JPS6141969Y2 - - Google Patents

Info

Publication number
JPS6141969Y2
JPS6141969Y2 JP13063481U JP13063481U JPS6141969Y2 JP S6141969 Y2 JPS6141969 Y2 JP S6141969Y2 JP 13063481 U JP13063481 U JP 13063481U JP 13063481 U JP13063481 U JP 13063481U JP S6141969 Y2 JPS6141969 Y2 JP S6141969Y2
Authority
JP
Japan
Prior art keywords
chamber
working
working fluid
temperature
compressor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13063481U
Other languages
Japanese (ja)
Other versions
JPS5835649U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13063481U priority Critical patent/JPS5835649U/en
Publication of JPS5835649U publication Critical patent/JPS5835649U/en
Application granted granted Critical
Publication of JPS6141969Y2 publication Critical patent/JPS6141969Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

【考案の詳細な説明】 一般に、第1図に示す如くブレイトンサイクル
の基本概念図では、始動時には図示しないセルモ
ータにて圧縮機室a′、膨張機室b′を一体に備えた
流体機械1′の出力軸2′を駆動させる。
[Detailed description of the invention] Generally, in the basic conceptual diagram of the Brayton cycle as shown in FIG. The output shaft 2' of is driven.

すなわち、圧縮機室a′では吸込管3′を介して
吸入される作動流体を吐出管4′から吐出させ
る。そしてこの吐出された作動流体を加熱器5′
にて加熱させたのち、吸入管6′を介して膨張機
室b′へ送り込む。
That is, in the compressor chamber a', the working fluid sucked through the suction pipe 3' is discharged from the discharge pipe 4'. The discharged working fluid is then heated to a heater 5'.
After heating it in the inlet tube 6', it is sent to the expander chamber b' through the suction pipe 6'.

従つて膨張機室b′に送り込まれる作動気体の仕
事量の方が圧縮機室a′にて行なわれる仕事量より
大きいため始動後はセルモータを切つても流体機
械は作動し駆動軸2′が回転を繰り返す。又、膨
張機室b′より吐出された作動気体は放熱器7′に
て冷却された後、再び吸込管3′を介して圧縮機
室a′に吸入され、作動流体は実線矢印の如く流れ
てブレイトンサイクルを形成するものである。
Therefore, the amount of work performed by the working gas sent into the expander room b' is greater than the amount of work performed in the compressor room a', so even if the starter motor is turned off after startup, the fluid machine continues to operate and the drive shaft 2' Repeat rotation. Further, the working gas discharged from the expander chamber b' is cooled by the radiator 7' and then sucked into the compressor chamber a' via the suction pipe 3', and the working fluid flows as shown by the solid line arrow. This forms the Brayton cycle.

一般に、ブレイトンサイクルの発動機システム
において、エネルギー効率の向上並びに出力を増
加させようとする場合は、圧縮機室a′から吐出さ
れた高温、高圧の作動流体を再加熱する時の加熱
温度を上げるか、もしくは圧縮機室a′の吸入する
作動流体の温度を低下させる方法がある。
Generally, in order to improve energy efficiency and increase output in a Brayton cycle engine system, the heating temperature when reheating the high temperature, high pressure working fluid discharged from the compressor chamber a' is increased. Alternatively, there is a method of lowering the temperature of the working fluid drawn into the compressor chamber a'.

加熱温度を上げる場合には加熱器5′において
限度があり効率良く作動流体の温度上昇を行なえ
ない場合があつた。
When raising the heating temperature, there is a limit in the heater 5', and there are cases where the temperature of the working fluid cannot be raised efficiently.

