秤装置に採取し、2.5℃/分の昇温速
度で加熱したとき得られる減量曲線から該油剤
(固形分)重量に基づく減量率が5%のときの温
度をいう。 2 特許請求の範囲第1項において、開繊、交絡
処理による糸条の交絡度がCF値として20〜40で
ある炭素繊維の製造方法。
[Scope of Claims] 1 Organic polymer fiber yarn containing a higher alcohol-based and/or higher fatty acid-based oil having at least 18 carbon atoms and an organic antioxidant, and has a heat resistance of at least 200°C. 1. A method for producing carbon fibers, which comprises applying a raw yarn oil agent, opening and entangling the yarns under tension by an air injection method, making them flame resistant, and then carbonizing them. Here, the heat resistance of the oil is defined as the solid content of the oil.
This refers to the temperature at which the weight loss rate based on the weight of the oil agent (solid content) is 5% from the weight loss curve obtained when 10 mg is taken into a thermobalance and heated at a heating rate of 2.5°C/min. 2. The method for producing carbon fiber according to claim 1, wherein the degree of entanglement of the threads by opening and entangling treatment is 20 to 40 as a CF value.
JP14809882A 1982-08-26 1982-08-26 Preparation of carbon fiber Granted JPS5936727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14809882A JPS5936727A (en) 1982-08-26 1982-08-26 Preparation of carbon fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14809882A JPS5936727A (en) 1982-08-26 1982-08-26 Preparation of carbon fiber

Publications (2)

Publication Number Publication Date
JPS5936727A JPS5936727A (en) 1984-02-29
JPS6142006B2 true JPS6142006B2 (en) 1986-09-18

Family

ID=15445197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14809882A Granted JPS5936727A (en) 1982-08-26 1982-08-26 Preparation of carbon fiber

Country Status (1)

Country Link
JP (1) JPS5936727A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10838405B2 (en) 2017-05-24 2020-11-17 Fanuc Corporation Numerical controller

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101922065B (en) * 2010-09-16 2011-12-07 中国科学院西安光学精密机械研究所 Preoxidation method of polyacrylonitrile-based carbon fiber precursor
JP2018145561A (en) * 2017-03-07 2018-09-20 三菱ケミカル株式会社 Carbon fiber precursor acrylic fiber bundle, carbon fiber bundle, and manufacturing method of carbon fiber bundle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10838405B2 (en) 2017-05-24 2020-11-17 Fanuc Corporation Numerical controller

Also Published As

Publication number Publication date
JPS5936727A (en) 1984-02-29

Similar Documents

Publication Publication Date Title
EP0205960B1 (en) Very low creep, ultra high moduls, low shrink, high tenacity polyolefin fiber having good strength retention at high temperatures and method to produce such fiber
US10087560B2 (en) Braid
US4259307A (en) Process for producing carbon fibers
JP5873358B2 (en) Flame-resistant fiber strand, method for producing the same, and method for producing carbon fiber strand
JPS6197477A (en) Raw yarn for producing carbon fiber
JPS6142006B2 (en)
US3708326A (en) Stabilization of acrylic fibers and films
EP0378381A2 (en) Metal-loaded carbon fibres
JPS5881637A (en) Heat resistant spun yarn
JPS61119719A (en) Production of carbon fiber of high strength
JP3002614B2 (en) Acrylonitrile fiber and method for producing the same
JP4048230B2 (en) Precursor fiber for carbon fiber and method for producing the same
JPS58214518A (en) Acrylic precursor yarn bundle
KR102674488B1 (en) Method for preparing acrylonitrile based fiber precursor
JP2930166B2 (en) Carbon fiber production method
JPS62133123A (en) Production of carbon fiber and graphite fiber
JPH0749607B2 (en) Method for producing acrylonitrile-based precursor for producing carbon fiber
CA1147917A (en) Process for improving the elastic recovery of a polyethylene terephthalate fibrous material
JPS62191518A (en) Production of carbon fiber and graphite fiber
JPS6183374A (en) Acrylic precursor fiber bundle
JPS6269826A (en) Production of high-strength and high-modulus carbon fiber
JPS58214530A (en) Production of flameproofed fiber
JP2023017173A (en) Carbon fiber bundle and method for producing the same
JPH0491229A (en) Production of pitch-based carbon fiber
JPS63275712A (en) Production of polyetherimide fiber