又、吸入する作動流体の温度を低下させるため
に従来は放熱器7′を用いて冷却していたが、膨
張機室b′として作動流体が膨張した後の作業室は
膨張によるエネルギー放出により加熱されて依然
高温のままである。従つて放熱器7′よりの低
圧、低温の作動流体を吸入しても直に作動流体は
昇温し高温の作動流体を吸入したのと同じ事にな
つてしまい発動機のエネルギー効率を低下させる
などの欠点があつた。
In addition, in the past, a radiator 7' was used to cool down the temperature of the working fluid being sucked in, but the working chamber, which is called the expander chamber b' after the working fluid has expanded, is heated by the energy released by the expansion. The temperature remains high. Therefore, even if low-pressure, low-temperature working fluid is sucked in from the radiator 7', the temperature of the working fluid will rise immediately, and this will be the same as sucking in high-temperature working fluid, reducing the energy efficiency of the engine. There were drawbacks such as:

本考案は斯る点に鑑みて、膨張行程で高温とな
つた作業室に水分を注入し、水分の気化により作
業室を冷却し発動機のエネルギー効率を向上させ
たものであり、以下本考案の一実施例を第2図に
基づいて説明すると、作動流体として気体を用い
た場合、1はシリンダー8内を2個のロータ9
a,9bにて区画される作業室10a,10bを
有しこの一室をロータ9a,9bの回転に伴ない
内容積が徐々に小さくなる圧縮機室aとして、他
室を同時に内容積が徐々に大きくなる膨張機室b
として形成する流体機械、5は吐出管4を介して
圧縮機室aより吐出される高温高圧の気体を加熱
し膨張機室bへ吸入管6を介して送入する加熱
器、7は吸入管11を介して膨張後の吐出気体を
吸入し、さらに冷却フアン12を用いて冷却し、
ブロア13と吐出管3を介して圧縮機室aへ送入
する放熱器、14は放熱器7より分離した水分を
膨張行程の終了時に作業室へ注入するポンプであ
る。
In view of this, the present invention improves the energy efficiency of the engine by injecting moisture into the working chamber, which becomes hot during the expansion stroke, and cooling the working chamber through vaporization of the moisture. One embodiment will be explained based on FIG.
It has working chambers 10a and 10b divided by a and 9b, and one of these chambers is used as a compressor room a whose internal volume gradually decreases as the rotors 9a and 9b rotate, and the other chambers simultaneously whose internal volume gradually decreases. Expander room b becomes larger
5 is a heater that heats the high-temperature, high-pressure gas discharged from the compressor chamber a through the discharge pipe 4 and sends it to the expander chamber b through the suction pipe 6; 7 is the suction pipe; The expanded discharge gas is sucked in through the cooling fan 11 and further cooled using the cooling fan 12.
A radiator 14 is a pump that injects moisture separated from the radiator 7 into the working chamber at the end of the expansion stroke.

本考案は一実施例は以上のように構成されてい
るのでロータ9a,9bが第2図の位置にある場
合、作業室10aは圧縮機室aとしての圧縮行程
を終了し、高温、高圧の気体を吸入管6を介して
加熱器5より送入され、膨張機室bとしての膨張
行程の開始時である。又、作業室10bは膨張機
室bとしての膨張行程を終了し、ブロア13によ
り作業室10b内の中温、低圧の膨張気体と、低
温低圧の未圧縮気体とを入れ替える所調掃気運転
が行なわれると同時にポンプ14により水分が注
入され作業室10b内を冷却した後、吐出管11
を介して掃気気体と共に吐出され放熱器7へ至
り、放熱器7により冷却され水分が分離し、点線
矢印の如く水分は再びポンプ14へ供給される。
次に作業室10aでの膨張行程によりロータ9
a,9bは実線矢印の方へ回転をして行き、作業
室10b内の所調掃気および冷却が終了し、作業
室10bが圧縮機室bとなり低温、低圧の気体の
圧縮行程を開始する。以下、作業室10a,10
bが圧縮機室aおよび膨張機室bとに交互に移り
流体機械1が作動し回転を続ける。
One embodiment of the present invention is constructed as described above, so when the rotors 9a and 9b are in the position shown in FIG. Gas is introduced from the heater 5 through the suction pipe 6, and the expansion stroke as the expander chamber b begins. Further, the working chamber 10b completes the expansion stroke as the expander chamber b, and a predetermined scavenging operation is performed by the blower 13 to replace the medium temperature, low pressure expanded gas in the working chamber 10b with the low temperature, low pressure uncompressed gas. At the same time, water is injected by the pump 14 to cool the inside of the working chamber 10b, and then the discharge pipe 11
It is discharged together with the scavenging gas and reaches the radiator 7, where it is cooled and the moisture is separated, and the moisture is again supplied to the pump 14 as shown by the dotted arrow.
Next, due to the expansion stroke in the working chamber 10a, the rotor 9
a and 9b rotate in the direction of the solid line arrow, and the predetermined scavenging and cooling in the working chamber 10b are completed, and the working chamber 10b becomes the compressor chamber b, and a compression stroke of low-temperature, low-pressure gas begins. Below, work rooms 10a, 10
b alternately moves to the compressor chamber a and the expander chamber b, and the fluid machine 1 operates and continues to rotate.

第3図は本考案をマルチベーンタイプに用いた
他の実施例である。図において1″はシリンダー
8″内部に複数のベーン15″を設けたロータ9″
により作業室10″を形成する流体機械、5″は加
熱器、7″は放熱器、14″は放熱器7″の2次側
に一端を接続し他端をシリンダー8″に接続した
注水ポンプなので、加熱器5″により高圧、高温
となつた気体の膨張行程終了後の膨張気体の吐出
と同時にポンプ14″により注水を行ない作業室
10″を冷却している。
FIG. 3 shows another embodiment in which the present invention is applied to a multi-vane type. In the figure, 1" is a rotor 9" that has multiple vanes 15" inside a cylinder 8".
5" is a heater, 7" is a radiator, and 14" is a water injection pump whose one end is connected to the secondary side of the radiator 7" and the other end is connected to the cylinder 8". Therefore, the work chamber 10'' is cooled by injecting water with the pump 14'' at the same time as the expanded gas is discharged after the expansion stroke of the gas, which has become high pressure and high temperature by the heater 5'', is completed.

尚、注水は噴霧であつて同等の効果を得ること
ができる。
Note that the water injection is a spray, and the same effect can be obtained.

本考案の発動機はシリンダ内部に設けられたロ
ーターにより区画される作業室が作動流体を吸入
し圧縮する圧縮機室と、該圧縮機室から吐出され
る作動流体を加熱してから断熱膨張させて出力を
取り出す膨張機室との作業をするブレイトンサイ
クルの発動機システムにおいて作動流体を膨張さ
せた後の前記作業室に水分を注入するポンプを設
けたので膨張行程終了後の作業室内の温度を低下
することができ、作業室は吸入気体の温度を上げ
ることなく吸入気体を圧縮することができるため
圧縮必要動力が少なくなり出力が増加する。ま
た、機体本体をも冷却しているため圧縮行程中に
冷えた本体に熱が逃げる為ポリトロープ指数が下
がり圧縮必要動力は二重に軽減することができ
る。さらに水分を注入することにより、水分が潤
滑剤として働き部品の摩耗を軽減できる。しかも
掃気の必要なシステムなどにおいては気体温度が
低くなるため掃気用ブロアの必要動力が小さくで
きるし、循環ポンプはその必要流量が極小ですむ
ためその消費動力はほとんど無視できるなど実用
上極めて有効なものである。
The engine of the present invention has a working chamber divided by a rotor installed inside the cylinder, and a compressor chamber that takes in and compresses working fluid, and a compressor chamber that heats the working fluid discharged from the compressor chamber and then expands it adiabatically. In a Brayton cycle engine system that works with an expander chamber that extracts output from the engine, a pump is installed to inject moisture into the working chamber after expanding the working fluid, so the temperature inside the working chamber after the expansion stroke can be controlled. Since the working chamber can compress the intake gas without raising the temperature of the intake gas, the power required for compression is reduced and the output is increased. In addition, since the main body of the aircraft is also cooled, heat escapes to the cold main body during the compression stroke, reducing the polytropic index and doubly reducing the power required for compression. Furthermore, by injecting water, the water acts as a lubricant and reduces wear on parts. Moreover, in systems that require scavenging, the gas temperature is lower, so the power required for the scavenging blower can be reduced, and the required flow rate of the circulation pump is extremely small, so its power consumption can be almost ignored, making it extremely effective in practice. It is something.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はブレイトンサイクルの基本概念図、第
2図は本考案の一実施例の概念図、第3図は本考
案の他の実施例の概念図。 8……シリンダー、9a,9b……ロータ、1
0a,10b……作業室、14……ポンプ、a…
…圧縮機室、b……膨張機室。
FIG. 1 is a basic conceptual diagram of the Brayton cycle, FIG. 2 is a conceptual diagram of one embodiment of the present invention, and FIG. 3 is a conceptual diagram of another embodiment of the present invention. 8...Cylinder, 9a, 9b...Rotor, 1
0a, 10b...Working room, 14...Pump, a...
...compressor room, b...expander room.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] シリンダ内部に設けられたローターにより区画
される作業室が作動流体を吸入し圧縮する圧縮機
室と、該圧縮機室から吐出される作動流体を加熱
してから断熱膨張させて出力を取り出す膨張機室
との作業をするブレイトンサイクルの発動機シス
テムにおいて、作動流体を膨張させた後の前記作
業室に水分を注入するポンプを設けたことを特徴
とする発動機。
A compressor chamber in which a working chamber partitioned by a rotor installed inside the cylinder sucks in and compresses working fluid, and an expander which heats the working fluid discharged from the compressor chamber and then adiabatically expands it to extract output. 1. A Brayton cycle engine system for working with a chamber, characterized in that a pump is provided for injecting moisture into the working chamber after expanding a working fluid.
JP13063481U 1981-09-01 1981-09-01 mover Granted JPS5835649U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13063481U JPS5835649U (en) 1981-09-01 1981-09-01 mover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13063481U JPS5835649U (en) 1981-09-01 1981-09-01 mover

Publications (2)

Publication Number Publication Date
JPS5835649U JPS5835649U (en) 1983-03-08
JPS6141969Y2 true JPS6141969Y2 (en) 1986-11-28

Family

ID=29924250

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13063481U Granted JPS5835649U (en) 1981-09-01 1981-09-01 mover

Country Status (1)

Country Link
JP (1) JPS5835649U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62142763A (en) * 1985-12-18 1987-06-26 Hitachi Ltd Sputtering device

Also Published As

Publication number Publication date
JPS5835649U (en) 1983-03-08

Similar Documents

Publication Publication Date Title
RU2434149C2 (en) Waste heat recovery system and method for split-cycle engine
CN105257428B (en) Distributed compression and cyclone ramjet engine
CN109869940A (en) Injecting type critical-cross carbon dioxide double-stage compressive refrigerating system
CN109579339A (en) A kind of improved single-double stage mixed heat pump system
US3956894A (en) Air-steam-vapor expansion engine
US6138457A (en) Combustion powered cooling system
JPS6141969Y2 (en)
CN103939229B (en) Thermodynamic cycle method for prime mover on basis of correct timing constant volume combustion mode
US2782613A (en) Refrigerating apparatus having a free piston compressor
US4235080A (en) Refrigeration and space cooling unit
CN116058214B (en) Air source heat pump greenhouse heater and heating system
CN203809128U (en) Constant-pressure heating thermodynamic cycling system of prime motor
CN208671353U (en) Enclosed heat-pump water heater based on air circulation
US20050172623A1 (en) Rakh cycle engine
CN210861780U (en) Refrigerating system for recycling automobile waste gas
CN212179647U (en) Heat energy recycling device
CN108613427A (en) A kind of two-stage compression heat pump system of band expansion supercharging
JPS5926199Y2 (en) Heat pump air conditioner
SU1780557A3 (en) Method for converting gas inner energy to heat in compression- expanding machine with free liquid piston
CN216953605U (en) Waste heat driven cooling, heating and power triple supply system
US5388557A (en) Combustion engine having a substantially constant temperature and pressure
CN107538005B (en) A kind of energy-saving sintering furnace
US3236293A (en) Heat pump system
JPH0581736B2 (en)
JPS5939123Y2 (en) Lubricating oil heating device for Rankine cycle system